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Article

Geochemistry and Petrogenesis of Permo–Triassic Silicic
Volcanic Rocks from the Circum-Rhodope Belt in the
Vardar/Axios Zone, Northern Greece: An Example of a
Post-Collision Extensional Tectonic Setting in the Tethyan Realm
Argyro Asvesta

Department of Mineral Resources Engineering, Faculty of Engineering, University of Western Macedonia,
50100 Kozani, Greece; aasvesta@uowm.gr

Abstract: The western side of the Vertiskos Unit crystalline basement in northern Greece is
fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that
belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/
Axios oceanic suture zone. The silicic volcanic rocks from the CRB are mainly rhyolitic to
rhyodacitic lavas with aphyric and porphyritic textures as well as pyroclastic deposits. In
this study, geochemical data obtained with X-ray fluorescence (XRF) for the CRB silicic
volcanic rocks are reported and discussed to constrain their petrogenesis and tectonic
setting. The rocks are peraluminous and show enrichment in K, Rb, Th, Zr, Y, and Pb while
being depleted in Ba, Sr, Nb, P, and Ti, and they have Zr + Nb + Y + Ce > 350 ppm, which
are characteristic features of anorogenic A-type granites. They have a Y/Nb ratio > 1.2
and belong to A2-subtype granitoids, implying crust-derived magma in a post-collisional
tectonic setting. The high Rb/Sr ratio (3.45–39.14), the low molar CaO/(MgO + FeOt)
ratio, and the CaO/Na2O ratio (<0.5), which they display, indicate that metapelites are
the magma sources. Their low Al2O3/TiO2 ratio (<100), consistent with their high zircon
saturation temperatures (average TZr = 886 ◦C), and their low Pb/Ba ratio (average 0.06)
reveal that they were generated by biotite dehydration melting. The increased Rb/Sr ratio
relative to that of presumable parental metapelites of the Vertiskos Unit, coupled with their
low Sr/Y ratio (0.12–1.08), reflects plagioclase and little or no garnet in the source residue,
indicating magma derivation at low pressures of 0.4–0.8 GPa that correspond to a depth of
~15–30 km. The nearby tholeiitic basalts and dolerites, interstratified with the Triassic
pelagic sediments, indicate bimodal volcanism in the region. They also support a model
involving an upwelling asthenosphere that underplated the Vertiskos Unit basement,
supplying the heat required for crustal melting at low pressures. The Permo–Triassic
magmatism marks the transition from an orogenic to an anorogenic environment during the
initial stage of continental breakup of the Variscan basement in a post-collision extensional
tectonic framework, leading to the formation of the nascent Mesozoic Neo-Tethyan Maliac–
Vardar Ocean. This apparently reveals that the Variscan continental collision between the
Gondwana-derived Vertiskos and Pelagonian terranes must have been completed by at
least the earliest Late Permian.

Keywords: A2-subtype rhyolites; post-collisional extension; crust-derived magma; LP–HT
melting conditions; basaltic underplating; Permo–Triassic; Circum-Rhodope Belt; Maliac–
Vardar Ocean
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1. Introduction
The Hellenic orogen, known as Hellenides [1], is an integral part of the Alpine–

Himalayan collision belt. The Late Permian–Early Triassic was a significant period for the
tectonic evolution of the eastern Mediterranean region and the Hellenides. During this
period, the southern foreland of the European Variscan orogenic belt (the western peri-
Tethys region) underwent a widespread extension associated with the northward rollback
of the subducted lithospheric slab of Palaeo-Tethys. The breakup of the supercontinent
Pangea started, and a net of continental rifts announced the birth of the Neo-Tethyan oceanic
realm. This resulted in the dispersion of Variscan continental fragments and triggered the
opening of several Mesozoic “rift” or “back-arc” marginal basins (e.g., Meliata, Maliac)
that later coalesced to create the Mesozoic Neo-Tethyan Vardar Ocean (e.g., [2–7]). The
Mesozoic Neo-Tethyan Ocean(s) in Greece partly closed during the Mid- to Late Jurassic,
leading to ophiolite emplacement (the Vardar/Axios suture zone and Pindos ophiolites)
and was ultimately eliminated during the Early Tertiary Alpine collision (e.g., [8–14]).
Pre-Alpine basement complexes representing parts of the Variscan continental fragments
occur, and they are integrated into the Alpine Hellenic orogen, i.e., the Rhodope Massif,
the Serbo-Macedonian Massif, and the Pelagonian Zone.

The early stages of the opening of the Mesozoic Neo-Tethyan basins were characterized
by sedimentation (continental clastic and carbonate sediments) in grabens and bimodal
magmatism (e.g., in Hellenides [15–20], Dinarides [21], Carpatho-Balkanides [22–24], Pon-
tides [25], and Anatolides [26]). A-type granites and/or bimodal volcanic rocks (A-type
rhyolites and tholeiitic basalts) are diagnostic rock types related to extensional environ-
ments, specifically associated with anorogenic within-plate (A1-subtype granitoids) and/or
post-collision (A2-subtype granitoids) tectonic settings (e.g., [27–36]). A1-subtype granitic
magmatism typically has a long duration and is generally separated from compressional tec-
tonic events by 50 to 100 million years or more. In contrast, A2-subtype granitic magmatism
is generally short-lived and is usually formed 10 to 20 million years after compressional
tectonism and precedes continental fragmentation after periods of collision [29].

In northern Greece, the Vertiskos Unit crystalline basement of the Serbo-Macedonian
Massif (SMM) was intruded by Mesozoic A-type leucocratic granites named “Arnea”
and “Kerkini” granitic suites. This magmatism was initially considered Middle Triassic
anorogenic and was associated with the rift that led to the opening of the Neo-Tethyan
Vardar-Meliata Ocean [17,20,37–40]. However, later geochemical and geochronological
data of the Arnea and Kerkini granites indicated an A2-subtype magmatism generated
in a post-collision extensional tectonic environment during the initial stage of continental
rifting at the Permian–Triassic boundary [18,41].

Spatially and temporally associated with the Arnea and Kerkini granitic suites are
the silicic volcanic rocks (mostly meta-rhyolites) of the Silicic Volcano-Sedimentary (SVS)
succession, which is part of the Permo–Triassic volcano-sedimentary complex that belongs to
the Circum-Rhodope Belt (CRB) [18,19]. Minor meta-basic volcanic rocks of the Late Ladinian
to Late Triassic age [42] exist in the CRB, indicating that the silicic volcanism was followed
by basic volcanism, resulting in a bimodal volcanic sequence [12,16,19,42–47]. The facies
architecture of the SVS succession reveals that the volcanic activity evolved in a subaerial–
coastal depositional environment that progressively changed to a shallow submarine
setting and records the Permo–Triassic stratigraphy of the western continental margin of
the Vertiskos Unit crystalline basement [19]. According to Asvesta and Dimitriadis, the
SVS succession was formed during the early stages of rifting, which led to the formation
of the main oceanic basin of the Vardar/Axios Zone [19]. Ferrière et al. have the same
aspect regarding the Nea Santa series (sandstones, rhyolites, Early Triassic to Ladinian
carbonate platform) as the remnants of the “proximal eastern margin” of the Maliac Ocean,
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which deepened from east to west [12]. Furthermore, Vergely and Mercier interpret it as
the continental margin of the East Peonias subzone of the Vardar/Axios Zone [14].

The geochemistry of the extensive Permo–Triassic silicic and minor basic volcanic
rocks (bimodal volcanics) from the CRB, along with that of the Arnea and Kerkini granites,
is the key to interpreting the specific extensional tectonic setting in which this magmatism
evolved. The present paper, as part of a wider study of the Permo–Triassic volcano-
sedimentary complex in the CRB [16,19,43–46,48], focuses on the geochemistry of the silicic
volcanic rocks. The aim of this research is to clarify (1) the magma type of these silicic
volcanic rocks; (2) their magma source regions and their melting conditions; and (3) their
tectonic environment, providing new knowledge of their petrogenesis and geodynamic
processes. The geochemical link between the CRB silicic volcanic rocks and the Arnea
and Kerkini granites is also investigated. Furthermore, this study aims to shed light on
the transitional period between the Variscan and Alpine cycles during the Permo–Triassic,
which is a time when the lithospheric thinning marked the opening of the future Maliac–
Vardar Ocean.

2. Geological Setting and Local Stratigraphy
The NNW–SSE-directed Vardar/Axios Zone [49,50] belongs to the Internal Hellenides

and is located in the region of central Macedonia in northern Greece. North of the Greek
frontiers, the zone extends into North Macedonia, while to the south, it continues beneath
the Aegean Sea and turns southeastwards. It intervenes between two major Palaeozoic
continental fragments, the Pelagonian Zone in the west and the Serbo-Macedonian Mas-
sif (SMM) plus Rhodope Massif in the east (Figure 1). The Vardar/Axios Zone is the
major oceanic suture zone in Greece, and its ophiolites are the remnants of a Mesozoic
Neo-Tethyan oceanic crust (the Almopias Ocean and Peonias back-arc Basin) [9,49,51–57].
Moreover, the Pindos, Vourinos, and Orthris ophiolites are exposed on the west side of
the Pelagonian Zone. According to some authors, the Pindos–Vourinos–Orthris ophiolites
and the Vardar/Axios suture zone were formed by two Neo-Tethyan oceans that lay on
either side of the Pelagonian continental fragment (e.g., [9,58–63]). Another group of scien-
tists claims that there were more than two Neo-Tethyan oceans in Greece (e.g., [10,14,64]).
However, many authors believe that all the ophiolites originated from a single ocean situ-
ated between the Pelagonian and Serbo-Macedonian fragments with their position on the
western Pelagonian side being tectonically explained as having been thrust from east to
west (e.g., [12,13,58,65–71]). Ferrière et al. consider that this ocean, known as “the Maliac
Ocean,” was the major Hellenic Tethyan Ocean represented by the ophiolites [12]. Kilias
also suggests that all ophiolites in the Hellenides were derived from a single source: the
Neo-Tethyan “Meliata/Maliac–Axios/Vardar Ocean” [13].

