Plant Tissue Decay in Long-Term Experiments with Microbial Mats
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Microbial Mats in the Laboratory
2.2. Taphonomic Experiments
2.3. Sample Preparation and Analytical Procedure
2.3.1. Fluorescence Microscopy
2.3.2. SEM-EDX and Resin Inclusion
3. Results
3.1. Physico-Chemical and Ionic Variations in the Course of the Decay of Pinnae in Mats
3.2. Decay of Fern Pinnae
3.2.1. Formation of the Sarcophagus
3.2.2. Sequence of Decomposition of Fern Pinnae
3.2.3. Plant Tissue Mineralization and the Occurrence of Mineral Precipitates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernández-López, S.R. La Material Fósil. Una Concepción Dinamicista de los Fósiles. In Nuevas Tendencias en Paleontología; Aguirre, E., Ed.; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 1989; pp. 25–45. (In Spanish) [Google Scholar]
- Seilacher, A. Begriff und bedeutung der Fossil-Lagerstätten. Neues Jarhb. für Geol. und Paläontologie 1970, 1, 34–39. (In German) [Google Scholar]
- Buscalioni, Á.D.; Fregenal-Martínez, M.A. A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte (La Huérguina Formation, Lower Cretaceous, Iberian Ranges, Spain). J. Iber. Geol. 2010, 36, 297–326. [Google Scholar] [CrossRef]
- Schweitzer, M.H.; Suo, Z.; Avci, R.; Asara, J.M.; Allen, M.A.; Arce, F.T.; Horner, J.R. Analyses of soft tissue from Tyrannosaurus rex suggest the presence of protein. Science 2007, 316, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Asara, J.M.; Schweitzer, M.H.; Freimark, L.M.; Philips, M.; Cantley, L.C. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry. Science 2007, 31, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.H.; Zheng, W.; Organ, C.L.; Avci, R.; Suo, Z.; Freimark, L.M.; Lebleu, V.S.; Duncan, M.B.; Vander Heiden, M.G.; Neveu, J.M.; et al. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis. Science 2009, 324, 626–631. [Google Scholar] [CrossRef] [PubMed]
- McNamara, M.E.; Orr, P.J.; Kearns, S.L.; Alcalá, L.; Anadón, P.; Peñalver-Mollá, E. Soft-tissue preservation in Miocene frogs from Libros, Spain: Insights into the genesis of decay microenvironments. Palaios 2009, 24, 104–117. [Google Scholar] [CrossRef]
- Navalón, G.; Marugán-Lobón, J.; Chiappe, L.M.; Luis Sanz, J.; Buscalioni, Á.D. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight. Sci. Rep. 2015, 5, 14864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinther, J.; Briggs, D.E.G.; Prum, R.O.; Saranathan, V. The colour of fossil feathers. Biol. Lett. 2008, 4, 522–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggs, D.E.G. Molecular taphonomy of animal and plant cuticles: Selective preservation and diagenesis. Philos. Trans. R. Soc. B Biol. Sci. 1999, 354, 7–17. [Google Scholar] [CrossRef]
- Gueriau, P.; Bertrand, L. Deciphering exceptional preservation of fossils through trace elemental imaging. Micros. Today 2015, 23, 20–25. [Google Scholar] [CrossRef]
- Davesne, D.; Gueriau, P.; Dutheil, D.B.; Bertrand, L. Exceptional preservation of a Cretaceous intestine provides a glimpse of the early ecological diversity of spiny-rayed fishes (Acanthomorpha, Teleostei). Sci. Rep. 2018, 8, 8509. [Google Scholar] [CrossRef] [PubMed]
- Gueriau, P.; Jauvion, C.; Mocuta, C. Show me your yttrium, and I will tell you who you are: Implications for fossil imaging. Palaeontology 2018. [Google Scholar] [CrossRef]
