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Abstract: The accurate prediction of rock mass quality ahead of the tunnel face is crucial
for optimizing tunnel construction strategies, enhancing safety, and reducing geological
risks. This study developed three hybrid models using random forest (RF) optimized by
moth-flame optimization (MFO), gray wolf optimizer (GWO), and Bayesian optimization
(BO) algorithms to classify the surrounding rock in real time during tunnel boring machine
(TBM) operations. A dataset with 544 TBM tunneling samples included key parameters
such as thrust force per cutter (TFC), revolutions per minute (RPM), penetration rate
(PR), advance rate (AR), penetration per revolution (PRev), and field penetration index
(FPI), with rock classification based on the Rock Mass Rating (RMR) method. To address
the class imbalance, the Borderline Synthetic Minority Over-Sampling Technique was
applied. Performance assessments revealed the MFO-RF model’s superior performance,
with training and testing accuracies of 0.992 and 0.927, respectively, and key predictors
identified as PR, AR, and RPM. Additional validation using 91 data sets confirmed the
reliability of the MFO-RF model on unseen data, achieving an accuracy of 0.879. A graphical
user interface was also developed, enabling field engineers and technicians to make instant
and reliable rock classification predictions, greatly supporting safe tunnel construction and
operational efficiency. These models contribute valuable tools for real-time, data-driven
decision-making in tunneling projects.

Keywords: random forest; rock mass classification; tunnel boring machine; metaheuristic
optimization algorithms; machine learning

1. Introduction
The utilization of tunnel boring machines (TBMs) in rock tunneling has become

widespread due to increased investment in transportation infrastructure, such as highways
and railways, and continuous advancements in construction technology. This popularity
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is primarily attributed to their advantages, including high construction quality, minimal
surrounding rock disturbance, low labor intensity, and cost-effectiveness [1]. However,
TBMs are susceptible to variations in geological conditions, and unforeseen geological cir-
cumstances can impede tunneling efficiency and potentially lead to significant engineering
incidents [2]. For example, a sudden increase in the strength of the rock mass without
timely adjustment of the TBM tunneling parameters can result in the excessive wear and
tear of machine components. This, in turn, may adversely affect the machine’s service
life and prolong downtime for maintenance. Conversely, if the strength of the rock mass
suddenly decreases and the excavation parameters are not adjusted in time, it can lead to
the collapsing of the weak rock mass, causing TBM jamming accidents in serious cases [3].
Therefore, timely and accurate assessment of the surrounding rock quality ahead of the
tunnel face is crucial for safe tunnel construction.

Currently, traditional methods for rock mass classification have undergone signifi-
cant development, including the Rock Mass Rating (RMR), Q, Geological Strength Index
(GSI), Rock Mass Index (RMi), Barton’s Q (BQ), and Hardness Coefficient (HC), among
others. These methods find wide applications in mines, tunnels, and other underground
projects [4–6]. However, these rock classification methods generally rely on the physical
and mechanical properties of the surrounding rock, geological structure, and hydrological
conditions. They often require the acquisition of numerous parameters, many of which
necessitate on-site data collection and indoor testing. Consequently, the time required
for rock mass classification is prolonged, significantly impacting tunnel construction effi-
ciency. Moreover, these tests consume both labor and resources, contributing to increased
construction costs.

Presently, various geological investigation techniques are employed in the geological
assessment in front of the tunnel face, including drilling and geology analysis, nonde-
structive geophysical exploration, and integrated exploration and interpretation [7]. While
these methods can obtain reliable, comprehensive, and accurate geological information,
the exploration process requires the TBM to stop working, which fails to meet the de-
mands of rapid TBM excavation. Additionally, the confined space between the tunnel face
and the TBM cutter presents challenges for installing geological forecasting equipment.
Common methods of surrounding rock classification and geological investigation often
overlook the influence of engineering on the evaluation of rock quality. In TBM construction,
the dynamic interplay between the TBM system and the surrounding geological context
significantly affects the construction process. The disruptive impact of the TBM on the
surrounding rock, coupled with delays in identifying surrounding rock classification, can
lead to geohazards and safety accidents. Real-time prediction of surrounding rock classes
using TBM tunneling parameters can help mitigate such problems. Ji et al. [8] attempted to
establish regression equations for predicting rock mass classification solely based on TBM
tunneling parameters but encountered poor prediction performance.

