Multibeam Bathymetric Investigations of the Morphology and Associated Bedforms, Sulina Channel, Danube Delta
Abstract
:1. Introduction
2. Regional Setting
3. Materials and Methods
3.1. Bedform Mapping
3.2. Particle Size Analysis of Bed Surface Materials
3.3. Hydrodynamics (ADCP)
4. Results
4.1. Bedforms Classification
4.2. Bed Material Grain Sizes
4.3. Morphology of the Sulina Channel
5. Discussion
5.1. Event-Scale Morphodynamical Analysis
5.2. Sedimentary Dynamic
5.3. Flemming Empirical Relation
5.4. Southard Diagram
5.5. Anthropic Influences on the Bedforms Evolution
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ashworth, P.J.; Best, J.L.; Roden, J.E.; Bristow, C.S.; Klaassen, G.J. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology 2000, 47, 533–555. [Google Scholar] [CrossRef]
- Gupta, A. Large rivers. Geomorphology 2002, 44, 173–174. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vorosmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhao, Q.; Belkin, I.M. Temporal variation in the sediment load of the Changjiang river and the influence of human activities. J. Hydrol. 2002, 263, 56–71. [Google Scholar] [CrossRef]
- Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G. Riverbed sediment classification using multibeam echo-sounder backscatter data. J. Acoust. Soc. Am. 2009, 126, 1724–1738. [Google Scholar] [CrossRef] [PubMed]
- Baghlani, A.; Talebbeydokhti, N.A. Mapping Technique for Numerical Computations of Bed Evolutions. Appl. Math. Model. 2007, 31, 499–512. [Google Scholar] [CrossRef]
- Courtney, R.C.; Fader, G.B.J. A new understanding of the ocean floor through multibeam mapping. In Sci. Rev. 1992 and 1993; Fiander, A., Ed.; Department of Fishieries and Oceans, Bedford Institute of Oceanography: Dartmouth, NS, Canada, 1992; pp. 9–14. [Google Scholar]
- Eleftherakis, D.; Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G. Improving riverbed sediment classification using backscatter and depth residual features of multi-beam echo-sounder systems. J. Acoust. Soc. Am. 2012, 131, 3710–3725. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.A.; Orange, D.L.; Mayer, L.A.; Hughes Clarke, J.E. Detailed investigation of continental shelf morphology using a high-resolution swath sonar survey: The Eel margin, northern California. Mar. Geol. 1999, 154, 255–269. [Google Scholar] [CrossRef]
- Huizinga, R.J. Bathymetric surveys at highway bridges crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010. In USA Geological Survey Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2010; p. 60. [Google Scholar]
- Li, M.Z.; King, E.L. Multibeam bathymetric investigations of the morphology of sand ridges and associated bedforms and their relation to storm processes, Sable Island Bank, Scotian Shelf. Mar. Geol. 2007, 243, 200–228. [Google Scholar] [CrossRef]
- Wright, L.D. Benthic boundary layers of estuarine and coastal environments. Rev. Aquat. Sci. 1989, 1, 75–95. [Google Scholar]
- Urgeles, R.; Canals, M.; Baraza, J.; Alonso, B.; Masson, D. The most recent megaslides on the Canary Islands: The El Golfo debris avalanche and the Canary debris flow, West Hierro Island. J. Geophys. Res. 1997, 102, 20305–20323. [Google Scholar] [CrossRef]
- Ashley, G.M. Classification of large-scale subaqueous bedforms: A new look at an old problem. J. Sediment. Petrol. 1990, 60, 160–172. [Google Scholar]
- Carling, P.A.; Gölz, E.; Orr, H.G.; Radecki-Pawlik, A. The morphodynamics of fluvial sand dunes in the River Rhine near Mainz, Germany. I. Sedimentology and morphology. Sedimentology 2000, 47, 227–252. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Li, M.; Wei, T.; Chen, Z. Bedform characteristics during falling flood stage and morphodynamic interpretation of the middle–lower Changjiang (Yangtze) River channel, China. Geomorphology 2012, 147, 18–26. [Google Scholar] [CrossRef]
- Nemeth, A.A.; Hulscher, S.J.M.H.; van Damme, R.M.J. Modelling offshore sand wave evolution. Cont. Shelf Res. 2007, 27, 713–728. [Google Scholar] [CrossRef]
- Song, T.; Graf, W.H. Velocity and turbulence distribution in unsteady open-channel flows. J. Hydraul. Eng. 1996, 122, 141–154. [Google Scholar] [CrossRef]
- Southard, J.B.; Boguchwal, L.A. Bed configurations in steady unidirectional water flow. Part 2. Synthesis of flume data. J. Sediment. Res. 1990, 60, 658–679. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Sediment Transport, Part III: Bed Forms and Alluvial Roughness. J. Hydraul. Eng. 1984, 110, 1733–1754. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas; Aqua Publications: Amsterdam, The Netherland, 1993; p. 715. [Google Scholar]
- Guy, H.P.; Simons, D.B.; Richardson, E.V. Summary of Alluvial Channel Data from Flume Experiments, 1956–61; US Government Printing Office: Washington, DC, USA, 1966; pp. 1–96.