- Iniesto, M.; Villalba, I.; Buscalioni, A.D.; Guerrero, M.C.; López-Archilla, A.I. The effect of microbial mats in the decay of anurans with implications for understanding taphonomic processes in the fossil record. Sci. Rep. 2017, 7, 45160. [Google Scholar] [CrossRef] [PubMed]
- Raff, E.C.; Villinski, J.; Turner, F.R.; Donoghue, P.C.J.; Raff, R.A. Experimental taphonomy shows the feasibility of fossil embryos. Proc. Natl. Acad. Sci. USA 2006, 103, 5846–5851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raff, E.C.; Schollaert, K.L.; Nelson, D.E.; Donoghue, P.C.J.; Thomas, C.-W.; Turner, F.R.; Stein, B.D.; Dong, X.; Bengtson, S.; Huldtgren, T.; et al. Embryo fossilization is a biological process mediated by microbial biofilms. Proc. Natl. Acad. Sci. USA 2008, 105, 19360–19365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A.D.; Cunningham, J.A.; Budd, G.E.; Donoghue, P.C.J. Experimental taphonomy of Artemia reveals the role of endogenous microbes in mediating decay and fossilization. Proc. Biol. Sci. 2015, 282, 20150476. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.E.G.; Kear, A.J. Fossilization of soft tissue in the laboratory. Science 1993, 259, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- Hof, C.H.J.; Briggs, D.E.G. Decay and mineralization of mantis shrimps (Stomatopoda; Crustacea); a key to their fossil record. Palaios 1997, 12, 420–438. [Google Scholar] [CrossRef]
- Sansom, R.S.; Gabbott, S.E.; Purnell, M.A. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 2010, 463, 797–800. [Google Scholar] [CrossRef] [PubMed]
- Sansom, R.S. Preservation and phylogeny of Cambrian ecdysozoans tested by experimental decay of Priapulus. Sci. Rep. 2016, 6, 32817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.; Parry, L.A.; Vinther, J.; Edgecombe, G.D. Unveiling biases in soft-tissue phosphatization: Extensive preservation of musculature in the cretaceous (cenomanian) polychaete Rollinschaeta myoplena (annelida: Amphinomidae). Palaeontology 2016, 59, 463–479. [Google Scholar] [CrossRef]
- Gupta, N.S.; Michels, R.; Briggs, D.E.G.; Collinson, M.E.; Evershed, R.P.; Pancost, R.D. Experimental evidence for the formation of geomacromolecules from plant leaf lipids. Org. Geochem. 2007, 38, 28–36. [Google Scholar] [CrossRef]
- Gupta, N.S.; Cambra-Moo, Ó.; Briggs, D.E.G.; Love, G.D.; Fregenal-Martínez, M.A.; Summons, R.E. Molecular taphonomy of macrofossils from the Cretaceous Las Hoyas Formation, Spain. Cretac. Res. 2008, 29, 1–8. [Google Scholar] [CrossRef]
- Gupta, N.S.; Michels, R.; Briggs, D.E.G.; Evershed, R.P.; Pancost, R.D. The organic preservation of fossil arthropods: An experimental study. Proc. Biol. Sci. 2006, 273, 2777–2783. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.S. Chitin: Formation and Diagenesis; Gupta, N.S., Ed.; Springer: Houten, The Netherlands, 2011; ISBN 978-90-481-9683-8. [Google Scholar]
- Bernard, S.; Beyssac, O.; Benzerara, K.; Findling, N.; Tzvetkov, G.; Brown, G.E. XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon N. Y. 2010, 48, 2506–2516. [Google Scholar] [CrossRef]
- Bernard, S.; Benzerara, K.; Beyssac, O.; Balan, E.; Brown, G.E., Jr. Evolution of the macromolecular structure of sporopollenin during thermal degradation as documented by infrared, Raman and C-XANES spectroscopies. Heliyon 2015, 1, e00034. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.; Briggs, D.E.G.; Parkes, R.J. Decay and mineralization of invertebrate eggs. Palaios 2005, 20, 562–572. [Google Scholar] [CrossRef]