The integration of artificial intelligence (AI) and big data is gaining traction in tunnel
engineering due to their rapid advancements [9–11]. Unlike conventional empirical for-
mulations, AI methods excel at capturing complex nonlinear relationships and the effects
of multivariate factors, yielding more accurate predictions, especially in complex geologi-
cal and engineering environments. Therefore, the application of AI in surrounding rock
classification during tunnel construction holds promising potential. For example, Zhang
et al. [12] applied data compression techniques to process extensive TBM operational data,
utilizing the K-means++ clustering algorithm to identify potential surrounding rock classes.
Subsequently, a high-accuracy predictive model for classifying the surrounding rock was
developed using a support vector machine (SVM). Liu et al. [13] constructed an ensemble
learning model for surrounding rock classification prediction based on the Classification
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and Regression Tree (CART) and AdaBoost algorithms, utilizing TBM tunneling parameters
and surrounding rock classifications acquired from the hydropower classification method.
The model’s superiority was confirmed through comparisons with CART, SVM, artificial
neural network (ANN), and k-nearest neighbor (KNN) models. Hou et al. [14] employed
the stacking technique of ensemble learning to forecast surrounding rock classification
using TBM operational data from the Songhua River diversion tunnel project in China. This
method, when compared to other individual classifiers, exhibited superior adaptability
and performance, especially for small and unbalanced datasets. Yang et al. [15] simplified
rock mass classification into two categories, incompetent rock mass and competent rock
mass, improving the prediction performance of random forest (RF) and convolutional
neural networks using the Bayes boosting method. Sebbeh-Newton et al. [16] addressed
imbalanced rock mass classes by employing oversampling techniques and established
a predictive model for surrounding rock classification using TBM operating parameters
and surrounding rock classes from the Japanese Highway Classification System. The
ensemble learning algorithm, with RF being a popular choice, demonstrated enhanced
stability and adaptability. However, the predictive ability of AI models is still limited
by hyperparameters, and improper selection and adjustment may affect optimal model
performance. For example, in the case of RF, if hyperparameters such as the number of
trees or depth are set too low, the model may fail to capture the complex relationships in the
data, leading to underfitting. On the other hand, if these parameters are set too high, the
model could become overly complex and may start memorizing the noise in the training
data, resulting in overfitting. Both underfitting and overfitting can negatively impact the
accuracy of the model’s predictions. To enhance model performance, various optimization
algorithms, particularly metaheuristic algorithms, have been proposed for hyperparameter
tuning [17,18]. The versatility and robustness of metaheuristic algorithms have led to their
widespread acceptance in the engineering field. For instance, He et al. [18] utilized the tuni-
cate swarm algorithm (TSA), the whale optimization algorithm (WOA), and the gray wolf
optimizer (GWO) to optimize the random forest (RF) model, achieving precise prediction of
overbreak phenomena resulting from tunnel blasting. Similarly, Zhou et al. [19] enhanced
the predictive performance of RF through the utilization of the moth-flame optimization
(MFO), GWO, and the multi-verse optimizer (MVO) algorithm for stability assessment
in underground entry-type excavations. While metaheuristic algorithms and RF are in-
creasingly applied in geotechnical engineering, their application in the classification of
surrounding rock for TBM construction has received limited research attention.

Based on the above analysis, this paper constructed a database using TBM tunneling
parameters derived from the Pahang Selangor Raw Water Transfer (PSRWT) tunnel and
the surrounding rock classification obtained through the Rock Mass Rating (RMR) method.
Two metaheuristic algorithms were employed to optimize RF and create real-time predic-
tive models for classifying rock mass in TBM excavation. To demonstrate the superior
performance of the metaheuristic algorithms, we also compared them with the Bayesian
optimization algorithm. It is worth noting that, at the current stage, there has not been an
exhaustive study on hybrid model development for the real-time prediction of surrounding
rock classes in TBM construction. Therefore, this study fills the gap in this field by devel-
oping three hybrid random forest models. The subsequent section outlines the paper’s
structure: Section 2 offers a comprehensive explanation of the theoretical foundation of the
models and delineates the construction process. Section 3 introduces the data sources used
in this study and analyzes and preprocesses the data. In Section 4, the training process and
evaluation metrics of the hybrid model are described. Section 5 showcases the outcomes of
the model evaluation alongside the sensitivity analysis. Section 6 presents the engineering
validation results of the models and shows the corresponding graphical user interfaces.
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Section 7 deliberates on the limitations of this study and proposes directions for future
research. Lastly, Section 8 encapsulates the conclusions drawn from this study.

2. Methodology
2.1. Random Forest

Random Forest (RF) is an ensemble learning method that utilizes decision tree-based
models to establish connections between features and sample categories through nonlinear
fitting [20]. The decision tree, a nonparametric algorithm, can be visualized as a tree-like
classifier with nodes and directed edges. RF applies the Bagging ensemble method [21],
extracting data from the training set through random resampling techniques to create
multiple independent training subsets. These subsets are then used to train independent
classifiers. In contrast to the traditional Bagging algorithm, RF introduces a randomized
feature selection mechanism during the training of the base learner.

In Random Forest (RF), during the creation of each decision tree node, a subset of size
k is randomly selected from the set of d features, and then an optimal feature is chosen from
that subset for classification. Throughout the process of building decision trees in RF, both
sample perturbation and feature perturbation are incorporated into the initial training set,
effectively mitigating overfitting without the need for pruning. The classification process
of RF is outlined in Figure 1, encompassing the following steps:
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(1) Prior to constructing the decision tree, a unique training sample subset is generated
by randomly sampling samples from the original dataset with replacement.

(2) The dataset comprises d features, with k (where k ≤ d) features chosen randomly
to form a feature subset.

(3) The decision tree model is trained using the newly formed sample subset and
feature subset. Optimal features for splitting are selected during the splitting process.

(4) Steps (1), (2), and (3) are iteratively executed to build n decision trees, resulting
in the formation of a random forest. Each decision tree is constructed without employing
pruning operations.

