The Impact of Biochar Incorporation on Inorganic Nitrogen Fertilizer Plant Uptake; An Opportunity for Carbon Sequestration in Temperate Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Spring Barley Field Experiment in 2011
2.1.2. Sunflower Field Experiment in 2012
2.2. Soil and Plant Analysis
3. Results
3.1. Results of Spring Barley Field Experiment in 2011
3.1.1. Spring Barley Nitrogen Yields Did Not Differ in Fertilized Treatments
3.1.2. Fertilized Biochar Incorporation Increased C:N Ratio (Grain) and %Ndff Values (Grain & Shoots)
3.1.3. Fertilized Biochar Incorporation Increased C Isotope Discrimination (Grain)
3.1.4. Treatment Differences in the Greenhouse Experiment in 2018
3.2. Results of Sunflower Field Experiment in 2012
3.2.1. Sunflower Nitrogen Yields Did Not Differ in Fertilized Treatments
3.2.2. Fertilized Biochar Incorporation Did Not Affect Mean %Ndff Value and C Isotope Discrimination
4. Discussion
4.1. Spring Barley Field Experiment in 2011
4.1.1. Yield Response after Biochar Incorporation Minimal in Temperate Soils
4.1.2. Stabile Isotope Analysis Indicates Biochar Incorporation to Overcome Water Constraints and Increase Fertilizer Efficiency
4.2. Sunflower Field Experiment in 2012
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Chang. Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Van den Bergh, J.; Botzen, W. A lower bound to the social cost of CO2 emissions. Nat. Clim. Chang. 2014, 4, 253. [Google Scholar] [CrossRef]
- Schimel, D.S. Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1995, 1, 77–91. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J. Soil respiration and the global carbon cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.P.; Cowie, A.L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep. 2014, 4, 3687. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; de Macêdo, J.L.; Blum, W.E.; Zech, W. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef]
- Eykelbosh, A.J.; Johnson, M.S.; de Queiroz, E.S.; Dalmagro, H.J.; Couto, E.G. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil. PLoS ONE 2014, 9, e98523. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Pan, G.; Zhang, C.; Zhang, L.; Wang, H. Effects of biochar application on fluxes of three biogenic greenhouse gases: A meta-analysis. Ecosyst. Health Sustain. 2016, 2, 01202. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Whitaker, J. The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—The role of soil aeration. Soil Biol. Biochem. 2012, 51, 125–134. [Google Scholar] [CrossRef]
- Cayuela, M.L.; van Zwieten, L.; Singh, B.P.; Jeffery, S.; Roig, A.; Sánchez-Monedero, M.A. Biochar’s role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agric. Ecosyst. Environ. 2014, 191, 5–16. [Google Scholar] [CrossRef]
- Watzinger, A.; Feichtmair, S.; Kitzler, B.; Zehetner, F.; Kloss, S.; Wimmer, B.; Zechmeister-Boltenstern, S.; Soja, G. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA analyses: Results from a short-term incubation and pot experiment. Eur. J. Soil Sci. 2014, 65, 40–51. [Google Scholar] [CrossRef]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 395–419. [Google Scholar] [CrossRef]
- Steiner, C.; Glaser, B.; Teixeira, W.G.; Lehmann, J.; Blum, W.E.H.; Zech, W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management—Science and Technology; Routledge: Abingdon, UK, 2009; Volume 1, pp. 1–12. [Google Scholar]