The Vertiskos Unit crystalline basement is a Gondwana-derived terrane that covers
a major part of SMM in Greece [72–75]. The continuation of the Vertiskos Unit in North
Macedonia and Serbia is referred to as “the Lower Complex” and in Bulgaria as “the
Ograzhden block” ([76] and references therein). The Vertiskos Unit consists of migmatitic
paragneisses and orthogneisses, representing pre-Alpine continental crust, with pegmatite
veins. It also contains lenses of amphibolite and serpentinite [72,73,77,78]. It records four
metamorphic events: (1) a Variscan ultrahigh pressure event, (2) a Triassic low-pressure
(LP) and high-temperature (HT) event, (3) a Late Jurassic–Early Cretaceous moderate
high-pressure (HP) event, and (4) a low-pressure (LP) metamorphic event in the Late
Cretaceous [73,77–81].

Permian–Mesozoic A-type leucocratic meta-granites, the Arnea and Kerkini Granitic
Suites [37], intruded into the Silurian orthogneiss of the Vertiskos Unit. Himmerkus et al.
attribute a Triassic age (227–229 Ma) to the Kerkini granite [40], while Christofides et al. and
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Poli et al. suggest an age around the Permo–Triassic boundary (247 Ma) [17,18,39]. For the
Arnea granite, Kostopoulos et al. propose a Late Triassic age of 215 Ma [82], Himmerkus
et al. estimate approximately 228 Ma [40], and Poli et al. report ages of 254 and 244 Ma,
also near the Permo–Triassic boundary [18].
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The eastern part of the Vardar/Axios Zone, named as “the Peonias subzone” [49],
comprises the Circum-Rhodope Belt (CRB) [72,73,84]. In the CRB, a Permo–Triassic volcano-
sedimentary complex metamorphosed in the greenschist-facies crops out discontinuously
in a NNW–SSE direction, fringing the western part of the Vertiskos Unit, approximately
parallel to the Vardar oceanic suture zone (Figure 1). It comprises subaerial to submarine
volcanic and sedimentary rocks that are tectonically telescoped, overturned, and deformed,
displaying a northeast-dipping cleavage [19]. This is likely the result of two compression
events: one in the Late Jurassic, which also caused the greenschist-facies metamorphism,
and the other in the Early Tertiary [49,72,73]. Despite the low-grade metamorphism, the
original sedimentary and volcanic features of the rocks are well preserved, and the prefix
“meta-” is sometimes omitted in the following.

The lithostratigraphic sequence of the Permo–Triassic volcano-sedimentary com-
plex reveals four units, formations, and successions. The contacts between them are
tectonic, but they are generally thought to represent tectonized original stratigraphic
boundaries [16,19,42,43,47,49,73,83–86]. The sequence, from bottom to top, is as follows
(Figure 2):

(a) The Examili Formation;
(b) The Silicic Volcano-Sedimentary (SVS) succession [19], also referred to as “the Vol-

canosedimentary Series” [49,73,87] and “the Pirghoto Formation” of the Nea Santa
Unit [42,85];

(c) The neritic carbonate sedimentary facies of the Svoula Formation; and
(d) The pelagic sedimentary facies of the Metallikon and Megali Sterna Units with inter-

stratified meta-basic rocks.
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Figure 2. Synthetic tectonostratigraphic columnar section of the Permo–Triassic volcano-sedimentary
complex from the Circum-Rhodope Belt in northern Greece. From [44], modified after [19,49,83,85].

(a) The Examili Formation is composed of terrigenous deposits that are poorly sorted,
immature, unfossiliferous, meta-arkoses, meta-psammites, and conglomerates. It is
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generally accepted that it is Permian–Scythian in age [73,86,88] because of the time
constraints imposed by the stratigraphically overlying Silicic Volcano-Sedimentary
(SVS) succession. It is interpreted as alluvial fan deposits that accumulated at the base
of normal faults formed in the Vertiskos Unit basement during the initial stages of an
extensional tectonic basin. The lithology of its clasts indicates the Vertiskos Unit as the
likely source provenance [16,43,85,86]. It is the first formation that was deposited on
the future western margin of the Vertiskos terrane or, according to Ferrière et al. [12],
on the eastern proximal margin of the Maliac Ocean.

(b) The Silicic Volcano-Sedimentary (SVS) succession consists of silicic volcanic rocks
(mostly rhyolites to rhyodacites) and neritic carbonate sediments. It is up to 3000 m
in thickness (Volcanosedimentary Series; [87]) and comprised two parts [19]. The
lower part consists of pyroclastic rocks and porphyritic and aphyric flow-banded
lavas emplaced in a subaerial–coastal environment. The upper part consists of quartz–
feldspar–phyric lavas and domes, hyaloclastites, sills interbedded with neritic car-
bonate sediments, peperites, and epiclastic sedimentary rocks with rhyolitic and
carbonate clasts, suggesting a submarine depositional environment.

In addition, the SVS succession exposed in the Akritas and Metallikon areas comprises
rhyodacitic, amygdaloidal, K-feldspar-phyric lava [16]. Some lava samples exhibit micro-
textures indicative of magma mixing or contain mafic microgranular enclaves [45]. Small
exposures of the same lava are also present further south near the village of Sana. Rhyolitic
dykes intruding the gneiss of the Vertiskos Unit, near the villages of Nea Santa [16,19] and
Zagliveri [86], were likely feeder dykes for the volcanic rocks.

According to the findings obtained by Ferrière and Stais [42], the fauna in the overlying
and interbedded limestones (foraminifera “Rectocornuspira Kalhori”) reveal that the SVS
succession is Early to Middle Triassic in age and probably reaches Permian age in its lower
part. Furthermore, U–Pb zircon dating in a rhyolite yielded an age of circa 240 Ma (R. Frei
cited in [82]).

(c) The neritic carbonate sedimentary facies of the Svoula Formation [73,86] is mostly
composed of thick, recrystallized, and partly dolomitized and silicified fossiliferous
neritic limestones. It is dated to the Upper Scythian–Upper Triassic based on fossil
findings, including crinoids, corals, echinoderms, and foraminifera [16,42,47,49,73,86].

(d) The Upper Ladinian–Rhaetian pelagic sedimentary facies of the Metallikon and Megali
Sterna Units overlay the neritic carbonates. They consist of a carbonate conglomerate
and alternating platy, micritic limestone layers with nodules, gray in color, and
mudstone, pelagic chert, and carbonate sediments. In the area near Metallikon village
(Figures 1 and 2), this pelagic facies contains small interstratifications of altered, low-
grade metamorphic dolerite and basalt [16,19,42–44,47]. The age of these meta-basic
rocks is probably Mid–Late Triassic (Late Ladinian–Rhaetian), as is indicated by the
presence of foraminifera in the intercalated sedimentary units and Carnian conodonts
in the overlying carbonate sediments [42,47]. In the area near Akritas village (Figures 1
and 2), intercalations of the same basalt and dolerite, in addition to minor andesite
and trachydacite, occur in the pelagic lime-marl-layered sedimentary facies of the
Megali Sterna Unit [16,43]. Furthermore, the same meta-basic rocks intervene within
the rhyodacitic amygdaloidal lava near Akritas village (Figures 1 and 2). The Akritas–
Metallikon meta-basic rocks, named by Asvesta and Dimitriadis [44] as “the Triassic
Rift Basic Volcanics” or, according to Ferrière et al. [12], as “the East Maliac Margin
Triassic Basic Volcanics,” show mid-ocean ridge basalt (MORB) to within-plate basalt
(WPB) affinity [16,43,44,46], and their presence implies that the Triassic volcanism
was bimodal [16,19,43–46].
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3. Petrography
The CRB silicic volcanic rocks are represented by porphyritic and aphyric rhyolitic

to rhyodacitic lavas and pyroclastic rocks, which were altered and metamorphosed to
greenschist facies [19].

The porphyritic rhyolites, mostly green in color, contain quartz and K-feldspar phe-
nocrysts (about 30%) as well as a few albite and zircon crystals. The quartz phenocrysts are
subhedral, and some of them display corrosion embayment. The K-feldspar phenocrysts
are perthitic microcline, altered to kaolinite and sericite, and rarely corroded. Quartz and
sericite are the alteration products of the previous glassy groundmass (Figure 3a,b).
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Figure 3. Representative hand specimen photos and photomicrographs of thin sections (crossed
nicols) of the CRB silicic volcanic rocks: (a,b) porphyritic rhyolite; (c,d) aphyric lava; (e,f) pyroclastic
rock. Qtz: quartz, Kfs: K-feldspar, Sph: spherulite, Fiam: fiamme. See also text for more explanations.

The aphyric lavas are characterized by flow banding with alternating light- and dark-
colored bands, such as black lavas with gray and white bands, gray lavas with black, green,
and red bands, and pale purple lavas with dark purple bands. They also present a variety
of flow folds. Under the petrographic microscope, it is obvious that the flow banding is
defined by alternating layers of vesicular pumice and obsidian. The vesicles are infilled
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with vapor-phase minerals, mostly quartz. Rarely, some euhedral crystals of barite are
present as infills in pumice vesicles. Moreover, quartz-feldspar microspherulites have
grown around the margins of vesicles, and sericite has formed as a result of devitrification,
hydrothermal alteration, and low-grade metamorphism (Figure 3c,d).

The pyroclastic rocks show a variety of colors and consist of well-preserved, dense,
or pumiceous rhyolitic fiamme, millimeter- to centimeter-sized, that are embedded in a
silicified and recrystallized matrix. The fiamme are blocky or lenticular in shape and show
cuspate, or ragged edges. Under the petrographic microscope, the cuspate fiamme reveals
fine axiolitic devitrification, i.e., acicular crystals growing inward from the walls of the
fiamme, which is known as pectinate texture. Spherulitic texture is also present in some
fiamme. Fragments of K-feldspar crystals occur sparsely, whereas quartz crystals are rare.
The matrix is composed mostly of fine-grained quartz and rarely of sericite, products of
devitrification and recrystallization of previous fine vitric ash and glass shards (Figure 3e,f).