(5) The classification outcomes of the n decision trees are aggregated through a voting
mechanism to determine the final category.
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2.2. Moth-Flame Optimization

The moth-flame optimization (MFO) algorithm is designed based on how moths
navigate laterally during nighttime flight [22]. During the night, moths maintain a fixed
flight angle relative to the moon, as depicted in Figure 2a. Due to the moth’s distance
from the moon, moonlight can be considered parallel light, ensuring that the moth flies
in a straight path by maintaining this angle. When faced with obstacles, the moth can
adjust its flight path based on this angle without deviating from its original direction.
However, artificial light sources can mislead moths, causing them to spiral around the
source, ultimately resulting in exhaustion and the phenomenon known as “Moths to the
Flame,” as shown in Figure 2b.
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Inspired by this behavior, the MFO algorithm interprets the moths’ spiral flight around
the artificial light source as a search for an optimal solution in the solution space. In this
algorithm, moths represent individuals in constant search, with the flame symbolizing the
optimal position attained thus far. Each moth updates its position according to a specific
equiangular helix flying around the corresponding flame. To increase the likelihood of
attaining the optimal solution, the current best solution is used as the reference position
for the subsequent generation’s flame. After each iteration, flame positions are rearranged
based on fitness values, resulting in an updated flame sequence. Consequently, subsequent
generations of moths update their positions in accordance with the corresponding sequence
of flames.

The optimization process of the MFO algorithm can be expressed as a ternary
optimality-seeking problem: 

MFO = (I, P, T)
I : ϕ → {M, OM}
P : M → M′

T : M → {true, f alse}

(1)

• I is a function that randomly generates moth populations and corresponding fitness
values.

• ϕ represents the fitness function.
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• M denotes the position of moths, with OM indicating the corresponding fitness value
of moths in M.

• P is a mechanism for moths to update their position with a helix trajectory around the
flame, denoted by M′ for the updated positions of moths.

• T is a judgment iteration function. If it meets termination conditions, T returns true
and stops iteration; otherwise, it continues to iterate to find the optimal solution.

Through continuous iterations, moths actively eliminate poorly adapted flames while
searching for superior ones, gradually reducing the flame number. This process balances
the algorithm’s global search capability and local development within the search space.
The formula used to adaptively decrease the flame number is as follows:

f lame_no = round(N − l × N − 1
T

) (2)

In this context, the term “flame_no” represents the current count of flames, where “N”
represents the maximum number of flames, “l” denotes the current iteration count, and “T”
signifies the maximum number of iterations.

2.3. Gray Wolf Optimization

The gray wolf optimization (GWO) algorithm is inspired by the sophisticated hunting
strategies observed in gray wolves [23]. Renowned for its simplicity, rapid convergence,
minimal parameter setup, and ease of implementation, this algorithm offers significant
advantages. Within the GWO algorithm, the gray wolf pack is structured into four hier-
archies, denoted as α, β, δ, and ω from highest to lowest rank, as depicted in Figure 3. α,
as the leader, holds the highest decision-making authority, with other wolves following
α’s command. β assists α in decision-making or other activities, and the best β becomes
α’s successor. δ follows commands from α and β and is responsible for hunting, scouting,
and pack safety. ω ranks lowest in the hierarchy, relying on higher-ranking members for
guidance to maintain population balance.
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The optimization process of the GWO algorithm involves several steps, including
social hierarchy division, prey encirclement, hunting, attacking, and prey searching. Math-
ematical descriptions of these phases are outlined below:

Social Hierarchy:
In the GWO algorithm, each gray wolf represents a potential solution, with the top

three performers designated as α, β, and δ, representing the optimal, superior, and sub-
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optimal solutions, respectively. The remaining wolves (ω) constitute candidate solutions
within the population. α, β, and δ guide the rest of the wolves in the population for
positional updates.

Prey Encirclement:
Gray wolves approach prey gradually and then encircle their target. The mathematical

representation of these behaviors is elucidated through the following equation:
D =

∣∣C · Xp(t)− X(t)
∣∣

X(t + 1) = Xp(t)− A · D
A = 2a · r1 − a
C = 2 · r2

(3)

In these equations, the variable “t” represents the current iteration number. “A” and
“C” denote coefficient vectors, while “Xp” signifies the position vector of the prey, and “X”
represents the position vector of the gray wolf. The coefficient “a” gradually decreases from
2 to 0 during the iteration process. Moreover, “r1” and “r2” refer to random vectors within
the range [0, 1].

Hunting:
In the confined search space, the exact location of the prey (optimal solution) remains

undisclosed. Drawing inspiration from the hunting behavior of gray wolves, it is suggested
that α, β, and δ possess superior knowledge about the prey’s position, thereby guiding
other gray wolves to adjust their positions accordingly. This procedural representation is
captured by the following equation:

Dα = |C1 · Xα − X|, Dβ =
∣∣C2 · Xβ − X

∣∣, Dδ = |C3 · Xδ − X|
X1 = Xα − A1 · (Dα), X2 = Xβ − A2 · (Dβ), X3 = Xδ − A3 · (Dδ

)
X(t + 1) = X1+X2+X3

3

(4)

where Dα, Dβ, and Dδ represent the distances between α, β, and δ and ω; X1, X2, and X3

represent the distances between the distance between α, β, and δ and the prey.
Engaging with Prey:
Gray wolves initiate their assault once the prey halts movement. To emulate the

gradual approach of gray wolves toward their target, the parameter “a” steadily diminishes
from 2 to 0, thereby concurrently adjusting the value of “A”. When the random value of “A”
falls within the interval [−1, 1], the subsequent position of the gray wolf may lie anywhere
between its current position and that of the prey. When |A| < 1, the wolves will commence
attacking the currently sought-after prey.

Pursuit of Prey:
Gray wolves primarily rely on information from α, β, and δ to search for prey. Ad-

ditionally, wolves disperse during their search for prey and then focus on hunting upon
locating it. To simulate this dispersion, |A| > 1 is employed to compel the wolves to
maintain distance from the current prey. Another search coefficient in the algorithm is C,
representing the random weight of the prey. C undergoes random changes throughout the
iteration process, aiding the algorithm in avoiding local optima during the final iteration.
The settings of parameters A and C balance the global and local search capabilities of
the algorithm.