- Raff, E.C.; Andrews, M.E.; Turner, F.R.; Toh, E.; Nelson, D.E.; Raff, R.A. Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evol. Dev. 2013, 15, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Iniesto, M.; López-Archilla, A.I.; Fregenal-Martínez, M.A.; Buscalioni, Á.D.; Guerrero, M.C. Involvement of Microbial Mats In Delayed Decay: An Experimental Essay On Fish Preservation. Palaios 2013, 28, 56–66. [Google Scholar] [CrossRef]
- Iniesto, M.; Laguna, C.; Florín, M.; Guerrero, M.C.; Chicote, Á.; Buscalioni, Á.D.; López-Archilla, A.I. The impact of microbial mats and their microenvironmental conditions in early decay of fish. Palaios 2015, 30, 792–801. [Google Scholar] [CrossRef]
- Iniesto, M.; Zeyen, N.; López-Archilla, A.I.; Bernard, S.; Buscalioni, Á.D.; Guerrero, M.C.; Benzerara, K. Preservation in microbial mats: Mineralization by a talc-like phase of a fish embedded in a microbial sarcophagus. Front. Earth Sci. 2015, 3. [Google Scholar] [CrossRef]
- Iniesto, M.; Buscalioni, Á.D.; Guerrero, M.C.; Benzerara, K.; Moreira, D.; López-Archilla, A.I. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, E.R.; Mcmahon, S.; Bilger, H. Biofilms mediate the preservation of leaf adpression fossils by clays. Palaios 2017, 32, 708–724. [Google Scholar] [CrossRef]
- Scott, A.C.; Rex, G. The formation and significance of carboniferous coal balls. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1985, 311, 123–137. [Google Scholar] [CrossRef]
- Phillips, T.L.; Peppers, R.A. Changing patterns of Pennsylvanian coal-swamp vegetation and implications of climatic control on coal occurrence. Int. J. Coal Geol. 1984, 3, 205–255. [Google Scholar] [CrossRef]
- Scott, A. Preservation by fire. In Paleobiology II; Briggs, D.E., Crowther, P.R., Eds.; Blackwell Science Ltd.: Oxford, UK, 2001; pp. 277–280. [Google Scholar]
- Scott, A. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 291, 11–39. [Google Scholar] [CrossRef]
- Jones, T.; Scott, A.; Cope, M. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. Bull. Soc. Géol. Fr. 1991, 162, 193–200. [Google Scholar]
- Locatelli, E.R. The exceptional preservation of plant fossils: A review of taphonomic pathways and biases in the fossil record. Paleontol. Soc. Pap. 2014, 20, 237–258. [Google Scholar] [CrossRef]
- Newman, S.A.; Mariotti, G.; Pruss, S.; Bosak, T. Insights into cyanobacterial fossilization in Ediacaran siliciclastic environments. Geology 2016, 44, 579–582. [Google Scholar] [CrossRef]
- Gehling, J.G. Microbial mats in terminal proterozoic siliciclastics: Ediacaran death masks. Palaios 1999, 14, 40. [Google Scholar] [CrossRef]
- Briggs, D.G.E.; Kear, A.J. Decay and mineralization of shrimps. Palaios 1994, 9, 431–456. [Google Scholar] [CrossRef]
- Sagemann, J.; Bale, S.J.; Briggs, D.E.G.; Parkes, R.J. Controls on the formation of authigenic minerals in association with decaying organic matter: An experimental approach. Geochim. Cosmochim. Acta 1999, 63, 1083–1095. [Google Scholar] [CrossRef]
- Gupta, N.S.; Pancost, R.D. Biomolecular and physical taphonomy of angiosperm leaf during early decay: Implications for fossilization. Palaios 2004, 19, 428–440. [Google Scholar] [CrossRef]
- Locatelli, E.R. The Roles of Decay and Mineralization in Leaf Preservation: IMPLICATIONS for the Fossil Record. Ph.D. Thesis, Yale University, New Haven, CT, USA, 2016. [Google Scholar]
- Dunn, K.A.; McLean, R.J.C.; Upchurch Jr, G.R.; Folk, R.L. Enhancement of leaf fossilization potential by bacterial biofilms. Geology 1997, 25, 1119–1122. [Google Scholar] [CrossRef]