4. Sampling and Analytical Methods
The CRB silicic volcanic rocks are grouped into five distinct outcrops, each named after

a nearby village: Akritas, Metallikon, Nea Santa, Kolchida, and Sana (Figure 1). Sixty-three
(63) of the least-altered representative rock samples were petrographically selected for
whole-rock chemical analysis. Of these, eleven (11) samples are from Akritas, nineteen (19)
from Metallikon, seventeen (17) from Kolchida, eight (8) from Nea Santa, and eight (8) from
the Sana area.

The analyses for major oxides and trace elements were performed on a Philips PW
1450/20 X-ray fluorescence (XRF) spectrometer at the Grant Institute, School of Geosciences,
University of Edinburgh, using standard operating procedures. The concentrations of
major elements were determined using fused glass discs, and for trace elements, using
pressed powder pellets. The bulk geochemical data of the investigated CRB silicic volcanic
rocks, their normative mineralogical compositions (calculated CIPW norms), their zircon
saturation temperature estimates (TZr), and some significant elemental ratios are presented
in Table S1 (Supplementary Materials; Files: Akritas, Metallikon, Nea Santa, Kolchida, and
Sana).

5. Results
The obtained geochemical data indicate that some of the analyzed samples are rich in

SiO2, K2O, and Al2O3, which is likely due in part to silicification, hydrothermal alteration,
and metamorphism. Given the effects of alteration and metamorphic processes on element
remobilization, petrogenetic and tectono-magmatic interpretations must be based on rela-
tively immobile elements. These are mainly the incompatible high-field strength elements
(HFSEs) such as Zr, Nb, Y, Ti, and P [89,90]. The immobile element ratios can provide
relatively reliable information on primary geochemistry and petrogenetic characteristics.

5.1. Petrochemical Classification

Winchester and Floyd [91] used the Zr/TiO2 ratio as an index of differentiation and
the Nb/Y ratio as an index of alkalinity to classify volcanic rocks and distinguish between
magma series (alkaline—subalkaline). The CRB silicic volcanic rocks are classified mainly as
rhyolites, rhyodacites, and partly as dacites, on the Zr/TiO2 vs. Nb/Y classification diagram
(Figure 4). A group of rhyolite samples from the Metallikon area is highly differentiated, as
indicated by their relatively high Zr/TiO2 ratio. The low Nb/Y ratio (<0.67) of the silicic
magma series indicates its subalkaline affinity. Moreover, in the AFM ternary diagram of
Irvine and Baragar [92], a calc-alkaline magmatic affinity is attributed to the CRB silicic
volcanic rocks (Figure 5a).
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In terms of alumina saturation index and molecular Al2O3/(Na2O + K2O + CaO), the
CRB silicic volcanic rocks are exclusively peraluminous (ASI and A/CNK > 1.0), being
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corundum-normative (0–4.28%; average 1.52%) (Table S1, Figure 5b). Many of them possess
an A/CNK ratio ≥ 1.1 and can be characterized as strongly peraluminous (SP) according
to Sylvester [95]. In the Na2O + K2O − CaO (MALI, i.e., modified alkali lime index) and
the FeOt/(FeOt + MgO) vs. SiO2 diagrams of Frost et al. [94], the samples plot on the
peraluminous leucogranite field, or A-type granites field, as they span all the range of
granitoid compositions from magnesian to ferroan and from calcic to alkaline (Figure 5c,d).

5.2. Major Oxides

The CRB silicic volcanic rocks are enriched in alkalis, with the K2O + Na2O contents
ranging from 4.63 to 13.83 wt.% (average 9.40 wt.%), and K-rich, with a K2O/Na2O ratio
higher than 1. They exhibit high Al2O3 (7.51 to 17.42 wt.%; average 12.52 wt.%) and Fe2O3

(0.51 to 6.73 wt.%; average 1.72 wt.%) contents. They are characterized by low MgO (0.00
to 1.77 wt.%; average 0.37 wt.%), CaO (0.01 to 0.88 wt.%; average 0.12 wt.%), TiO2 (0.03
to 0.82 wt.%; average 0.26 wt.%), P2O5 (average 0.05 wt.%), and MnO (average 0.02 wt.%)
contents (Table S1).

Using SiO2 as an index of fractionation, there is a distinct decreasing trend in the major
element oxides (Figure 6). Al2O3, Fe2O3, MgO, and total alkalis (K2O + Na2O) exhibit a
complete negative correlation with increasing silica content, while TiO2 and P2O5 exhibit a
decreasing trend with increasing SiO2 content up to approximately 68 wt.%, after which
their concentrations remain relatively constant. The rock samples with low SiO2 contents
(<68 wt.%), classified as dacites, present a scattering of data points on Harker variation
diagrams. Despite this scatter, all the general trends of the major oxides are in accordance
with a fractional crystallization model.
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5.3. Trace Elements

The CRB silicic volcanic rocks have relatively low contents of compatible trace elements
(Ni average = 7; Cr average = 4; Sc average = 4). In Figure 7, the contents of some trace
elements of the rocks against SiO2 are shown. There is a general decreasing trend for
incompatible trace elements (e.g., Zr, Nb, Y, La, Th, Nd, Rb).
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The rocks are characterized by low Sr contents (<50 ppm), low Sr/Y ratio (0.12–1.14;
average = 0.37), and high Rb/Sr ratio (3.45–39.14; average = 15.8) as well as Y/Nb ratio
> 1.2 (1.87–4.75; average = 3.36) (Table S1). Some significant ratios like Ce/Pb, La/Nb,
Ce/Nb, Rb/Ba, Rb/Y, Rb/Nb, Th/Y, Th/Nb, and Pb/Ba (Table S1) are discussed in the
next Sections 6.3.1, 6.3.2, 6.3.5 and 6.4.2.

On the primordial mantle normalized [98] multi-element spider diagram (Figure 8),
rock samples of all five areas show similar patterns revealing their origin from the same
magma. They exhibit a distinctive depletion of large-ion lithophile elements (LILEs)
such as Ba, Sr, and high-field strength elements (HFSEs) such as Nb, P, and Ti (negative
anomalies), whereas they show an enrichment of Rb, Th, K, and Pb (positive anomalies),
which are characteristic features of A-type granites. The pronounced negative anomalies
in Ba, Nb, Sr, P, and Ti imply that these peraluminous magmas have undergone fractional
crystallization during their magmatic evolution. The anomalies suggest the removal of
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feldspar (evidenced by the negative Ba and Sr anomalies), apatite (negative P anomaly),
and Fe-Ti oxides (negative Ti anomaly) from the magma. Despite the negative anomalies
in Ba, Nb, La, and Ce, the CRB silicic volcanic rocks show an enrichment of these trace
elements. High Ba values, mostly in some samples from the Kolchida area (A15, A17,
A18, A22; Table S1), are attributed to barite infilling vesicles of pumiceous rhyolitic lavas
(microscopic observation).
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6. Discussion
6.1. Magma Type

A-type granites were originally characterized by Loiselle and Wones [99] as anorogenic,
anhydrous, and reduced. Their identification was based on both tectonic setting and
chemical characteristics, whereas the discrimination between I- and S-type granites was
strictly based on the different magma sources [100]. A-type granitoids occur in rift zones
and within stable regions of continental crust [99].

The major element concentrations of the CRB silicic volcanic rocks indicate that they
are peraluminous A-type granitoids. Specifically, the rocks have Al2O3 + CaO < 15 wt.%,
high SiO2, high K2O/Na2O, FeOt/MgO and (Na2O + K2O)/CaO ratios, high Na2O +
K2O, and low CaO and MgO (Table S1) [27,35,94,97,99,101,102]. Furthermore, their high
CIPW normative corundum (0–4.28%; average 1.52%; Table S1) is consistent with strongly
peraluminous S-type granitoids produced by the partial melting of metasediments [103].
In addition, the roughly constant content of P2O5 the rocks exhibit (Figure 6) indicates that
they are A-type granitoids [96].

The values of some significant trace elements in the CRB silicic volcanic rocks are con-
sistent with the typical geochemical features of A-type granites, such as Zr > 250 ppm, Nb >
20 ppm, Y > 80 ppm, Rb/Sr ≥ 3.52, and Zr + Nb + Y + Ce > 350 ppm [27,29,35,101,104,105],
along with their low contents in compatible metals Cr, Ni, Sc, and V (Table S1). Moreover,
their Zr content decreases toward more felsic compositions (Figure 7), which is similar to
the trend observed in A-type magmas derived from quartzofeldspathic sources with Zr
saturation [96,97].
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Discrimination diagrams for distinguishing A-type granites from the other types like
I-, S-, and M-type granites have been proposed by Whalen et al. [27]. In these diagrams,
the variation in the major oxide ratios, such as (K2O + Na2O)/CaO and (FeOt/MgO), with
(Zr + Nb + Ce + Y) shows that all the samples of the studied silicic volcanic rocks are
plotted almost exclusively in the A-type granite field (Figure 9a,b). The Rb/Sr ratio is useful
for discrimination between orogenic and anorogenic granites. Granitic suites generated
in compressional (orogenic) tectonic settings are characterized by Rb/Sr ratios less than
one [106]. In the Rb/Sr vs. K/Rb diagram [107], it is evident that almost all samples of the
investigated CRB silicic volcanic rocks (except the sample “A626” from the Nea Santa area)
have Rb/Sr ratios greater than one (ranging between 3.45 and 39.14 with an average of
15.8), like A-type granites (Figure 9c).
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6.2. Tectonic Setting

As demonstrated above, the CRB silicic volcanic rocks bear the most distinctive
geochemical characteristics of A-type granitic magma. Although A-type granitoids were
initially thought to evolve in rift zones or stable continental blocks [99], it is generally
accepted that they can be formed in both within-plate anorogenic and post-collisional
settings [27,29,35,101,108,109]. In the multicationic R1–R2 diagram [110], the CRB silicic
volcanic rocks straddle mostly the boundary between anorogenic alkaline and late-orogenic
magmatic suites, and some of them plot to the post-orogenic field (the fields are defined
by [111]) (Figure 10).