2.4. Bayesian Optimization Algorithm

The Bayesian optimization (BO) algorithm emerges as a potent global optimization
technique, widely applied for tuning hyperparameters in machine learning models due to
its minimal iteration count and swift pace [24]. BO maximizes the utilization of already ex-
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plored spaces and adjusts hyperparameters accordingly, diminishing unnecessary sampling
and enhancing efficiency in solving intricate problems. At the core of the BO algorithm lies
the probabilistic agent model and the acquisition function. The probabilistic agent model
comprises two primary elements: the prior probability distribution and the observation
model. The prior probability distribution furnishes initial insights to guide the estimation
of model parameters, while the observation model utilizes existing data to refine the prior
probability distribution, yielding an enriched posterior probability distribution with addi-
tional information. In this study, the Gaussian process agent model is employed to depict
the relationship between hyperparameter x and the objective function f (x), as depicted in
Equation (5). The acquisition function utilizes agent model insights to determine the next
point for evaluation, striking a balance between exploration and exploitation to achieve
global optimization. 

f (x) ∼ GP(µ(x), k(x, x′))
µ(x) = E[ f (x)]
k(x, x′) = E[ f (x)− µ(x)( f (x′)− µ(x′))]

(5)

The expression “GP (*)” signifies the Gaussian process, where “µ(x)” represents the
mean function, and “k (x, x’)” denotes the covariance function.

2.5. Hybrid Models

The aim of this investigation is to develop a classification predictive model for sur-
rounding rock in TBM operations. To achieve this, three hybrid models—GWO-RF, MFO-
RF, and BO-RF—are constructed by adjusting the hyperparameters of the RF using two
metaheuristic algorithms (MFO and GWO) and BO. Despite differences in optimization
approaches between the metaheuristic algorithms and the BO algorithm, they share similar
steps in optimizing the RF models, as illustrated in Figure 4. The specific optimization
process involves the following:

1. Data Analysis and Preprocessing: The dataset is analyzed and normalized. Sub-
sequently, it is randomly divided into training and test sets, ensuring that all three
hybrid models utilize the same dataset.

2. Parameter Initialization: The hyperparameter range for the RF model is set. Addi-
tionally, the appropriate population size and number of iterations are determined for
the metaheuristic algorithms. For the BO algorithm, the same number of iterations as
the metaheuristic algorithms is set.

3. Fitness Evaluation: A fitness function is defined, and fitness evaluation is performed
on the initial model.

4. Parameter Update: The metaheuristic algorithms update the hyperparameter combi-
nations based on the results of the previous iteration to achieve improved optimization
results. In contrast, the BO algorithm utilizes a probabilistic model to guide parameter
selection in the subsequent step and dynamically updates the model to explore the
parameter space more effectively.

5. Stopping Condition Check: When the maximum number of iterations or convergence
is reached, the optimization process is terminated, and the optimal hyperparameter
combination of the hybrid model is obtained.

Figure 4 illustrates the overall construction process of the hybrid models.
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3. Data
3.1. Data Source and Description

The data utilized in this study were gathered from the PSRWT tunnel located in
Malaysia. Stretching over a length of 44.6 km, this tunnel serves the purpose of trans-
porting raw water from the Semantan River in Pahang to the South Klang Valley region
of Selangor state, addressing water scarcity challenges resulting from the area’s rapid
population growth. The predominant lithology along the tunnel route consists of granite
and metamorphic sedimentary rocks. Excavation for the PSRWT tunnel predominantly
employed Tunnel Boring Machine (TBM) methods, covering 34.74 km, with the remaining
section excavated using conventional drill and blast techniques and excavation overlay
methods. The primary TBM utilized for excavation was a main girder type TBM provided
by Robbins USA, featuring a cutter diameter of 5.23 m.

For this study, 544 datasets were collected from the PSRWT tunnel, forming the basis
for constructing hybrid prediction models based on Random Forest (RF): GWO-RF, MFO-
RF, and BO-RF, with the aim of predicting the class of surrounding rock in real-time during
TBM excavation. These datasets comprised 258 sets from the fresh zone of the rock mass and
286 sets from the slightly weathered zone. During excavation, the TBM gathers substantial
tunneling data, with average data recorded every 10 m. The condition of the rock mass
at the tunnel face influences the TBM’s operational and performance parameters through
interaction, leading to the selection of parameters such as thrust force per cutter (TFC),
revolution per minute (RPM), penetration rate (PR), advance rate (AR), penetration per
revolution (PRev), and field penetration index (FPI) as input parameters for predictive
models. Specifically, thrust force per cutter (TFC) represents the force exerted by each cutter
on the rock, indicating the interaction between the TBM cutter and the rock. Revolutions
per minute (RPM) refers to the rotational speed of the cutterhead and is a key indicator
of TBM performance, with RPM typically decreasing in harder rock to reduce tool wear.
Penetration rate (PR) measures the depth the cutterhead advances per minute, reflecting
the efficiency of the TBM; a higher PR is generally observed in softer rocks. Advance rate
(AR) is the distance advanced by the TBM per unit of time, directly representing overall
excavation efficiency. Penetration per revolution (PRev) indicates the depth the cutterhead
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advances per revolution, which reflects the cutting efficiency and the relationship with
rock hardness. Finally, the field penetration index (FPI) measures the efficiency of cutting
under a given thrust, providing a comprehensive view of the tool performance, thrust, and
rock properties. These parameters are monitored and calculated in real time by the TBM’s
multiple sensors.