- Cohen, Y.; Rosenberg, E. Microbial Mats: Physiological Ecology of Benthic Microbial Communities; American Society for Microbiology: Washington, DC, USA, 1989. [Google Scholar]
- Stolz, J.F. Structure of Microbial Mats and Biofilms. In Microbial Sediments; Riding, R.E., Awramik, S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–8. ISBN 978-3-642-08275-7. [Google Scholar]
- Seilacher, A.; Reif, W.-E.; Westphal, F.; Riding, R.; Clarkson, E.N.K.; Whittington, H.B. Sedimentological, ecological and temporal patterns of fossil Lagerstatten [and Discussion]. Philos. Trans. R. Soc. B Biol. Sci. 1985, 311, 5–24. [Google Scholar] [CrossRef]
- Gall, J.-C.; Bernier, P.; Gaillard, C.; Barale, G.; Bourseau, J.-P.; Buffetaut, E.; Wenz, S.; Millot, G. Influence du développement d’un voile algaire sur la sédimentation et la taphonomie des calcaires lithographiques. Exemple du gisement de Cerin (Kimmeridgien supérieur, Jura méridional français). Comptes Rendus l’Académie Sci. Paris 1985, 301, 547–551. (In French) [Google Scholar]
- Briggs, D.E.G. The role of biofilms in the fossilization of non-biomineralized tissues. In Fossil and Recent Biofilms: A Natural History of Life on Earth; Krumbein, W.E., Paterson, D.M., Zavarzin, G.A., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 281–290. ISBN 978-90-481-6412-7. [Google Scholar]
- Tomescu, A.M.F.; Klymiuk, A.A.; Matsunaga, K.K.S.; Bippus, A.C.; Shelton, G.W.K. Chapter 3—Microbes and the fossil record: Selected topics in paleomicrobiology. In Advances in Environmental Microbiology. Their World: A Diversity of Microbial Environments; Hurst, C.J., Ed.; Springer International Publishing: Cham Switzerland, 2016; pp. 69–169. ISBN 978-3-319-28069-1. [Google Scholar]
- Marty, D.; Strasser, A.; Meyer, C.A. Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: Implications for the study of fossil footprints. Ichnos 2009, 16, 127–142. [Google Scholar] [CrossRef]
- Shute, C.; Cleal, C. Paleobotany in museums. Geol. Curator 1986, 4, 553–559. [Google Scholar]
- Cleal, C.J.; Thomas, B.A. Botanical nomenclature and plant fossils. Taxon 2010, 59, 261–268. [Google Scholar]
- Guerrero, M.C.; Balsa, J.; Pascual, M.; Martínez, B.; Montes, C. Caracterización limnológica de la laguna Salada de Chiprana (Zaragoza, España) y sus comunidades de bacterias fototróficas. Limnetica 1991, 7, 83–96. (In Spanish) [Google Scholar]
- Stal, L.J. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 1995, 131, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Stal, L. Cyanobacterial mats and stromatolites. In The Ecology of Cyanobacteria; Whittington, H., Potts, M., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 61–120. [Google Scholar]
- Reihman, M.A.; Schabilion, J.T. Cuticles of two species of Alethopteris. Am. J. Bot. 1976, 63, 1039. [Google Scholar] [CrossRef]
- Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [Google Scholar] [CrossRef]
- Mösle, B.; Collinson, M.E.; Finch, P.; Stankiewicz, B.A.; Scott, A.; Wilson, R. Factors infuencing the preservation of plant cuticles: A comparison of morphology and chemical composition of modern and fossil examples. Org. Geochem. 1998, 29, 1369–1380. [Google Scholar] [CrossRef]
- Ashok, P.K.; Upadhyaya, K. Tannins are astringent. J. Pharmacogn. Phytochem. 2012, 1, 45–50. [Google Scholar]