Multi-element spider diagrams normalized to the hypothetical composition of ocean
ridge granite (ORG) have been used by Pearce et al. [112] to differentiate between the
granite types formed in different tectonic settings. The ORG-normalized patterns of the
CRB silicic volcanic rocks from the five outcropping areas are broadly similar with minor
variations in the intensity of positive or negative anomalies (Figure 11). They exhibit a
negative slope that is attributed to an enrichment of the incompatible elements at the
left and progressive depletion toward the more compatible elements on the right side of
the spider diagrams. Rb and Th display pronounced positive anomalies and are highly
enriched compared to the normalizing values. Ce shows a light positive anomaly. Ba shows
a significant negative anomaly except for some pumiceous rhyolite samples (A15, A17,
A18, A22) from the Kolchida area, which present microvesicles infilled with barite. The
HFS element Nb shows close normalized values with a slight enrichment relative to those
of ORG and a small negative anomaly. The HFS element Zr, as well as the Y, also display
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close normalized values quite approximate to those of ORG, bringing about a flat change
in the pattern.
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The normalized element values of the CRB silicic volcanic rocks show the typical
characteristic features of the within-plate granites of the attenuated continental lithosphere
(Mull and Skaergaard; see Figure 1d in [112]) but also approach the post-collision gran-
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ites, particularly those of the Oman granitoids (see Figure 1f in [112]). These tectonic
environments are consistent with an extensional tectonic regime. Many samples from the
Metallikon area possess higher enrichment levels, especially in the elements Nb, Zr, and Y,
revealing more alkalic compositions. This may be due to a possible magma mixing process
(topic in other work in progress).

The two tectonic discrimination diagrams for the granites of Pearce et al. [112] reveal
that most data points of the CRB silicic volcanic rock samples plot in the field of within-plate
granites (Figure 12a,b). Particularly, on the Y vs. Nb diagram (Figure 12a), most of the rocks
plot in the overlap zone between within-plate granites (WPGs) from attenuated continental
lithosphere and ocean ridge granites (ORGs) from anomalous ridge segments, while fewer
samples fall into the volcanic arc and syn-collisional granites field. Moreover, on the binary
(Y + Nb) vs. Rb diagram (Figure 12b), most samples fall inside the within-plate granites
field, but all the samples are positioned near the triple-junction boundary of the within-
plate, volcanic arc, and syn-collisional granites, i.e., the post-collision granites field [113].
On the Rb/Zr vs. SiO2 diagram [114], they mainly fall into the post-collision granitoid field,
except for some samples from the Metallikon and Akritas areas plotting in the volcanic arc
field (Figure 12c). This diagram also provides support for an A-type character for the CRB
silicic volcanic rocks, as both within-plate and post-collisional granites correspond to A
type [27,29].
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(c) SiO2 vs. Rb/Zr diagram [114]. Symbols are as in Figure 4.

Eby [29,101] divided A-type granitoids into two chemical groups or subtypes, A1 and
A2, based on their tectonic setting. The A1-subtype represents granitoids formed in true
anorogenic rifting (within-plate), while the A2-subtype corresponds to post-collisional gran-
itoids. He considered the Y/Nb ratio as a key indicator for distinguishing between these
groups. A1 granitoids have Y/Nb < 1.2 and are mantle-derived, whereas A2 granitoids
exhibit Y/Nb > 1.2 and are crust-derived. All samples of the CRB silicic volcanic rocks have
Y/Nb ratios exceeding 1.2 (1.87–4.75; average 3.36) (Table S1) and therefore plot well in the
A2 group field (Figure 13) on the Nb–Y–Ce and Nb–Y–Zr/4 ternary diagrams and on the
Y/Nb vs. Rb/Nb or Sc/Nb discrimination diagrams of Eby’s [29], implying extrusion in a
post-collisional environment and dominant crustal magma sources derivation, as discussed
in the next subsection.
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Figure 13. Plots of the CRB silicic volcanic rocks on (a) Nb–Y–Ce and (b) Nb–Y–Zr/4 ternary diagrams
(the dashed line represents Y/Nb ratio = 1.2) as well as on (c) Y/Nb vs. Rb/Nb and (d) Y/Nb vs.
Sc/Nb discrimination diagrams for the subdivision of the A-type granitoids into A1 (anorogenic
within-plate) and A2 (post-collision) groups or subtypes [29]. Symbols are as in Figure 4.

6.3. Petrogenesis and Magma Sources
6.3.1. Source Material: Crustal Versus Mantle Contributions

Various petrogenetic models have been suggested to explain the origin of A-type
granitic melts. A-type granitoids can be produced mainly from three fundamentally dif-
ferent petrogenetic schemes concerning different processes and various sources: (1) direct
fractionation of mantle-derived alkaline or tholeiitic magmas (e.g., [29,30,99,101,115]);
(2) partial melting of felsic crustal rocks (e.g., [27,29,97,101,104,116–120]); and (3) a
combination of the previous two models in which mantle-derived mafic magma is
mixed with crust-derived felsic magma and/or undergoes assimilation by crustal rocks
(e.g., [27,29–31,97,104,116,117,121–125]). The challenge is to determine which of these
pathways was followed.

The first model, which involves the direct extensive fractionation of mantle-derived
alkaline or tholeiitic magma, is precluded due to the lack of field evidence for significant
volumes of the associated Akritas–Metallikon basic rocks and the absence of a compositional
continuum that this process would typically produce. However, an association with
tholeiitic mafic rocks is a typical feature of A-type granites, and it is generally accepted
that mantle-derived magmas act as the heat source for crustal partial melting, leading to
the production of large volumes of silicic A-type magmas (e.g., [31,116,126–130]). This is
discussed in more detail in Section 6.5.

In the following, an attempt is made to estimate the contribution of the crust versus the
mantle in generating the A-type CRB silicic volcanic rocks using whole-rock geochemical
data. Some diagnostic trace element ratios, such as Y/Nb, Ce/Nb, Th/Nb, La/Nb, Ce/Pb,
Rb/Sr, and Rb/Nb, are considered as well.

The strong peraluminous nature (average A/CNK = 1.13) of the CRB silicic volcanic
rocks, their enrichment in K, Rb, Th, and Pb, and their depletion in Ba, Sr, Nb, P, and
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Ti (Figure 8) indicate that they are crust-derived rhyolites. The Y/Nb ratio in A-type
granitoids, besides the tectonic discrimination, can be considered a diagnostic feature of
magma sources. Eby [29,101] has inferred that the fractionation of A-type granitic magmas
has little to no significant impact on the Y/Nb ratio, and mantle-derived granites (A1
group) exhibit low Y/Nb ratios (<1.2), whereas granites derived from crustal sources (A2
group) are characterized by higher Y/Nb ratios (>1.2). All samples from the CRB silicic
volcanic rocks have Y/Nb ratios above 1.2 (Table S1, Figure 13) and belong to the A2
post-collisional group, as it has been previously demonstrated, implying dominant crustal
sources. Additionally, the Ce/Nb vs. Y/Nb discrimination diagram is used to evaluate
potential genetic relationships of A-type granitoids with crustal sources or mantle-derived
magmas [29,101]. In this diagram (Figure 14), the CRB silicic volcanic rocks clearly do
not plot in the OIB field (A1 group) but straddle a trend extending from bulk continental
crust (black dot; [131]) to the IAB field, characteristic for the A2 group, suggesting not
only their derivation through crustal anatexis but also the involvement of subduction- or
continent–continent collision-related crustal components as magma sources [29,101].
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Figure 14. Ce/Nb vs. Y/Nb discrimination diagram to estimate possible genetic links of the CRB
silicic volcanic rocks with crustal sources or mantle-derived magma. A1: mantle-derived granitoids
and A2: crustal granitoids, IAB: Island-Arc Basalt, OIB: Ocean-Island Basalt, MORB: Mid-Ocean
Ridge Basalt (the fields are from [29,101]), black dot: bulk continental crust [131]. Symbols are as in
Figure 4.

The ratios Y/Nb, Th/Nb, La/Nb, and Ce/Pb, commonly used to characterize OIB
and subduction-related magmatic suites, were applied to worldwide A-type granitoids by
Moreno et al. [132,133] to investigate their magma sources and fractionation mechanisms.
According to Moreno et al. [133], the relationships of the above-mentioned ratios in OIB
and subduction-related magmatic suites suggest that A-type felsic rocks with normalized
values of (Th/Nb)N < 1.3, (La/Nb)N < 1.3, and (Ce/Pb)N > 1 are more likely to exhibit
(Y/Nb)N < 0.18, indicating A1-subtype affinity. In contrast, those with (Th/Nb)N > 2,
(La/Nb)N > 2, and (Ce/Pb)N < 1 generally show (Y/Nb)N > 0.18, A2-subtype affinity and a
significant additional contribution from crustal sources. On the (Y/Nb)N vs. (Th/Nb)N

diagram of Moreno et al. [133], the rock samples plot within the A2-subtype continental
crust field, which is distinct from the OIB field (Figure 15a). This is further supported by the
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(La/Nb)N vs. (Th/Nb)N, (Ce/Pb)N vs. (Th/Nb)N, and (La/Nb)N vs. (Ce/Pb)N diagrams
of Moreno et al. [133], where the compositional trends of the CRB silicic volcanic suite align
with subduction-related magmatic suites, away from the OIB array (Figure 15b–d). This is
explained by Eby’s [29,101] crust-derived source model.
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Rb and Sr relative abundances provide insight into the place of magma generation. 
The CRB silicic volcanic rock samples exhibit a wide range of extremely high Rb/Sr ratios 
(3.45–39.14; average 15.8), which is attributed to their very low Sr concentrations (Table 
S1, Figure 9c). Considering the extremely low Rb/Sr ratio (0.01–0.1) typical of mantle 

Figure 15. Compositional relationships between Y/Nb, Th/Nb, La/Nb, and Ce/Pb in the CRB silicic
volcanic rocks. (a) (Y/Nb)N vs. (Th/Nb)N, (b) (La/Nb)N vs. (Th/Nb)N, (c) (Ce/Pb)N vs. (Th/Nb)N,
and (d) (La/Nb)N vs. (Ce/Pb)N discrimination diagrams with compositional fields after [133]. Values
normalized to the silicate earth after [134]. A1: mantle-derived granitoids and A2: crustal granitoids,
CC: continental crust, CA: continental arcs, OIB: ocean island basalt, IA: island arcs, Sh: shoshonites,
Sub: subduction-related magmatic suites. Symbols are as in Figure 4.