- Jeffery, S.; Abalos, D.; Spokas, K.A.; Verheijen, F.G.A. Biochar effects on crop yield. In Biochar for Environmental Management: Science, Technology and Implementation; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2015; pp. 301–325. [Google Scholar]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Malhi, S.S.; Grant, C.A.; Johnston, A.M.; Gill, K.S. Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: A review. Soil Tillage Res. 2001, 60, 101–122. [Google Scholar] [CrossRef]
- Lavelle, P.; Spain, A.V. Soil Ecology; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Krupnik, T.J.; Six, J.; van Kessel, C. Efficiency of Fertilizer Nitrogen in Cereal Production: Retrospects and Prospects. Adv. Agron. 2005, 87, 85–156. [Google Scholar]
- Hauck, R.D.; Bremmer, J.M. Use of Tracers for Soil and Fertilizer Nitrogen Research; American Society of Agronomy: Madison, WI, USA, 1976. [Google Scholar]
- Hood, R.; Bautista, E.; Heiling, M. Gross mineralization and plant N uptake from animal manures under non-N limiting conditions, measured using 15N isotope dilution techniques. Phytochem. Rev. 2003, 2, 113–119. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.; Richards, R. Isotopic Composition of Plant Carbon Correlates With Water-Use Efficiency of Wheat Genotypes. Aust. J. Plant Physiol. 1984, 11, 539. [Google Scholar] [CrossRef]
- Condon, A.G.; Richards, R.A.; Rebetzke, G.J.; Farquhar, G.D. Improving Intrinsic Water-Use Efficiency and Crop Yield. Crop Sci. 2002, 42, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, J.K.; Ehleringer, J.R. Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiflavum. Oecologia 1990, 83, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Winter, K.; Holtum, J.A.M.; Edwards, G.E.; O’Learry, M.H. Effect of Low Relative Humidity on δ13C Value in Two C 3 Grasses and in Panicum milioides, a C3–C4 Intermediate Species. J. Exp. Bot. 1982, 33, 88–91. [Google Scholar] [CrossRef]
- Rasmuson, K.; Anderson, J. Salinity affects development, growth, and photosynthesis in cheatgrass. J. Range Manag. 2002, 55, 80–87. [Google Scholar] [CrossRef]
- Wallace, M.; Jones, G.; Charles, M.; Fraser, R.; Halstead, P.; Heaton, T.H.; Bogaard, A. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol. 2013, 45, 388–409. [Google Scholar] [CrossRef] [Green Version]
- Condon, A.; Farquhar, G.; Richards, R. Genotypic Variation in Carbon Isotope Discrimination and Transpiration Efficiency in Wheat. Leaf Gas Exchange and Whole Plant Studies. Aust. J. Plant Physiol. 1990, 17, 9. [Google Scholar] [CrossRef]
- Anyia, A.O.; Slaski, J.J.; Nyachiro, J.M.; Archambault, D.J.; Juskiw, P. Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions. J. Agron. Crop Sci. 2007, 193, 313–323. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Soja, G. Biochar application to temperate soils: Effects on nutrient uptake and crop yield under field conditions. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef]
- Sigmund, G.; Bucheli, T.D.; Hilber, I.; Micić, V.; Kah, M.; Hofmann, T. Effect of ageing on the properties and polycyclic aromatic hydrocarbon composition of biochar. Environ. Sci. Process. Impacts 2017, 19, 768–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hood-Nowotny, R.; Schwarzinger, B.; Schwarzinger, C.; Soliban, S.; Madakacherry, O.; Aigner, M.; Watzka, M.; Gilles, J. An Analysis of Diet Quality, How It Controls Fatty Acid Profiles, Isotope Signatures and Stoichiometry in the Malaria Mosquito Anopheles arabiensis. PLoS ONE 2012, 7, e45222. [Google Scholar] [CrossRef] [PubMed]