- Purnell, M.A.; Donoghue, P.J.C.; Gabbott, S.E.; McNamara, M.E.; Murdock, D.J.E.; Sansom, R.S. Experimental analysis of soft-tissue fossilization: Opening the black box. Palaeontology 2018, 61, 317–323. [Google Scholar] [CrossRef]
- Collinson, M. Chapter 6. Molecular Taphonomy of plant organic skeletons. In Taphonomy: Process and Bias though Time, Topics in Geobiology 32; Allison, A., Bottjer, D., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Streit, N.M.; Canterle, L.P.; do Canto, M.W.; Hecktheuer, L.H.H. The Chlorophylls (As clorofilas). Ciência Rural 2005, 35, 748–755. [Google Scholar] [CrossRef]
- Hendry, G.; Price, A. Stress indicators: Chlorophylls and carotenoids. In Methods in Comparative Plant Ecology; Hendry, G., Grime, J., Eds.; Chapman & Hall: London, UK, 1993; pp. 148–152. [Google Scholar]
- Ryan-Stoneham, T.; Tong, C.H. Degradation kinetics of chlorophyll in peas as a function of pH. J. Food Sci. 2000, 65, 1296–1302. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Neu, T.R.; Wozniak, D.J. The EPS Matrix: The “House of Biofilm Cells”. J. Bacteriol. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Decho, A.W.; Gutierrez, T. Microbial Extracellular Polymeric Substances (EPSs) in Ocean Systems. Front. Microbiol. 2017, 8, 922. [Google Scholar] [CrossRef] [PubMed]
- Spicer, R.A. The pre-depositional formation of some leaf impressions. Palaeontology 1978, 20, 907–912. [Google Scholar]
- Reid, R.P.; Visscher, P.T.; Decho, A.W.; Stolz, J.F.; Bebout, B.M.; Dupraz, C.; Macintyre, I.G.; Paerl, H.W.; Pinckney, J.L.; Prufert-Bebout, L.; et al. The role of microbes in accretion, lamination and early lithificationof modern marine stromatolites. Nature 2000, 406, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Decho, A.W.; Kawaguchi, T. Extracellular Polymers (EPS) and calcification within modern marine stromatolites. In Fossil and Recent Biofilms: A Natural History of Life on Earth; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; pp. 227–240. [Google Scholar]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Wing, S. Fossil flora and plant bearing beds of the central Bighorn Basin. In Early Cenozoic Paleontology and Stratigraphy of the Bighorn Basin, Wyoming; Gingerich, P.D., Ed.; The Palaeontological Association: Durham, UK, 1980. [Google Scholar]
- Chaney, D.; DiMichele, W. Paleobotany of the classic redbeds (Clear Fork Group, Early Permian) of north central Texas. In Proceedings of the XVth International Congress on Carboniferous and Permian Stratigraphy, Utrecht, The Netherlands, 10–16 August 2003; Volume 1, pp. 357–366. [Google Scholar]
- Sun, B.; Dai, J.; Wang, Y.; Jia, H.; Yan, D.; Jiang, Z. Pseudofrenelopsis fossils from Cretaceous gypsum beds in Guixi, Jiangxi Province, China and their geological significance. Isl. Arc 2011, 20, 43–56. [Google Scholar] [CrossRef]
- Cambra-Moo, O.; Barroso-Barcenilla, F.; Berreteaga, A.; Carenas, B.; Coruña, F.; Domingo, L.; Domingo, M.S.; Elvira, A.; Escaso, F.; Ortega, F.; et al. Preliminary taphonomic approach to “Lo Hueco” palaeontological site (Upper Cretaceous, Cuenca, Spain). Geobios 2012, 45, 157–166. [Google Scholar] [CrossRef]
- Martín-Closas, C.; Gomez, B. Taphonomie des plantes et interprétations paléoécologiques. Une synthèse. Geobios 2004, 37, 65–88. (In French) [Google Scholar] [CrossRef]