Rb and Sr relative abundances provide insight into the place of magma generation.
The CRB silicic volcanic rock samples exhibit a wide range of extremely high Rb/Sr ratios
(3.45–39.14; average 15.8), which is attributed to their very low Sr concentrations (Table
S1, Figure 9c). Considering the extremely low Rb/Sr ratio (0.01–0.1) typical of mantle
materials [135], compared to the higher Rb/Sr ratios observed in the lower, middle, and
upper continental crust (average 0.12, 0.22, and 0.32, respectively) [136,137], the very high
Rb/Sr ratio of the CRB silicic volcanic rocks rules out a mantle contribution, indicating
unequivocally crustal sources for their generation.

Additionally, crustal compositions and melts are characterized by a high Rb/Nb ratio
(>2) [138], in contrast to upper mantle materials like N-MORB, which exhibit a low Rb/Nb
ratio (<1). In a diagram using trace element ratios such as Nb/Y and Rb/Y [138], all the
CRB silicic volcanic rock samples show a high Rb/Nb ratio (average = 16.2; Table S1)
and plot near the upper and middle continental crustal values, except for some samples
from the Akritas and Metallikon areas, which plot closer to the lower continental crustal
values [131] (Figure 16).
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and the compositions of primordial mantle (PM) and ocean island basalts (OIB) were taken from [98].
Symbols are as in Figure 4.

6.3.2. Crustal Protolith—Source Compositional Characteristics

Assuming a derivation of the peraluminous A-type CRB silicic volcanic rocks
mainly from the partial melting of a crustal protolith, the source rock composition is
further researched. Possible crustal source rocks feasible to produce peraluminous A-
type granitoids include (1) anhydrous lower crustal granulites [27,104,116], (2) tonalitic–
granodioritic gneisses [108,117,120,139,140] and (3) metasedimentary rocks (pelites and
graywackes) [95,96,129,141–146], including also cases of basaltic magma admixture.

Experiments on melting have shown that the “residual” lower crustal sources cannot
produce magmas with the geochemical features of A-type granites [117,118]. However,
at high temperatures, A-type granites may be derived from the partial melting of gran-
ulitic metasedimentary rocks that remain in the lower crust following the extraction of an
orogenic I-type granite [27,104,116,147]. This “residual-source model” is not appropriate
for the generation of the A2-subtype CRB silicic volcanic rocks, as there is no evidence of
existing I-type granite in the Vertiskos Unit basement (namely, the existing granites are S-
type syn-collisional: the Polydendri meta-granite [77] and the Theodorio meta-granite [78]).
In addition, the high Rb/Sr ratio (3.45–39.14; average 15.8) characterizing the CRB silicic
volcanic rocks cannot be explained by partial melting of the typical granulite crustal rocks
(average granulite Rb/Sr ratio: 0.023 [135]). Therefore, anhydrous lower crustal granulites
are precluded as magma sources, and the partial melting of tonalitic–granodioritic gneisses
or metasedimentary rocks (pelites and graywackes) is further investigated as a possible
process for magma derivation.

Granitoid melts generated experimentally from different crustal source rocks by de-
hydration partial melting show distinct chemical characteristics, allowing the identifica-
tion of compositionally diverse protoliths [140,148–151]. Thus, to constrain the possible
source rocks of the CRB silicic volcanic rocks, appropriate major and trace element plots
(e.g., [95,141,152]) are used.

The molar Al2O3/(MgO + FeOt) vs. molar CaO/(MgO + FeOt) diagram [152]
distinguishes among partial melts derived from crustal sources such as metapelites,
metagraywackes, and metatonalites. Based on this diagram, the A2-subtype CRB sili-
cic volcanic suite appears to have originated from the partial melting of metapelitic source
rocks (Figure 17a).
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Figure 17. Source region discrimination diagrams for the post-collisional CRB silicic volcanic rocks:
(a) molar Al2O3/(MgO + FeOt) vs. molar CaO/(MgO + FeOt) diagram [152], (b) Rb/Ba vs. Rb/Sr
diagram [95]; the psammite- and pelite-derived melt compositions are produced from the calculation
of [153] and the average composition of basalt, graywacke, and shale are of [154]. The gray field
represents the felsic rocks (metapelites) from the Vertiskos Unit basement (the data are from [75,77,78]).
The geochemical data for the Arnea and Kerkini granites are from [18,37,40]. (c) CaO/Na2O vs.
Al2O3/TiO2 diagram (after [95]); the mixing curve between the average Phanerozoic basalt of [154]
and the 850 ◦C, 10 kbar pelite-derived melt of [149] is also shown where percentages of basalt
mixing are indicated. (d) (FeOt + MgO + TiO2) vs. SiO2 diagram (after [95]). Temperatures of the
experimental vapor-absent 10 kbar melts of natural pelite are after [149], of synthetic biotite gneiss
are after [118], and of natural volcanoclastic paragneiss are after [155]. Symbols are as in Figure 4.

Rb–Sr–Ba variations in post-collisional strongly peraluminous (SP) granites suggest
that both pelitic and psammitic sources significantly contributed to their genesis [95].
On the Rb/Sr vs. Rb/Ba diagram [95], which provides additional constraints on the
magmatic source, the CRB silicic volcanic rocks exhibit a high Rb/Sr ratio and plot in the
low CaO/Na2O clay-rich source region (Figure 17b), revealing again a pelitic parentage.

Moreover, the CaO/Na2O and Al2O3/TiO2 ratios can be used to infer the source rock
characteristics and partial melting temperatures of granitic magmas, respectively [95,156].
According to Sylvester [95], strongly peraluminous (SP) granitic melts originating from
plagioclase-poor and clay-rich sources (i.e., pelites) tend to have lower CaO/Na2O ra-
tios (<0.3) than melts derived from plagioclase-rich and clay-poor ones (i.e., psammites).
Furthermore, Jung and Pfander [156] found that CaO/Na2O ratios can differentiate
between granitic melts derived from pelites (CaO/Na2O < 0.5) and those originating
from graywackes or igneous sources (CaO/Na2O ranging from 0.3 to 1.5). Under high-
temperature conditions in the source region, biotite and ilmenite become unstable, leading
to an increase in Ti content in the resulting melts [157]. Hence, the Al2O3/TiO2 ratio reflects
the melting temperature and is used as a geothermometer for given source compositions.
Peraluminous granitic melts with low Al2O3/TiO2 ratios will have been derived at higher
temperatures than those with high Al2O3/TiO2 ratios regardless of the source composi-
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tion [95,156]. Therefore, using the discrimination diagram CaO/Na2O vs. Al2O3/TiO2 [95],
magma sources can be further distinguished. Almost all the CRB silicic volcanic rock
samples have a low CaO/Na2O ratio (<0.5), with an average value of 0.21 (Table S1),
which aligns with their origin from pelitic metasediments rather than metagraywackes
(Figure 17c). Furthermore, all the CRB silicic volcanic samples are characterized by low
Al2O3/TiO2 ratios ranging from 16 to 113 (except sample KOL2) with an average value
of 61 (Table S1, Figure 17c), indicating that the source underwent partial melting under
high-temperature conditions.

The inverse correlation between SiO2 and FeOt + MgO + TiO2 that the SP granites
exhibit, according to Sylvester [95], is also obvious for the A2-subtype CRB silicic volcanic
rocks (Figure 17d). Furthermore, the CRB silicic volcanic rock samples mostly plot in the
clay rocks region (pelite), indicating mainly crustal pelitic components as the source rocks
and 850–950 ◦C melting temperatures.

6.3.3. Magma Temperatures: Zircon Saturation Thermometry

The temperature of the felsic magma can be calculated from bulk rock compositions
using the zircon saturation thermometry (TZr) developed by Watson and Harrison [158].

TZr = 12,900/[2.95 + 0.85M + ln(496,000/Zrmelt)]

where M is the molar cation ratio [(Na + K + 2 × Ca)/(Al × Si)] of the whole-rock concen-
tration of Na2O, K2O, CaO, Al2O3, and SiO2.

According to Miller et al. [159], zircon saturation thermometry provides a reliable
estimate of magma temperature during zircon crystallization. The uncertainty for the
thermometer is ±24 ◦C.

The zircon saturation temperatures (TZr) obtained for the CRB silicic volcanic rocks
from the five outcropping areas range almost between 800 and 1000 ◦C, yielding an av-
erage temperature of 886 ◦C, over a range of SiO2 from 62.30 to 85.42 wt.%. The Akritas
(TZr = 802–971 ◦C, average 884 ◦C) and Metallikon (TZr = 822–1007 ◦C, average 924 ◦C)
rock samples have yielded a wider range of temperatures and higher averages compared
to those of the Kolchida (TZr = 791–904 ◦C, average 875 ◦C; sample KOL2 has a value of
705 ◦C and is excluded as problematic), Nea Santa (TZr = 792–922 ◦C, average 846 ◦C), and
Sana (TZr = 858–922 ◦C, average 884 ◦C) areas (Figure 18a,b, Table S1).
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There are two distinct groups of granitoids generated at different temperatures: (1) the
“hot” (TZr > 800 ◦C) inheritance-poor and (2) the “cold” (TZr < 800 ◦C) inheritance-rich
granitoids [159]. The investigated CRB silicic volcanic rocks are inferred to be equivalents
of “hot” zircon inheritance-poor granitoids (TZr between 800 and 1000 ◦C; Figure 18a,b),
suggesting that their initial magmas were undersaturated in zircon at the source. There-
fore, the calculated zircon saturation temperatures (TZr) provide a minimum magmatic
temperature estimate at the source and are likely to be an underestimate of their initial
temperature [159,161]. These high values of temperature are consistent with those of A-type
granites [97,116,158,162], further suggesting that the CRB silicic volcanic rocks belong to
A-type granitic magmas.

According to Bucholz and Spencer [160], SP granites with low Al2O3/TiO2 ratios
(<100) exhibit higher Zr contents (>100 ppm) and Zr saturation temperatures (aver-
age 807 ◦C), while those with high Al2O3/TiO2 ratios (>100) display lower Zr contents
(<100 ppm) and Zr saturation temperatures (688 ◦C). The relatively high Zr concentra-
tions (>100 ppm) and consequently the estimated high zircon saturation temperatures
(TZr > 800 ◦C, average 886 ◦C) of the CRB silicic volcanic rocks are consistent with their
low Al2O3/TiO2 ratio (<100), implying a significant degree of partial melting of their
metasedimentary protolith (Figure 18b).