Specific conditions of the rock mass at the tunnel face were determined through
field investigations and indoor tests. The rock mass rating (RMR) system proposed by
Bieniawski was employed for classifying the surrounding rock at the tunnel face. The RMR
method involves six parameters: intact rock strength, rock quality index, joint spacing, joint
status, and groundwater status. It classifies the rock mass into five classes ranging from
class I to class V, representing very good, good, fair, poor, and extremely poor conditions,
respectively. Widely recognized in geotechnical engineering, the RMR method is valued
for its simplicity and comprehensive assessment of rock mass quality, making it widely
applied in practical engineering design and construction.

3.2. Data Pre-Process

The dataset utilized in the study consists of three classes of surrounding rock samples:
167 class I samples (30.7%), 320 class II samples (58.8%), and 57 class III samples (10.5%), as
depicted in Figure 5. Notably, there exists an imbalance in sample distribution among the
classes, particularly evident in the differing number of class II and class III samples, with a
ratio reaching 5.6:1. Such class imbalance can introduce biases in machine learning models,
where the more frequent classes tend to dominate during training, potentially resulting
in inferior predictions for less represented classes. Figure 6 presents the data distribution
and correlation analysis among the six input parameters. It reveals a strong positive
correlation (correlation coefficient of 0.73) between TFC and FPI, while the correlations
among the remaining parameters are relatively weaker. The histograms in Figure 6 show
the distribution of data for each feature, with the x-axis of the histograms indicating the
range of feature values and the y-axis indicating the corresponding frequencies, and these
histograms visualize the concentration trend and dispersion of the features. Figure 7
illustrates box plots for the TBM tunneling data, showcasing statistical metrics such as
the median, upper and lower quartiles, and outliers. Outliers are determined based on
the statistical principles of the boxplot. The normal range is defined by the quartiles (Q1
and Q3) and the interquartile range (IQR). Data outside the range from Q1 − 1.5 × IQR
to Q3 + 1.5 × IQR are considered outliers, typically indicated as outliers in the box plot.
Some variables exhibit outliers, notably TFC, which were retained in this study despite
their unidentified origins, considering their potential informational value.
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Randomized stratified sampling was employed to partition the 544 datasets into an
80% training set and a 20% test set, maintaining the original database’s data structure. The
training set was utilized for the model to understand the relationship between TBM tunnel-
ing parameters and the surrounding rock class, while the test set was used to evaluate the
model’s performance. Various strategies were implemented during data preprocessing to
tackle class imbalance. While under-sampling and over-sampling are common approaches,
under-sampling may result in the loss of crucial information by reducing sample numbers
across most categories. In contrast, basic SMOTE randomly generates synthetic samples
for the minority class but does not consider the distribution of samples near the decision
boundary, which may lead to overlapping among classes and reduce classification precision.
To mitigate this, the Borderline Synthetic Minority Over-sampling Technique (Borderline-
SMOTE), an enhanced SMOTE oversampling method, was employed. Borderline-SMOTE
enhances the model’s adaptability to imbalanced data by strategically generating synthetic
samples near the decision boundary of minority categories [25]. This approach better
preserves the minority class’s critical information, reducing the risk of overgeneraliza-
tion and ensuring a more accurate representation of minority categories. This technique
balanced the sample differences across surrounding rock classes, ensuring adequate rep-
resentation of class III surrounding rock samples to enhance classification performance
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during training. Before model training, Z-score normalization was applied to eliminate
magnitude differences and data biases among input parameters, facilitating model learning
and optimization.

Geosciences 2025, 15, x FOR PEER REVIEW 12 of 26 
 

 

 

Figure 7. Box plots presenting statistical metrics for six variables. 

Randomized stratified sampling was employed to partition the 544 datasets into an 
80% training set and a 20% test set, maintaining the original database’s data structure. The 
training set was utilized for the model to understand the relationship between TBM tun-
neling parameters and the surrounding rock class, while the test set was used to evaluate 
the model’s performance. Various strategies were implemented during data prepro-
cessing to tackle class imbalance. While under-sampling and over-sampling are common 
approaches, under-sampling may result in the loss of crucial information by reducing 
sample numbers across most categories. In contrast, basic SMOTE randomly generates 
synthetic samples for the minority class but does not consider the distribution of samples 
near the decision boundary, which may lead to overlapping among classes and reduce 
classification precision. To mitigate this, the Borderline Synthetic Minority Over-sampling 
Technique (Borderline-SMOTE), an enhanced SMOTE oversampling method, was em-
ployed. Borderline-SMOTE enhances the model’s adaptability to imbalanced data by stra-
tegically generating synthetic samples near the decision boundary of minority categories 
[25]. This approach better preserves the minority class’s critical information, reducing the 
risk of overgeneralization and ensuring a more accurate representation of minority cate-
gories. This technique balanced the sample differences across surrounding rock classes, 
ensuring adequate representation of class III surrounding rock samples to enhance classi-
fication performance during training. Before model training, Z-score normalization was 
applied to eliminate magnitude differences and data biases among input parameters, fa-
cilitating model learning and optimization. 

4. Modeling 
4.1. Model Metrics 

Evaluating machine learning model performance comprehensively and accurately is 
integral to the model development process. Proper selection of evaluation metrics is cru-
cial for understanding the effectiveness and performance of the model [26]. In this study, 

Figure 7. Box plots presenting statistical metrics for six variables.