- Wan, Z. Bed material movement in hyperconcentrated flow. J. Hydraul. Eng. 1985, 111. [Google Scholar] [CrossRef]
- Kostaschuk, R.; Best, J. Response of sand dunes to variations in tidal flow: Fraser Estuary, Canada. J. Geophys. Res. 2005, 110, F04S04. [Google Scholar] [CrossRef]
- Best, J. The Fluid Dynamics of River Dunes: A Review and Some Future Research Directions. J. Geo-Phys. Res. 2005, 110, F04S02. [Google Scholar] [CrossRef]
- Giri, S.; Shimizu, Y. Numerical Computation of Sand Dune Migration with Free Surface Flow. Water Resour. Res. 2006, 42, W10422. [Google Scholar] [CrossRef]
- Shimizu, Y.; Giri, S.; Yamaguchi, S.; Nelson, J. Numerical Simulation of Dune––Flat Bed Transition and Stage––Discharge Relationship with Hysteresis Effect. Water Resour. Res. 2009, 45, W04429. [Google Scholar] [CrossRef]
- Toniolo, H. Bed Forms and Sediment Characteristics along the Thalweg on the Tanana River near Nenana, Alaska, USA. Nat. Resour. 2013, 4, 20–30. [Google Scholar] [CrossRef]
- Redechi-Pawlik, A.; Ksiazek, L. The morphology and morphodunamics of sand-gravel subaquatic dunes: The raba River estuary, Poland. Georeview 2012, 21, 8–32. [Google Scholar] [CrossRef]
- Harbor, D.J. Dynamics of bedforms in the lower Mississippi River. J. Sediment. Res. 1998, 68, 750–762. [Google Scholar] [CrossRef]
- Bondar, C.; Panin, N. The Danube Delta Hydrologic Database and Modeling. Geo-Eco-Marina 2000, 5, 5–52. [Google Scholar]
- Oaie, G.; Secrieru, D.; Bondar, C.; Szobotka, S.; Duţu, L.; Stănescu, I.; Opreanu, G.; Duţu, F.; Pojar, I.; Manta, T. Lower Danube River: Characterization of sediments and pollutants. Geo-Eco-Marina 2015, 21, 19–34. [Google Scholar]
- Bogardi, J.L. Fluvial Sediment Transport. In Advances in Hydroscience; Chow, V.T., Ed.; Academic Press: New York, NY, USA, 1972; Volume 8, pp. 183–259. [Google Scholar]
- Panin, N. The Danube Delta. Geomorphology and Holocene evolution: A Synthesis. Géomorphol. Relief Process. Environ. 2003, 4, 247–262. [Google Scholar] [CrossRef]
- Panin, N.; Overmars, W. The Danube Delta evolution during the Holocene: Reconstruction attempt using geomorphological and geological data, and some of the existing carthographic documents. Geo-Eco-Marina 2012, 18, 75–110. [Google Scholar]
- Panin, N. Danube Delta: Geology, Sedimentology, Evolution. Association des sédimentologistes français, maison de la Géologie: Paris, France, 1999; p. 66. [Google Scholar]
- Bondar, C.; Papadopol, A. Evoluţia albiei Canalului Sulina. Transp. Auto Navale Si Aeriene 1972, 2, 144–147. [Google Scholar]
- Bialik, R.J.; Karpiński, M.; Rajwa, A.; Luks, B.; Rowiński, P.M. Bedform Characteristics in Natural and Regulated Channels: A Comparative Field Study on the Wilga River, Poland. Acta Geophys. 2014, 62, 1413–1434. [Google Scholar] [CrossRef]
- Nikora, V.I. Methods for quantitative description of channel bed-forms. In Erosional and Channel Processes in Various Climatic Conditions; Moscow University: Moscow, Russia, 1987; pp. 327–328. [Google Scholar]
- Biedenharn, D.S.; Thorne, C.R.; Watson, C.C. Recent morphological evolution of the Lower Mississippi River. Geomorphology 2000, 34, 227–249. [Google Scholar] [CrossRef]