6.3.4. Comparison of the CRB Silicic Volcanic Rocks to the Related Arnea and Kerkini
Granites

The Permo–Triassic A-type Arnea and Kerkini granites, which intruded into the
Vertiskos Unit (Variscan basement), are considered the deep-level counterparts of the
investigated CRB silicic volcanic rocks [18,19], as their similar age and geochemical char-
acteristics suggest a genetic link between them (see also Figure 15 in [18]). Geochemical
studies on the Arnea and Kerkini granites consider them as A2-subtype post-collisional
granites [18,41]. This outcome is consistent with the results of this study for the CRB silicic
volcanic rocks.

Poli et al. [18], based on the quite similar Rb, Ba, and Sr values of the A2-subtype
Arnea and Kerkini granites, inferred that their magma was likely derived from the partial
melting of the same source (continental crust). Excluding the metasedimentary source and
based on the normative Q–An–Ab–Or plots and the molar Al2O3/(Na2O + K2O + CaO)–
K2O/Na2O–FeO/MgO ternary diagram, they conclude that the probable origin involves
the partial melting of tonalitic sources. Nevertheless, on the molar Al2O3/(MgO + FeOt)
vs. molar CaO/(MgO + FeOt) diagram [152], the Arnea and Kerkini granites (geochemical
data from [18,37,40]) plot within the area of partial melts derived from crustal sources such
as metapelites and metagraywackes rather than metatonalites (Figure 17a). Moreover, on
the Rb/Sr vs. Rb/Ba diagram [95], they occupy an area close to pelite-derived melts rather
than psammite-derived ones, indicating magma sources similar to those of the CRB silicic
volcanic rocks (Figure 17b) and reinforcing the idea of their genetic relationship.

Regarding magma temperatures, the calculated TZr values (geochemical data
from [18,37,40]) for the Arnea granite range from 714 to 904 ◦C, with an average of 802 ◦C,
while those for the Kerkini granite range from 753 to 964 ◦C, with an average of 884 ◦C,
classifying them as “hot” granites. Equivalents of the “hot” granites commonly erupt [159],
and the high TZr values of the Arnea and Kerkini granites, combined with their A2-subtype
characteristics [18,41], support the assumption that they represent the plutonic roots of the
CRB silicic volcanic rocks. The solubility of zircon as a function of temperature [159] for
the melt composition of the CRB silicic volcanic rocks is compared to that of the Arnea
and Kerkini granite suites in the TZr vs. Zr diagram (Figure 18a). It is observed that
the Akritas–Metallikon silicic volcanic rocks align more closely with the Kerkini granite,
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while the Kolchida–Nea Santa–Sana silicic volcanic rocks correspond better with the Arnea
granite, which is an observation consistent with their spatial distribution (Figure 1).

6.3.5. Melting of the Palaeozoic Variscan Crust Basement (Vertiskos Unit) as Protolith

All of the above observations are consistent with the derivation of the Permo–Triassic
peraluminous rhyolites of the CRB, along with the spatially and temporally associated
Arnea and Kerkini granites, primarily from clay-rich and plagioclase-poor magma sources
such as pelites. Potential parent pre-Triassic Variscan basement rocks are present in the area.
The abundance of gneisses (metapelites) containing muscovite, biotite, garnet, and other
aluminosilicate minerals in the nearby Variscan Vertiskos Unit basement [75,77,78], intruded
by the Arnea and Kerkini granites, supports this assumption. Hence, the metapelites from
the Palaeozoic Vertiskos Unit are likely sources for the generation of the CRB rhyolitic
magma. A geochemical correlation between the Vertiskos metapelites and the studied CRB
silicic volcanic rocks, as well as the Arnea and Kerkini granite intrusions, is attempted to
establish them as feasible protoliths for partial melting.

In the Rb/Sr vs. Rb/Ba diagram (Figure 17b), the melting relationships between calcu-
lated melts and protoliths (average compositions) are illustrated [95]. Quartz, sillimanite,
and garnet do not significantly incorporate Rb, Sr, and Ba [153]. Therefore, the increase
in Rb/Sr and Rb/Ba ratios in the calculated pelite-derived melt, compared to the shale
parent, is primarily determined by the amount of residual plagioclase and K-feldspar [95].
Thus, the observed increase in the Rb/Sr and Rb/Ba ratios in the studied CRB rhyolites,
as well as in the Arnea and Kerkini granites (data from [18,37,40]), relative to that in the
Vertiskos metapelites (data from [75,77,78]), enhances the idea that they are the protoliths
of the A2-subtype silicic magma.

Some studies have shown that granitic melts formed by the partial melting of crustal
rocks preserve or increase LILEs/HFSEs ratios during crustal anatexis, as LILEs (e.g., Rb)
are more incompatible than HFSEs (e.g., Nb, Zr) [163–166]. The incompatible trace element
ratios in the CRB silicic volcanic rocks, particularly LILEs/HFSEs (e.g., Rb/Nb: range
1.11–40, average 16.21; Rb/Zr: range 0.09–13.33, average 1.18; Th/Nb: range 0.38–2.56,
average 1.42), are almost the same as those in the silicic Palaeozoic Variscan basement
rocks of the Vertiskos Unit (gneisses data are from [75,77,78]), as is shown selectively in the
Rb/Nb vs. Rb diagram (Figure 19a). Therefore, these distinct trace element ratios confirm
the possibility that the melting occurred at a crustal level and provide additional evidence
that the studied A2-subtype silicic magmatism was derived by the partial melting of the
Palaeozoic Variscan Vertiskos Unit basement. This petrogenetic model is further supported
by a plot of Nb/Y vs. Th/Y [127], in which the CRB rhyolite samples are positioned near
the Th/Nb = 1 trend (Figure 19b), close to the average composition of the middle and
upper continental crust [131], and plot within the field of the Vertiskos Unit (data are
from [75,77,78]).

In conclusion, all these distinct trace element ratios confirm the possibility that the
gneisses (metapelites) of the Palaeozoic Variscan Vertiskos Unit basement could be ideal
magma sources for the A2-subtype CRB silicic volcanic rocks and their Arnea and Kerkini
granitic suite counterparts.

To determine the depth of magma generation, the average Nb/Y, Rb/Y, Rb/Nb, Th/Y,
and Th/Nb ratios of upper, middle, and lower continental crust (UCC, MCC, LCC) [131]
are compared with the CRB silicic volcanic rocks data (Figures 16 and 19). Almost all the
samples have values greater than that of the middle and upper crust, revealing shallow
depths of magma generation. Furthermore, considering that the average Rb/Sr ratios of
the upper, middle and lower continental crust are 0.26, 0.23, and 0.03, respectively [131],
the high Rb/Sr ratio values (3.45–39.14; average 15.8) of the studied CRB silicic volcanic
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rocks (Table S1, Figure 9c) imply a shallow depth of magma generation within the conti-
nental crust. Condie [167] used the relationship between Rb and Sr to determine crustal
thickness, which increases with rising Rb and Sr contents. He also constructed a diagram to
estimate the crustal depth at which the granitic magma was generated. Using this diagram
(Figure 20), the data points of the CRB silicic volcanic rocks, as well as those of the Arnea
and Kerkini granites (geochemical data from [18,37,40]), fall into the 20–30 km crustal
thickness category, indicating relatively shallow to moderate depths of generation for
this A2-subtype magma and granite emplacement. These depths correspond to pressures
between 0.5 and 0.8 GPa.
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Figure 19. Variation diagrams for incompatible element ratios: (a) Rb/Nb vs. Rb and (b) Nb/Y vs.
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6.4. Mechanism of Crustal Anatexis and T-P Melting Conditions
6.4.1. Dehydration Melting

Peraluminous granites can be derived by the partial melting of crustal rocks under
either fluid-absent or water-present conditions [150,168–171]. Melts produced in water-
present conditions generally exhibit higher CaO and Na2O and lower K2O content, leading
to higher normative anorthite (An) and albite (Ab) and lower orthoclase (Or) content.
This results in melts with more tonalitic to trondhjemitic composition compared to the
granitic melts produced under fluid-absent conditions [172,173]. The peraluminous CRB
silicic volcanic rocks are characterized by high K2O content and a K2O/Na2O ratio greater
than 1.0 (Table S1). Their composition is predominantly granitic rather than tonalitic or
trondhjemitic, as they have higher normative Or relative to An and Ab content (Table S1),
which is inconsistent with melting under water-present conditions. In addition, the high
zircon saturation temperatures (TZr) [158] of the CRB peraluminous rhyolites (Table S1,
Figure 18) suggest that added water is not required for their production by the partial
melting of pelitic metasediments, thus indicating that magma was generated under fluid-
absent conditions.

This inference is further supported by the high values of Rb/Sr ratio (ranging between
3.45 and 39.14) of the CRB silicic volcanic rocks (Table S1, Figure 9c). In primary melts, the
Rb/Sr ratio can be linked to the availability of fluids during the process of partial melting.
Harris et al. [174] found that Rb/Sr ratios from 4 to 10 suggest magma formation under
fluid-absent conditions (dehydration melting), while Rb/Sr ratios below 3.5 are indicative
of magma genesis at water-present conditions. Consequently, the primary melts of the CRB
silicic volcanic rocks were derived by fluid-absent melting conditions, since most of the
samples have Rb/Sr ratios > 3.5. The negative Eu anomaly of their plutonic counterparts,
i.e., the Arnea and Kerkini granitic suites [18,37], enhances the aspect for fluid-absent
melting of the Variscan Palaeozoic Vertiskos crust.