- Moreau, J.-D.; Néraudeau, D.; Tafforeau, P.; Dépré, É. Study of the histology of leafy axes and male cones of Glenrosa carentonensis sp. nov. (Cenomanian Flints of Charente-Maritime, France) using synchrotron microtomography linked with palaeoecology. PLoS ONE 2015, 10, e0134515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.-H.; Berry, C.M.; Stein, W.E.; Wang, Y.; Tang, P.; Fu, Q. Unique growth strategy in the Earth’s first trees revealed in silicified fossil trunks from China. Proc. Natl. Acad. Sci. USA 2017, 114, 12009–12014. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.N.; Taylor, E.L.; Krings, M. Paleobotany: The Biology and Evolution of Fossil Plants; Taylor, T.N., Ed.; Academic Press: Cambridge, MA, USA, 2009; ISBN 9780123739728. [Google Scholar]
- Walton, J. On a new method of investigating fossil plant impressions or incrustations. Ann. Bot. 1923, 37, 379–391. [Google Scholar] [CrossRef]
- Schoenhut, K.; Vann, D.R.; LePage, B.A. Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian High Arctic. Am. J. Bot. 2004, 91, 816–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, J.-D.; Néraudeau, D.; Perrichot, V.; Tafforeau, P. 100-million-year-old conifer tissues from the mid-Cretaceous amber of Charente (western France) revealed by synchrotron microtomography. Ann. Bot. 2017, 119, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Gastaldo, R.A.; Demko, T.M. The relationship between continental landscape evolution and the plant-fossil record: Long term hydrologic controls and preservation. In Taphonomy. Aims & Scope Topics in Geobiology Book Series; Allison, P.A., Bottjer, D.J., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 32, pp. 249–285. ISBN 978-90-481-8642-6. [Google Scholar]
ppm | Cl− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ |
---|---|---|---|---|---|---|---|
T1 T0 | 27,827 | 79,684 | 18,418 | 261 | 646 | 17,613 | 768 |
T1 T15 | 15,750 | 30,779 | 9371 | 138 | 298 | 7221 | 438 |
T1 T30 | 20,314 | 48,657 | 13,785 | 231 | 456 | 11,516 | 655 |
T1 T60 | 21,042 | 52,047 | 13,019 | 256 | 454 | 10,475 | 691 |
T2 T0 | 27,827 | 79,684 | 18,418 | 261 | 646 | 17,613 | 768 |
T2 T15 | 20,831 | 46,376 | 13,192 | 219 | 294 | 10,500 | 581 |
T2 T30 | 21,098 | 46,891 | 13,204 | 208 | 300 | 10,604 | 597 |
T2 T60 | 21,455 | 48,446 | 12,894 | 695 | 316 | 10,499 | 610 |
C T0 | 27,827 | 79,684 | 18,418 | 261 | 646 | 17,613 | 768 |
C T15 | 24,883 | 66,360 | 16,863 | 358 | 492 | 15,317 | 775 |
C T30 | 26,308 | 72,169 | 17,441 | 399 | 496 | 16,177 | 769 |
C T60 | 23,847 | 60,901 | 15,454 | 401 | 506 | 13,579 | 669 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iniesto, M.; Blanco-Moreno, C.; Villalba, A.; Buscalioni, Á.D.; Guerrero, M.C.; López-Archilla, A.I. Plant Tissue Decay in Long-Term Experiments with Microbial Mats. Geosciences 2018, 8, 387. https://doi.org/10.3390/geosciences8110387
Iniesto M, Blanco-Moreno C, Villalba A, Buscalioni ÁD, Guerrero MC, López-Archilla AI. Plant Tissue Decay in Long-Term Experiments with Microbial Mats. Geosciences. 2018; 8(11):387. https://doi.org/10.3390/geosciences8110387
Chicago/Turabian StyleIniesto, Miguel, Candela Blanco-Moreno, Aurora Villalba, Ángela D. Buscalioni, M. Carmen Guerrero, and Ana Isabel López-Archilla. 2018. "Plant Tissue Decay in Long-Term Experiments with Microbial Mats" Geosciences 8, no. 11: 387. https://doi.org/10.3390/geosciences8110387
APA StyleIniesto, M., Blanco-Moreno, C., Villalba, A., Buscalioni, Á. D., Guerrero, M. C., & López-Archilla, A. I. (2018). Plant Tissue Decay in Long-Term Experiments with Microbial Mats. Geosciences, 8(11), 387. https://doi.org/10.3390/geosciences8110387