4. Modeling
4.1. Model Metrics

Evaluating machine learning model performance comprehensively and accurately
is integral to the model development process. Proper selection of evaluation metrics is
crucial for understanding the effectiveness and performance of the model [26]. In this
study, three global evaluation metrics—accuracy, Kappa index (Kappa), and Matthews
correlation coefficient (MCC)—were utilized to assess the model’s overall prediction capa-
bility for surrounding rock classification [27]. Accuracy refers to the proportion of correctly
predicted samples relative to the total number of samples, providing an overall measure
of the model’s predictive capability. Kappa assesses the agreement between the model’s
predictions and the actual outcomes, adjusting for random chance. The Matthews Corre-
lation Coefficient (MCC) incorporates true positives, false positives, true negatives, and
false negatives, providing a comprehensive evaluation of the model’s performance. Preci-
sion measures the proportion of true positive samples among those predicted as positive,
reflecting the model’s accuracy in predicting positive instances. The recall represents the
proportion of true positives correctly identified by the model, indicating its ability to cap-
ture positive samples. The F1-score is the harmonic mean of precision and recall, offering a
balanced evaluation of the model’s performance across both dimensions. Higher values of
these metrics, approaching 1, indicate better model predictions, with 1 signifying perfect
agreement between predicted and true values. Given the presence of unbalanced data in
the database, relying solely on global evaluation metrics may not sufficiently reveal model
performance across all categories. Hence, local evaluation metrics such as precision, recall,
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and F1-score were employed to gain insights into the model’s performance across different
classes [28]. These global and local evaluation metrics can be computed from the confusion
matrix, as depicted in Figure 8.
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4.2. Model Training

This study utilized six TBM digging parameters (TFC, RPM, PR, AR, Prev, and FPI)
as input parameters for predicting three rock mass classifications. Three optimization
algorithms—MFO, GWO, and BO—were employed to adjust the hyperparameters of RF.
The optimization ranges for the hyperparameters of RF were set to (10, 200) for n_estimators,
(2, 10) for max_depth, (1, 10) for min_samples_leaf, and (2, 20) for min_samples_split. In
metaheuristic algorithms like MFO and GWO, population size plays a crucial role in
optimization ability. Larger populations enhance exploration but increase computational
cost and slow convergence, while smaller populations converge faster but risk local optima.
Therefore, selecting a reasonable population size for metaheuristic optimization algorithms
is essential for performance and effectiveness. Population sizes were set to 20, 30, 40, 50, 60,
and 70, and iterative calculations were performed accordingly. The effectiveness of the BO
algorithm relies on both the probabilistic agent model and the acquisition function. In this
study, the Gaussian process was chosen as the probabilistic agent model, while GP-Hedge
served as the acquisition function. Accuracy was utilized as the fitness function for the
iterations. After 100 iterations, the fitness values of the three optimization algorithms
stabilized, as shown in Figure 9. Analysis of the iteration curves of the MFO algorithms
(Figure 9a) reveals that results from different population sizes converge to the same value.
Although prediction accuracies remain consistent across various populations, differences
primarily occur in convergence speed. Notably, the model achieves maximum accuracy
most rapidly with a population size of 50. Hence, the model corresponding to a population
size of 50 was selected as the optimal MFO-RF model. Examination of the GWO algorithm’s
iteration curve (Figure 9b) indicates that both GWO-RF models with populations of 30 and
50 achieve maximum accuracy. However, the model with a population of 50 converges
faster, leading it to be considered the optimal GWO-RF model. Table 1 presents the accuracy
results for the three hybrid models. A comprehensive evaluation of the three RF-based
hybrid models (MFO-RF with 50 swarms, GWO-RF with 50 swarms, and BO-RF) will be
provided below. “Swarms” refers to the population size in metaheuristic optimization
algorithms, representing the number of candidate solutions used in each iteration of
the algorithm.
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Table 1. Development results of three hybrid models.

Models Swarm Accuracy Iteration

MFO-RF 20/30/40/50/60/70 0.992 100

GWO-RF 20/40/60/70 0.985 100

GWO-RF 30/50 0.987 100

BO-RF 0.985 100

5. Results and Discussion
5.1. Model Evaluation

To provide a more intuitive assessment of classification accuracy for each model across
individual classes, confusion matrices were constructed for each model using the training
set, as presented in Figure 10. Normalized confusion matrices were utilized in this study,
offering relative proportions for each category by normalizing at each row. This enhances
visualization and comprehension, particularly in situations with data category imbalances.
The figure illustrates classification results for the three surrounding rock classes (I, II, and
III). Each row represents the actual surrounding rock class, and each column represents
the predicted surrounding rock class. Percentages along the diagonal signify correctly
classified instances, with off-diagonal percentages indicating misclassifications. Darker
colors indicate higher percentage values. Analysis of the confusion matrix plot reveals that
the unoptimized RF model demonstrates superior discrimination between classes I and
II but weaker discrimination for class III, with 22.18% of class III samples misclassified
as class II. The proportion of correctly classified samples in each category is significantly
improved by the optimization algorithm, indicating that the classification performance of
RF can be enhanced using different optimization algorithms.