6.4.2. Biotite or Muscovite Breakdown?

The dehydration melting of hydrous minerals in pelitic and felsic metamorphic rocks
primarily depends on the muscovite and biotite, which supply all the water to the reaction
systems. Experiments show that the fluid-absent melting of two-mica pelites during
prograde metamorphism begins with the breakdown of muscovite and continues with the
progressive breakdown of biotite [151,175,176]. At pressures of 0.5–1.0 GPa, muscovite
breakdown begins at temperatures of 720–770 ◦C [175], while biotite breakdown occurs at
760–830 ◦C [142,177]. The high Zr concentrations (>100 ppm) and the high zircon saturation
temperatures (average TZr = 886 ◦C) of the CRB silicic volcanic rocks, coupled with their low
Al2O3/TiO2 ratio (<100), were most probably obtained through relatively high-temperature
dehydration melting above the biotite-breakdown curve (>800 ◦C).

Furthermore, during muscovite-dehydration melting, significant amounts of Pb are
incorporated into the melt phase, while much of the Ba remains in the restite assemblage,
which contains biotite and K-feldspar [178]. Therefore, the melts produced at low tempera-
tures by the dehydration melting of muscovite are typically enriched in Pb relative to Ba.
The logarithmic Pb vs. Ba diagram is useful for distinguishing primary low-temperature
(<800 ◦C) S-type granites, formed by low-degree source melting (primarily muscovite
melting), from high-temperature (>800 ◦C) S-type granites and secondary low-temperature
S-type granites formed through fractionation [178]. In the Pb vs. Ba plot (Figure 21a), it is
showed that the peraluminous CRB silicic volcanic rocks have relatively low Pb (0–69 ppm;
average value 14 ppm) and high Ba (24–2929 ppm; average value 635 ppm) contents (low
Pb/Ba ratio 0.00–0.27; average value 0.06), which resemble the high-temperature S-type
granites generated by the dehydration melting of crustal rocks involving biotite breakdown.
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Figure 21. (a) Log–log plot of Pb vs. Ba displaying data for the CRB silicic volcanic rocks. The
solid line empirically delineates the field occupied by the high-T (>800 ◦C) S-type granites from the
European Variscides and the Lachlan Fold Belt from the primary low-T (<800 ◦C) S-type granitic
magmas such as the Himalayan granites [178]. (b) Rb/Sr vs. Sr diagram [172]. Symbols are as in
Figure 4.

Moreover, the dehydration melting of biotite significantly increases the Rb/Sr ratio in
the melt while having minimal impact on Ba or Sr, as these elements are primarily contained
in plagioclase [172]. The elevated Rb/Sr ratio in the CRB silicic volcanic rocks, evident in
the Rb/Sr versus Sr diagram (Figure 21b), indicates that the rocks were predominantly
generated by biotite melting under fluid-absent conditions.

6.4.3. Mineral Constituents in the Source Residue

The dehydration melting of biotite in metasedimentary rocks leads to the production of
S-type granitic melts and the formation of residual granulite facies rocks (e.g., [148,179,180]).
The pelite-derived melt under fluid-absent conditions is produced through the incongruent
melting of all biotite and the majority of plagioclase via the following reaction:

Bt + Pl + Als + Qtz = Kfs ± Grt + melt [95,148,153,177,181] (Figure 22).
Residual orthopyroxene is also produced from graywacke partial melting [182,183].

The melting pressure determines the presence of plagioclase and garnet as common residual
mineral phases. At relatively low pressure, plagioclase remains in the residual phase,
whereas at higher pressure, garnet is retained in the residual phase (e.g., [184,185] and
references therein). Moreover, at low pressures (below about 4 kbar), cordierite may replace
garnet as a restite phase.
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Figure 22. Pressure (P)–temperature (T) phase diagram (after [186]) showing probable conditions for
the generation of the CRB rhyolitic magmas. Water-saturated granite solidus is from [187]. The light
and dark gray fields represent the range of experimentally determined dehydration melting reactions
for muscovite and biotite, respectively (after [175,182,188] and references therein). The lower pressure
limit for garnet stability is after [175,188–190]. The upper pressure limit for plagioclase stability is
after [191–193] (Ms: muscovite, Bt: biotite, Qtz: quartz, Pl: plagioclase, Ab: albite, Kfs: K-feldspar, Als:
aluminosilicate, Grt: garnet, Crd: cordierite, Opx: orthopyroxene, Sill: sillimanite, And: andalusite).

The Rb/Sr ratio in the melt is greatly affected by the mineralogical composition of
the residue after partial melting. Specifically, as Rb is retained by biotite and Sr is retained
by the feldspars, the Rb/Sr ratio is increased in the melt by the presence of plagioclase
and decreased by the presence of biotite in the residue [194]. The increase in Rb/Sr and
Rb/Ba ratios in the CRB silicic volcanic rocks, as well as in the Arnea and Kerkini granitic
suites, relative to the parental Vertiskos metapelites, indicates that plagioclase is retained
in the source residue (Figure 17b). Plagioclase is enriched in Sr and Eu, whereas garnet is
enriched in Y and HREEs (e.g., Yb) and depleted in LREEs (e.g., La). Therefore, the Sr and
Eu anomalies, as well as the Sr/Y and La/Yb values, are often used to estimate the presence
of these residual phase minerals in the source and consequently the melting pressure
(e.g., [184]). The pronounced negative Sr anomalies in the primitive mantle-normalized
trace element patterns (Figure 8), along with the very low Sr/Y ratios (0.12–1.08; average
0.37) in the CRB silicic volcanic rocks (Table S1), suggest that the magma source residue was
dominated by plagioclase with little or no garnet. This indicates relatively low pressures
(<7 kbar [150]) and a shallow magma origin.

The geochemically similar Permo–Triassic counterparts, the Arnea and Kerkini gran-
ites [18], which intruded the Vertiskos Variscan Unit basement, exhibit strongly negative Eu
and Sr anomalies [18,37]. According to Poli et al. [18], the low Sr content and unfractionated
HREEs (flat pattern) suggest their generation from sources containing residual feldspars
but lacking garnet, indicating lower pressures and depths of less than 50 km for magma
generation. Moreover, the low Sr/Y (0–4) and La/Yb (2.5–10) ratio values in the Arnea
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and Kerkini granites (geochemical data from [18,37,40]) are consistent with crustal melts
formed within the stability field of residual plagioclase with little or no residual garnet (the
F3 field in the Sr/Y vs. La/Yb diagram of [185]). This result supports the idea of a shared
magma source at relatively low pressure and shallow depth for the CRB silicic volcanic
rocks and the spatially and temporally associated Arnea and Kerkini granites.

6.4.4. Pressure–Temperature Melting Conditions and Melt Proportions

The pressure (P)–temperature (T) conditions for the partial melting of crustal rocks
are outlined in Figure 22, based on experimental data (after [186]). It is indicated
that at pressures of 0.5–1.0 GPa, muscovite begins to break down at temperatures of
720–770 ◦C [175] and biotite breakdown occurs at 760–830 ◦C [142,177]. Furthermore,
experimental data suggest that garnet is formed at pressures between 0.4 and 0.6 GPa
and temperatures ranging from 750 to 900 ◦C during the fluid-absent partial melting of
metasedimentary rocks [157,175,184,189]. This suggests that the lower pressure limit for
garnet stability is around 0.5 GPa. Plagioclase is a typical residual mineral during the
partial melting of various crustal rocks—including metasedimentary rocks, tonalites, and
basalts—but it disappears at pressures exceeding 1.2 to 1.5 GPa (e.g., [191–193]).

Considering the evidence of residual plagioclase with little or no residual garnet in
the source, it is concluded that the CRB rhyolitic, as well as the Arnea and Kerkini granitic
magmas, were produced by the biotite dehydration melting of metapelites over a range of
pressures from 0.4 to 0.8 GPa. These pressures correspond to depths of ~15–30 km, which
is consistent with the depth level inferred from the Rb–Sr crustal thickness index [167]
and furthermore suggesting crustal thinning of the Vertiskos Unit basement during the
Permo–Triassic. Moreover, taking into account that the zircon saturation temperature (Tzr)
values for the CRB silicic volcanic rocks are in the range of 800 to 1000 ◦C, it is inferred that
the rocks formed at high temperatures within this range. However, the maximum melting
temperature may have been lower than 1000 ◦C, as some samples with high Zr content
from the Metallikon area may have been derived from magma mixing (work in progress).
The pressure (depth)–temperature range field for the CRB silicic volcanic rocks is drawn on
the P–T diagram (Figure 22).

Melt proportions produced by crustal partial melting primarily depend on the type of
source rock, the pressure, the temperature, and the source’s hydrous mineral (H2O) content.
Clemens and Vielzeuf [181] developed models linking the maximum melt production from
pelites and quartzofeldspathic rocks to the water content in hydrous minerals. Pelites and
felsic rocks containing approximately 1 wt.% total water at 0.5 GPa can generate about
30 vol.% melt at 800 ◦C and 60 vol.% melt at 900 ◦C (see Figure 4 in [181]), whereas at
1 GPa, they can form about 18 vol.% and 35 vol.% melt at 800 ◦C and 900 ◦C, respectively.
According to the Clemens and Vielzeuf model for the partial melting of pelites [181],
the melt fraction produced from the partial melting of the Vertiskos Unit basement at
temperatures of 800–1000 ◦C and pressures of 0.4–0.8 GPa (approximately 15–30 km depth)
is estimated to range from 35 to 60 vol.%.

6.5. Heat Source for Crustal Melting and Petrogenetic Model

The magma of the CRB silicic volcanic rocks was essentially produced by crustal
melting inside the Palaeozoic Vertiskos Unit basement at a relatively shallow depth between
the mantle roof (~30 km, 0.8 GPa) and just below the lower limit of garnet stability (~15 km,
0.4 GPa) at temperatures up to 1000 ◦C. Such high temperatures are uncommon in the
crust, indicating the need for an additional heat source. This suggests the involvement
of mantle-derived magmas at the base or into the lower part of the crust [29,95,159].
Supporting evidence for basaltic underplating magmatism is provided by the nearby
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minor outcrops of the Triassic Akritas–Metallikon tholeiitic basalt and dolerite displaying
transitional MORB to WPB characteristics (the Triassic Rift Basic Volcanics [16,43,44,46]).
Additionally, the presence of limited magma mixing microtextures in dacites and mafic
microgranular enclaves in rhyolites from the Metallikon area provides further evidence
of coexisting mafic and felsic volcanism [45]. The calculated P–T conditions for the basic
tholeiitic magma generation (1219–1342 ◦C, 1.01–1.61 GPa) imply a depth lower than
50 km corresponding to a spinel-peridotite source [46]. The tholeiitic magma may have
formed through adiabatic decompression and melting of an upwelling asthenosphere. Such
upwelling can be triggered by various tectonic processes, including convective thinning of
the lithospheric mantle, lithosphere delamination, or slab break-off ([129,195] and references
therein). Therefore, it is concluded that the Triassic volcanism in the CRB was in fact
bimodal (A2-subtype rhyolites to rhyodacites and minor tholeiitic basalts) and formed in a
post-collision extensional tectonic setting (e.g., [130,195–200]).