- Bagnold, R.A. An approach to the sediment transport problem from general physics. U.S. Geol. Surv. Prof. Pap. 1966, 422, 1–37. [Google Scholar]
- Hickin, E.J. River Geomorphology; Wiley: New York, NY, USA, 1995; p. 255. [Google Scholar]
- Miller, M.C.; Mccave, I.N.; Komar, P.D. Threshold of sediment motion under unidirectional currents. Sedimentology 1977, 24, 507–527. [Google Scholar] [CrossRef]
- Gessler, J. Beginning and Ceasing of Sediment Motion. In River Mechanics; Shen, H.W., Ed.; Colorado State University: Fort Collins, CO, USA, 1971; ISBN1 0521529700. ISBN2 9780521529709. [Google Scholar]
- Graf, W.H. Hydraulics of Sediment Transport; McGraw-Hill Book Co.: New York, NY, USA, 1971. [Google Scholar]
- Hjulström, F. Studies in the morphological activity of rivers as illustrated by the river Fyris. Geol. Inst. Univ. Uppsala Bull. 1935, 25, 221–528. [Google Scholar]
- Hjulström, F. Transportation of Detritus by Moving Water. In Recent Marine Sediments, a Symposium; Trask, P.D., Ed.; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1939; pp. 5–31. [Google Scholar]
- Shields, A. Application of Similarity Principles and Turbulence Research to Bed-Load Movement; California Institute of Technology: Pasadena, CA, USA, 1936. [Google Scholar]
- Bravard, J.P.; Petit, F. Les Cours d’eau, Dynamique du Système Fluvial; Armand Collin/Masson: Paris, France, 1997; p. 221. (In French) [Google Scholar]
- Allen, J.R.L. Sedimentary Structures: Their Character and Physical Basis; Elsevier: New York, NY, USA, 1984; p. 1256. [Google Scholar]
- Meyer-Peter, E.; Müller, R. Formulas for Bed Load Transport; IAHR: Madrid, Spain, June 1948. [Google Scholar]
- Martin Lin, C.Y. Bedform Migration in Rivers; Simon Fraser University: Burnaby, BC, Canada, 2011. [Google Scholar]
- Flemming, B.W. Zur Klassifikation subaquatischer, strömungstransversaler Transportkörper. Boch. Geol. Geotech. Arb. 1988, 29, 93–97. (In German) [Google Scholar]
- Flemming, B.W. The Role of Grain Size, Water Depth and Flow Velocity as Scaling Factors Controlling the Size of Subaqueous Dunes. In Marine Sandwave Dynamics; Trentesaux, A., Garlan, T., Eds.; University of Lille: Lille, France, 2000; pp. 55–61. [Google Scholar]
- Aberle, J.; Nikora, V.; Henning, M.; Ettmer, B.; Hentschel, B. Statistical characterization of bed roughness due to bed forms: A field study in the Elbe River at Aken, Germany. Water Resour. Res. 2010, 46, W03521. [Google Scholar] [CrossRef]
- Bridge, J.S.; Best, J.L. Flow, Sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: Implication for the formation of planar laminae. Sedimentology 1988, 35, 753–763. [Google Scholar] [CrossRef]
- Coleman, S.E.; Nikora, V.I. Fluvial dunes: Initiation, characterization, flow structure. Earth Surf. Process. Landf. 2011, 36, 39–57. [Google Scholar] [CrossRef]
- Southard, J.B. Bed configuration. In Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences; Harms, J.C., Southard, J.B., Spearing, D.R., Walker, R.G., Eds.; SEPM Short Course No. 2; SEPM Society for Sedimentary Geology: Dallas, TX, USA, 1975. [Google Scholar]