Three global evaluation indices (accuracy, Kappa, and MCC) and three local evalua-
tion indices (precision, recall, and F1-score) were used to comprehensively quantify the
prediction ability of the surrounding rock classification for each model, as presented in
Table 2. It is evident from the table that all optimized hybrid models exhibit high prediction
accuracy on the training set, with accuracies exceeding 0.98. Among them, the MFO-RF
model demonstrates optimal performance on both global and local evaluation metrics
(0.992 for accuracy, 0.998 for Kappa, 0.988 for MCC, 0.992 for precision, 0.992 for recall,
and 0.992 for F1-score). This indicates that the MFO-RF model possesses the strongest
prediction ability for surrounding rock classes and can accurately distinguish between
them, showing a high level of consistency between predicted and actual results. The
GWO-RF and BO-RF models also exhibit comparable performance and outperform the
unoptimized RF model. To determine the optimal model, evaluation metrics for the four
models were scored on a scale from 1 to 4, where higher scores reflect superior predictive
ability. This scoring system enables explicit comparison of performance between models
and provides an objective basis for selecting the best model. Figure 11 displays the final
scores of each model in the training phase. The MFO-RF model obtained full scores across
all indicators, ultimately achieving the highest score of 24, indicating optimal performance.
The prediction performance of each model in the training stage is ranked as MFO-RF >
GWO-RF > BO-RF > RF.
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To thoroughly assess the generalization ability of the constructed models, validation
was conducted on a designated test set. Test set validation is a crucial step to verify whether
the model can achieve good performance on unknown data and determine the reliability
of the model in practical applications. Figure 12 illustrates the normalized confusion
matrix of the four models on the test set. It is apparent that the unoptimized RF model
exhibits a higher classification error rate compared to the hybrid models, particularly
underperforming in class III where the sample size is limited. Notably, all three hybrid
models demonstrate superior performance in class I, with accuracy above 90%. For class II,
the hybrid model MFO-RF performs the best with 94.44% accuracy. GWO-RF shows 100%
correct classification on class III.



Geosciences 2025, 15, 47 17 of 25

Table 2. The assessment results of each model in the training stage.

Model Accuracy Kappa MCC Precision Recall F1-Score

RF 0.801 0.702 0.708 0.823 0.801 0.806

MFO-RF 0.992 0.988 0.988 0.992 0.992 0.992

GWO-RF 0.987 0.980 0.980 0.987 0.987 0.987

BO-RF 0.985 0.978 0.978 0.986 0.985 0.985
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Table 3 presents the global and local evaluation metrics of the four models on the
test set. It is evident from the table that the hybrid models continue to exhibit satisfactory
performance on the unknown dataset without experiencing overfitting issues. Moreover,
the MFO-RF model still performs very well on the test set (0.927 for accuracy, 0.852 for
Kappa, 0.853 for MCC, 0.933 for precision, 0.927 for recall, and 0.929 for F1-score). Figure 13
illustrates the scores of each evaluation metric for the four models on the test set. The
MFO-RF model still obtains the highest score. Unlike the ranking observed during the
training phase, the BO-RF model demonstrates superior performance compared to the
GWO-RF model on the test set, confirming the noteworthy optimization capability of the
BO algorithm.

The evaluation of performance on both training and test sets highlights the superior
learning and generalization capabilities of the MFO-RF model. To further investigate
its advantages, various commonly utilized machine learning models were developed
for predicting surrounding rock classes. These models include decision tree (DT), SVM,
KNN, ANN, logistic regression (LR), AdaBoost, and Naive Bayes (NB). Trained on the
same dataset, these models were subsequently assessed using the same test set. Figure 14
illustrates the accuracy of the MFO-RF model compared to other machine learning models
on both training and test datasets.
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dicting surrounding rock classes. These models include decision tree (DT), SVM, KNN, 
ANN, logistic regression (LR), AdaBoost, and Naive Bayes (NB). Trained on the same da-
taset, these models were subsequently assessed using the same test set. Figure 14 illus-
trates the accuracy of the MFO-RF model compared to other machine learning models on 
both training and test datasets. 

Figure 12. Confusion matrix for each model in the testing stage.
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Table 3. The assessment results of each model in the testing stage.

Model ACC Kappa MCC Precision Recall F1

RF 0.782 0.595 0.605 0.841 0.782 0.804

MFO-RF 0.927 0.852 0.853 0.933 0.927 0.929

GWO-RF 0.873 0.759 0.766 0.897 0.873 0.878

BO-RF 0.891 0.786 0.789 0.905 0.891 0.895

It is evident that while the DT model performs well on the training dataset, it exhibits
poor performance on the test dataset, indicating severe overfitting problems. The other
models also show inferior performance compared to MFO-RF on both the training and
test datasets. This indicates that the developed hybrid model, MFO-RF, can achieve
more accurate surrounding rock classification compared to other commonly used machine
learning models.
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5.2. Model Interpretation

The poor interpretability of machine learning models often hampers their applica-
tion in practical engineering fields. Following the identification of the optimal hybrid
model for predicting surrounding rock classification (MFO-RF), it is essential to analyze its
interpretability. This involves extracting the key factors influencing model performance
and revealing the internal relationship between surrounding rock classification and each
excavation parameter of the TBM.