- Junk, G.; Svec, H.J. The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta 1958, 14, 234–243. [Google Scholar] [CrossRef] [Green Version]
- International Atomic Energy Agency (IAEA). Use of Isotope and Radiation Methods in Soil and Water Management and Crop Nutrition; International Atomic Energy Agency: Vienna, Austria, 2001. [Google Scholar]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon Isotope Discrimination and Photosynthesis. Annu. Rev. Plant Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Glaser, B.; Wiedner, K.; Seelig, S.; Schmidt, H.-P.; Gerber, H. Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron. Sustain. Dev. 2015, 35, 667–678. [Google Scholar] [CrossRef]
- Jones, D.L.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.H.; Murphy, D.V.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2011, 45, 113–124. [Google Scholar] [CrossRef]
- Unger, R.; Killorn, R. Effect of Three Different Qualities of Biochar on Selected Soil Properties. Commun. Soil Sci. Plant Anal. 2011, 42, 2274–2283. [Google Scholar] [CrossRef]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 2012, 365, 239–254. [Google Scholar] [CrossRef]
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 2010, 333, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Curaqueo, G.; Meier, S.; Khan, N.; Cea, M.; Navia, R. Use of biochar on two volcanic soils: Effects on soil properties and barley yield. J. Soil Sci. Plant Nutr. 2014, 14, 911–924. [Google Scholar] [CrossRef]
- Garabet, S.; Wood, M.; Ryan, J. Nitrogen and water effects on wheat yield in a Mediterranean-type climate. Field Crops Res. 1998, 57, 309–318. [Google Scholar] [CrossRef]
- Craufurd, P.Q.; Austin, R.B.; Acevedo, E.; Hall, M.A. Carbon isotope discrimination and grain-yield in barley. Field Crops Res. 1991, 27, 301–313. [Google Scholar] [CrossRef]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach; John Wiley & Sons: Hoboken, NJ, USA, 1995. [Google Scholar]
- Prommer, J.; Wanek, W.; Hofhansl, F.; Trojan, D.; Offre, P.; Urich, T.; Schleper, C.; Sassmann, S.; Kitzler, B.; Soja, G.; et al. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial. PLoS ONE 2014, 9, e86388. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). FAOSTAT Data; FAO: Rome, Italy, 2018. [Google Scholar]
- Scheiner, J.D.; Gutiérrez-Boem, F.H.; Lavado, R.S. Sunflower nitrogen requirement and 15N fertilizer recovery in Western Pampas, Argentina. Eur. J. Agron. 2002, 17, 73–79. [Google Scholar] [CrossRef]
- Atta, S.K.; van Cleemput, O. Field study of the fate of labelled fertilizer ammonium-N applied to sesame and sunflower in a sandy soil. Plant Soil 1988, 107, 123–126. [Google Scholar] [CrossRef]
- Lambrides, C.J.; Chapman, S.C.; Shorter, R. Genetic Variation for Carbon Isotope Discrimination in Sunflower. Crop Sci. 2004, 44, 1642. [Google Scholar] [CrossRef]
- Recous, S.; Aita, C.; Mary, B. In situ changes in gross N transformations in bare soil after addition of straw. Soil Biol. Biochem. 1998, 31, 119–133. [Google Scholar] [CrossRef]
- Hood, R.C.; N’Goran, K.; Aigner, M.; Hardarson, G. A comparison of direct and indirect 15N isotope techniques for estimating crop N uptake from organic residues. Plant Soil 1999, 208, 259–270. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Y.; Liu, B.; Amonette, J.E.; Lin, Z.; Liu, G.; Ambus, P.; Xie, Z. How does biochar influence soil N cycle? A meta-analysis. Plant Soil 2018, 426, 211–225. [Google Scholar] [CrossRef]