In Figure 23, the diagram illustrates the petrogenetic model for the Permo–Triassic
CRB silicic volcanic rocks and the Akritas–Metallikon tholeiitic basalts that were generated
in a post-collision extensional stage of the Variscan continental crust. Plutonic equivalents
of similar age and geochemistry that have been intruded into the crystalline basement
of the Vertiskos Unit are the A-type Arnea and Kerkini meta-granites (254–244 Ma and
247 Ma, respectively [17,18,39]) and the MORB Volvi meta-mafic body (240 Ma [20,201]).
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Figure 23. Schematic diagram illustrating the petrogenetic model for the generation of the Permo–
Triassic bimodal volcanism [rhyolite (crustal melts)—basalt (mantle melts)] during a post-collision
extensional stage of the Variscan continental crust (the SMM–Vertiskos and Pelagonian terranes). The
A2-subtype rhyolites from the CRB, the tholeiitic basalts and dolerites from the Akritas–Metallikon
area, and the A2-subtype Arnea and Kerkini granites are shown.

According to previous studies, this Permo–Triassic bimodal magmatism (including
plutonic and volcanic rocks) is linked to the early extensional rifting stage that separated
the Vertiskos and the Pelagonian terranes, eventually leading to the opening of the Meso-
zoic Meliata/Maliac–Vardar/Axios Ocean (e.g., [12,13,17,19,20,39,40,42,43,81]). Mposkos
et al. [81] correlate the Triassic intrusion of the Arnea–Kerkini granites and the Volvi meta-
gabbro with the second low-pressure, high-temperature (LP–HT) metamorphic event in the
Vertiskos Unit and the subsequent formation of the East-Vardar basin. This study suggests
that magma generation of the CRB silicic volcanic rocks occurred under similar conditions,
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which are likely associated with the Triassic LP–HT metamorphic event in the Vertiskos
Unit.

The geochemical study of the Permo–Triassic CRB silicic volcanic rocks presented
in this paper, supported by updated literature, reveals that they are peraluminous, crust-
derived, A2-subtype granitoids. Their genesis is most likely related to the post-collisional
extension of the Variscan crystalline basement (Vertiskos Unit) rather than anorogenic
within-plate continental rifting. This inference aligns with the suggestion of Poli et al. [18,41]
regarding the formation of their plutonic equivalents, the Arnea and Kerkini A2-subtype
granites, in an incipient rift environment after continental collision where the continental
crust was still present. The Permo–Triassic age and post-collisional nature of this silicic
magmatism (the CRB silicic volcanic rocks and Arnea–Kerkini granites), along with its
origin from the partial melting of the Vertiskos Unit basement crustal rocks (metapelites),
as well as its association with the mantle-derived basic tholeiitic rocks from the Akritas–
Metallikon area, provide new constraints on the geodynamic evolution of the broader
region.

6.6. Geodynamic Implications

The Permo–Triassic post-collisional bimodal volcanism (A-type rhyolites and tholeiitic
basalts) in the CRB is an integral part of a larger system that delineates the borders of the
Serbo-Macedonian (Vertiskos Unit) and the Pelagonian continental fragments as indicated
in Figure 24.
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Figure 24. Schematic paleogeographic map during the Permian–Triassic boundary (modified from [2]).
The dark green areas are initial “rift” or “back arc” basins (e.g., Meliata, Maliac). The inferred position
of the post-collisional CRB silicic volcanism, investigated in this paper, is indicated with the black
dot. SM: Serbo-Macedonian and Pl: Pelagonian continental blocks.

During the Late Carboniferous, the Variscan lithosphere was overthickening due to
the imbrication and amalgamation of the different blocks of Gondwanan origin (the Ver-
tiskos Unit of SMM and the Pelagonian, among them) to Eurasia and slab detachment of
the intervening oceans (e.g., [3,4,6]). The syn-collisional S-type meta-granites of Polyden-
dri [77] and Theodorio [78] emplaced into the Vertiskos Unit are likely associated with
the Late Carboniferous to early Permian collision-related magmatism that resulted from
these events [6,76]. The amalgamation of the blocks was quickly followed by lithospheric
collapse above the retreating Palaeo-Tethys slab, spanning from Sicily to the Middle East [6].
Large volumes of Carboniferous–Permian intrusive rocks in the Pelagonian terrane are
associated with prolonged subduction of the Palaeo-Tethys to the north under the Eurasian
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margin [202,203]. The transition from collision and compression to the post-collisional
extension stage of the Variscan continental lithosphere is marked by a shift from arc-related
calc-alkaline plutonic activity in the Late Carboniferous–Early Permian to K-alkaline silicic
magmatism of Late Permian–Early Triassic age [3,4,6].

Post-collisional granitoids typically formed shortly after the subduction and collision
of tectonic plates. The magmatic activity is completed within a relatively short time span
and is often associated with ophiolite belts or suture zones [105]. In North Macedonia, the
Galicia–Moldanubian Ocean, an oceanic domain that separated the SMM in the east and
the Pelagonian Massif in the west, was finally closed due to subduction. This was followed
by the amalgamation of Pelagonian with SMM, leading to the thickening of the Variscan
lithosphere ([204,205] and references therein). In Greece, there is no clear or unequivocal
evidence of a collision between the Vertiskos and the Pelagonian continental blocks prior to
the Triassic rifting that separated them. However, the extensive amphibolites occurring in
the Vertiskos Unit (a few of them are recognized as ex-eclogites [77,78,81]) may represent
remnants of oceanic crust involved in pre-Triassic subduction, obduction, and collision
processes, potentially indicating an exposed suture zone [19]. Recent U–Pb zircon dating
(LA-ICP-MS) of amphibolites reveals metamorphic ages of 341 Ma and 319–321 Ma [20,80],
implying a pre-Carboniferous protolith for them. These ages likely correspond to the first
HP–HT metamorphic Carboniferous event in the Vertiskos Unit, which is indicative of the
Variscan subduction and collision processes [81].

In summary, from the Late Permian to Early Triassic, the rollback of the Palaeo-Tethyan
slab caused the collapse of large portions of the European Variscan orogen. Several Permian
rifts formed due to extension, and some developed into back-arc basins (e.g., Meliata,
Maliac) during the Triassic (e.g., [2–6]). The Permo–Triassic A2-subtype CRB silicic volcanic
rocks examined in this study, along with the associated Arnea and Kerkini granites, most
likely originated from the partial melting of ancient crustal pelitic rocks of the Vertiskos Unit
under low-pressure, high-temperature (LP–HT) conditions in a post-collision extensional
tectonic regime. A contribution of basaltic material from the asthenosphere supported
this process, primarily as a heat source. Their genesis is consistent with the breakup of
the Pangea supercontinent in the Permian–Triassic period, the subsequent opening of the
Mesozoic Neo-Tethyan Maliac/Vardar Ocean, and the detachment of Pelagonian from the
Vertiskos (SMM) terrane.

The identification of this post-collisional A2-subtype silicic magmatism (the CRB
silicic volcanic rocks and the Arnea and Kerkini granites) at the Permian–Triassic bound-
ary confirms the continental collision between the Vertiskos (SMM) and Pelagonian
microcontinents in the Variscan orogen and indicates that the peak collision between
these Gondwana-derived terranes must have been completed by at least the earliest
Late Permian.

7. Conclusions
The investigation of whole-rock geochemistry of the Permo–Triassic silicic volcanic

rocks from the Circum-Rhodope Belt (CRB) in northern Greece provides new insights into
their petrogenesis and the geodynamic evolution of the broader region. The concluding
remarks are as follows:

• The CRB silicic volcanic rocks are peraluminous, subalkaline, A2-subtype granitoids
characterized by relative enrichment in K, Rb, Th, Zr, Y, and Pb and depletion in Nb,
Ba, Sr, P, and Ti.

• They have markedly high Y/Nb (average = 3.36), Rb/Sr (average = 15.8), and Rb/Nb
(average = 16.2) ratios, suggesting crustal magma sources derivation and emplacement
in a post-collisional environment.
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• The rocks have a low CaO/Na2O ratio (<0.5) consistent with pelite-derived magmas
and a low Al2O3/TiO2 ratio (<100), indicating high-temperature melting, which is
consistent with their high zircon saturation temperatures (TZr > 800 ◦C).

• Their higher normative Or, relative to An and Ab contents, and their low Pb/Ba ratio
(average = 0.06) indicate derivation from biotite dehydration melting.

• They have a very low Sr/Y ratio (average = 0.37), and a higher Rb/Sr ratio compared to
the Vertiskos metapelites (likely parent rocks), suggesting the presence of plagioclase
but little or no garnet in the source residue. This residual phase indicates relatively
low pressures (0.4–0.8 GPa) and shallow to moderate depths (15–30 km) of magma
origin.

• The partial melting of the Vertiskos lower crust is attributed to conductive heating
caused by magmatic underplating resulting from asthenosphere upwelling. This
process later led to the extrusion of minor Triassic tholeiitic basalts and dolerites,
indicating that the Triassic volcanism was bimodal.

• In northern Greece, the occurrence of these unique post-collisional bimodal volcanic
rocks (A2-subtype rhyolites and minor tholeiitic basalts), along with the associated
Arnea and Kerkini granites, indicates that the area experienced a tectonic transition
from compression to extension at the Permian–Triassic boundary, marking the initial
stage in the development of the Maliac–Vardar Ocean. This strongly suggests that the
final amalgamation of the Pelagonian and Vertiskos terranes had been completed by
the earliest Late Permian.
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