- Giri, S.; Van Vuren, S.; Ottevanger, W.; Sloff, K. A Preliminary Analysis of Bedform Evolution in the Waal during 2002–2003 Flood Event Using Delft3D. In Marine and River Dune Dynamics; Best, J., Ed.; University of Leeds: Leeds, UK, 2008; pp. 141–148. [Google Scholar]
- Kostaschuk, R.; Villard, P. Flow and sediment transport over large subaqueous dunes: Fraser River, Canada. Sedimentology 1996, 43, 849–863. [Google Scholar] [CrossRef]
Samples | Granules | Sand | Silt | Clay | Shepard Classification | D50 Φ |
---|---|---|---|---|---|---|
% | % | % | % | |||
P6 016 | 0.00 | 16.89 | 46.62 | 36.49 | Clayey silt | 6.62 |
P6 017 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 2.31 |
P6 018 | 0.00 | 92.71 | 4.31 | 2.97 | Sand | 2.88 |
P7 019 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 2.49 |
P7 020 | 0.00 | 4.37 | 69.53 | 26.10 | Clayey silt | 6.13 |
P7 021 | 17.93 | 79.47 | 1.15 | 1.45 | Sand | −0.36 |
P8 022 | 0.00 | 4.52 | 65.18 | 30.30 | Clayey silt | 6.71 |
P8 023 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 2.89 |
P8 024 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 2.35 |
P9 026 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 2.26 |
P9 027 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 1.86 |
P10 028 | 0.00 | 7.27 | 52.37 | 40.35 | Clayey silt | 7.27 |
P11A 029 | 0.00 | 3.47 | 74.10 | 22.43 | Clayey silt | 5.47 |
P11B 030 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 1.48 |
P12 031 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 1.93 |
C2A 032 | 0.00 | 100.00 | 0.00 | 0.00 | Sand | 1.89 |
Reach | Width | Depth | Water Energy Slope | Mean Velocity |
---|---|---|---|---|
m | m | m·km−1 | m·s−1 | |
Reach A | 98.00–134.00 | 10.00–19.80 | 0.063 | 0.80 |
Reach B | 103.00–136.00 | 10.00–27.00 | 0.051 | 0.98 |
Reach C | 100.00–143.00 | 10.70–19.70 | 0.047 | 0.74 |
Morphodynamic Parameters ω and τ0 | P7 | P9 | P10 | P11A | P11C | P11B | C3A | C3C | C3B | P12 | C2A |
---|---|---|---|---|---|---|---|---|---|---|---|
ω (W·m−2) | 10.23 | 6.79 | 6.17 | 8.64 | 1.01 | 8.15 | 5.19 | 0.80 | 5.19 | 5.53 | 7.06 |
τ0 (N·m−2) | 10.41 | 8.62 | 7.55 | 7.60 | 3.06 | 6.53 | 7.70 | 2.86 | 8.11 | 7.45 | 7.47 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duţu, F.; Panin, N.; Ion, G.; Tiron Duţu, L. Multibeam Bathymetric Investigations of the Morphology and Associated Bedforms, Sulina Channel, Danube Delta. Geosciences 2018, 8, 7. https://doi.org/10.3390/geosciences8010007
Duţu F, Panin N, Ion G, Tiron Duţu L. Multibeam Bathymetric Investigations of the Morphology and Associated Bedforms, Sulina Channel, Danube Delta. Geosciences. 2018; 8(1):7. https://doi.org/10.3390/geosciences8010007
Chicago/Turabian StyleDuţu, Florin, Nicolae Panin, Gabriel Ion, and Laura Tiron Duţu. 2018. "Multibeam Bathymetric Investigations of the Morphology and Associated Bedforms, Sulina Channel, Danube Delta" Geosciences 8, no. 1: 7. https://doi.org/10.3390/geosciences8010007
APA StyleDuţu, F., Panin, N., Ion, G., & Tiron Duţu, L. (2018). Multibeam Bathymetric Investigations of the Morphology and Associated Bedforms, Sulina Channel, Danube Delta. Geosciences, 8(1), 7. https://doi.org/10.3390/geosciences8010007