- Rechberger, M.V.; Kloss, S.; Rennhofer, H.; Tintner, J.; Watzinger, A.; Soja, G.; Lichtenegger, H.; Zehetner, F. Changes in biochar physical and chemical properties: Accelerated biochar aging in an acidic soil. Carbon 2017, 115, 209–219. [Google Scholar] [CrossRef]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen Management Strategies to Reduce Nitrate Leaching in Tile-Drained Midwestern Soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
Biochar Rate | N Rate | Yield | Plant N Uptake in kg N ha−1 | 2 Fertilizer Usage | |||
---|---|---|---|---|---|---|---|
t ha−1 | kg ha−1 | kg ha−1 | from soil + unlabelled fertilizer | 1 from labelled fertilizer | total | labelled fertilizer % | |
2011 Spring barley | |||||||
NPK | 0 | 60/60 * | 5488 ± 756 b | 135 ± 17 a | 22 ± 18 a | 157 ± 17 a | 37 ± 28 a |
BCN | 72 | 60/60 * | 6065 ± 427 a | 121 ± 14 a | 39 ± 5 a | 160 ± 18 a | 64 ± 8 a |
BC3 | 72 | 0 | 4800 ± 110 c | 98 ± 7 b | 98 ± 7 b | ||
2012 Sunflower | Grain yield kg ha−1 | ||||||
NPK | 0 | 25/50 * | 5145 ± 129 A | 126 ± 8 A | 25 ± 5 A | 151 ± 25 A | 51 ± 11 A |
BCN | 72 | 25/50 * | 5103 ± 393 A | 113 ± 16 A | 26 ± 4 A | 139 ± 26 A | 52 ± 7 A |
BC3 | 72 | 0 | 4900 ± 300 B | 98 ± 12 B | 98 ± 12 B |
Stem | Grain | Leaves/Shoot | |
---|---|---|---|
2011 Spring barley | |||
%Ndff 3 | |||
NPK | 13 ± 8 b | 12 ± 9 b | |
BCN | 24 ± 4 a | 26 ± 6 a | |
%FNA 4 | |||
NPK | 86 ± 2 a | 14± 2 d | |
BCN | 84 ± 2 b | 16± 2 c | |
13 ∆C ‰ 5 | |||
NPK | 18.6 ± 0.1 a | 20.1 ± 0.2 c | |
BCN | 19.0 ± 0.4 b | 20.2 ± 0.6 c | |
2012 Sunflower | |||
%Ndff 3 | |||
NPK | 17 ± 4 A | 17 ± 4 A | 18 ± 2 A |
BCN | 18 ± 3 A | 19 ± 3 A | 17 ± 3 A |
%FNA 4 | |||
NPK | 10 ± 2 C | 75 ± 10 A | 14± 2 B |
BCN | 11 ± 1 C | 79 ± 10 A | 10 ± 2 B |
13 ∆C ‰ 5 | |||
NPK | 20.9 ± 0.1 A | 20.2 ± 0.3 A | 20.8 ± 0.3 A |
BCN | 20.7 ± 0.2 A | 22.0 ± 0.3 A | 20.9 ± 0.3 A |
Soil C:N Ratio | |
NPK | 23.9 ± 5 b |
BCN | 35.8 ± 2 a |
Soil carbon content (mg C g soil−1) | |
NPK | 37 ± 7 b |
BCN | 64 ± 13 a |
15N-labelled sub-plot following sunflower harvest 2012. | |
Soil δ13C (‰) | |
NPK | −13.9 ± 1.8 b |
BCN | −18.9 ± 2.0 a |
Soil 15N (atom %) | |
NPK | 0.3819 ± 0.005 a |
BCN | 0.3826 ± 0.003 a |
6 Total soil + plant Ndff (kg ha−1) | |
NPK | 47 ± 13 a |
BCN | 53 ± 7 a |
Soil moisture content at harvest (g H2O g dry soil−1) | |
NPK | 0.21 ± 0.09 a |
BCN | 0.31 ± 0.03 b |
Soil soluble organic carbon (μg C g−1 DW) | |
NPK | 123 ± 45 a |
BCN | 111 ± 45 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hood-Nowotny, R.; Watzinger, A.; Wawra, A.; Soja, G. The Impact of Biochar Incorporation on Inorganic Nitrogen Fertilizer Plant Uptake; An Opportunity for Carbon Sequestration in Temperate Agriculture. Geosciences 2018, 8, 420. https://doi.org/10.3390/geosciences8110420
Hood-Nowotny R, Watzinger A, Wawra A, Soja G. The Impact of Biochar Incorporation on Inorganic Nitrogen Fertilizer Plant Uptake; An Opportunity for Carbon Sequestration in Temperate Agriculture. Geosciences. 2018; 8(11):420. https://doi.org/10.3390/geosciences8110420
Chicago/Turabian StyleHood-Nowotny, Rebecca, Andrea Watzinger, Anna Wawra, and Gerhard Soja. 2018. "The Impact of Biochar Incorporation on Inorganic Nitrogen Fertilizer Plant Uptake; An Opportunity for Carbon Sequestration in Temperate Agriculture" Geosciences 8, no. 11: 420. https://doi.org/10.3390/geosciences8110420
APA StyleHood-Nowotny, R., Watzinger, A., Wawra, A., & Soja, G. (2018). The Impact of Biochar Incorporation on Inorganic Nitrogen Fertilizer Plant Uptake; An Opportunity for Carbon Sequestration in Temperate Agriculture. Geosciences, 8(11), 420. https://doi.org/10.3390/geosciences8110420