The constructed MFO-RF model was interpreted using the Shapley Additive Explana-
tions (SHAP) interpretation method. SHAP is a nonparametric technique for interpreting
machine learning models, rooted in the Shapley value from cooperative game theory [29].
It quantifies the contributions of features to model performance, revealing both local and
global model behavior. Figure 15 presents a summary plot of SHAP, illustrating the contri-
bution of each feature to different surrounding rock classes in the MFO-RF model. On the
left side of the figure, features are ranked by importance to the prediction of surrounding
rock classification, with their significance indicated by their position from top to bottom.
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Each dot in the figure represents a sample of surrounding rock classes, with the horizontal
axis denoting the SHAP value, indicating the feature’s influence on prediction outcomes. A
positive SHAP value increases the probability of prediction results, while a negative value
decreases it. Sample point color, ranging from blue to red, represents feature values from
small to large. Relative importance rankings of each feature across the three surrounding
rock classes are depicted in Figure 15a–c.

According to Figure 15a, PR, AR, and RPM are significant predictors of surrounding
rock class I. Lower values of these features correlate with a higher probability of the
surrounding rock being classified as class I, affirming that more intact surrounding rock
corresponds to a slower TBM digging speed. In Figure 15b, RPM, FPI, and TFC exert
greater influence on predicting surrounding rock class II. For class III, shown in Figure 15c,
TFC, PR, and FPI are the key features in model prediction, with higher feature values
associated with a higher probability of predicting class III. For the intact and unweathered
rock mass, the TBM needs to reduce the rotational speed of the tool to ensure safe and
effective cutting of the rock mass, and the working efficiency of the TBM and the overall
efficiency of the tunnel boring will also be reduced correspondingly. Conversely, relatively
more fragmented rock allows for higher dig ability and TBM efficiency. Thus, employing
TBM tunneling parameters enables accurate prediction of the corresponding surrounding
rock class, guiding safe and efficient on-site construction.

Based on the analysis in Figure 15, Figure 16 demonstrates the relative importance of
overall variables for the three surrounding rock classes. Notably, the contribution values of
TFC, RPM, PR, AR, PRev, and FPI are 0.156, 0.214, 0.226, 0.215, 0.079, and 0.11, respectively.
“Contribution values” refer to the relative importance or contribution of each variable
in predicting the target class, indicating the extent to which each variable influences the
model’s output. The contributions of PR, AR, and RPM are particularly prominent, with
PR making the most substantial contribution to predicting surrounding rock classes.
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6. Validation
To further validate the accuracy and reliability of the hybrid models developed for

engineering applications, an additional 91 sets of data were collected, all derived from
the PSRWT tunnel. The new dataset consists of 25 class I samples, 60 class II samples,
and six class III samples, exhibiting a similar class imbalance phenomenon as the original
dataset. Figure 17 displays categorized report plots of the three hybrid models on the
validation dataset, offering a comprehensive assessment of their performance across each
class and overall. Figure 17a,c indicate that the MFO-RF and BO-RF models outperform
others in predicting surrounding rock class II, followed by class I, with relatively poorer
performance in class III. In Figure 17b, the GWO-RF model performs similarly to the MFO-
RF and BO-RF models in ranking the performance of each surrounding rock class, but
the performance is slightly worse. Overall, the hybrid models demonstrate satisfactory
prediction performance, notably the consistent performance of MFO-RF and BO-RF models,
both achieving accuracies of 0.879. These results confirm the engineering applicability of
the developed models.
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Furthermore, a graphical user interface (GUI) was created to facilitate rapid prediction
of rock mass classification, as presented in Figure 18. The interface consists of input
parameters, a prediction model selection, and output results. Users simply input prediction
index values and select the desired prediction model to obtain corresponding surrounding
rock classifications.
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7. Limitations and Future Studies
Although the developed hybrid models have shown promising results in predicting

surrounding rock classes, this study has several limitations:
(1) The applicability of the developed models is limited to similar tunnel projects.

Future efforts could focus on creating more universally adaptable models by collecting
TBM tunneling data from various tunnel projects.

(2) The dataset comprises only three rock mass classes, with a relatively small number
of samples for class III. This limited sample size may constrain the prediction performance
of the model for class III. Expanding the training dataset could enhance the model’s
predictive capabilities across all classes.

(3) The accuracy of the developed models may be influenced by outliers in the database.
In this study, outliers were not addressed, as their source is unknown and they may
contain valuable information. Future research could employ more robust outlier handling
techniques to effectively utilize potentially valuable data insights.

8. Conclusions
TBMs are extensively utilized in underground engineering for efficient and safe tunnel

construction. However, a persistent challenge lies in the timely perception of the geological
environment ahead of the tunnel face, posing risks and uncertainties to construction.
Addressing this issue, this study developed three novel hybrid models using TBM boring
parameters, along with optimization algorithms like MFO, GWO, and BO, combined with
RF models, to enable the real-time prediction of rock mass classification ahead of the tunnel
face. The main conclusions of this study are as follows:

(1) Comparative analysis revealed that all developed hybrid models outperformed the
unoptimized RF model in prediction accuracy. Among them, the MFO-RF model exhibited
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the highest prediction performance, achieving 0.992 training accuracy and 0.927 testing
accuracy. Furthermore, compared to other commonly employed machine learning models,
the MFO-RF model still showed superior learning and generalization performance in the
prediction of surrounding rock classification.

(2) SHAP was introduced to interpret the MFO-RF model. PR, AR, and RPM were
identified as the key input parameters for surrounding rock classification prediction, and
the effects of these key parameters on predicting different rock mass classes were analyzed.

(3) Further data gathered from the PSRWT tunnel were utilized to verify the precision
and consistency of the hybrid models. Validation results indicated that the hybrid models
generally attained satisfactory outcomes, with the accuracy of the MFO-RF and BO-RF
models recorded at 0.879, while the GWO-RF model exhibited an accuracy of 0.857.
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