Sea-Air CO2 Exchange in the SW Iberian Upwelling System during Two Contrasting Climate Cycles: 860–780 ka and 630–520 ka
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Sediment Data and Calculations
3. Results
3.1. Surface Production and Export
3.2. Organic Matter Reaching the Seafloor
4. Discussion
4.1. Carbon Cycle Dynamics during MIS 21-MIS 20 (860–780 ka)
4.2. Carbon Cycle Dynamics during MIS 15-MIS 14 (630–520 ka)
4.3. CO2 Uptake/Release Variation in Relation with Changes of the North Atlantic Circulation during the MPT
5. Conclusions
Funding
Acknowledgments
Appendix A
Age (ka) | Climate Cycle | Age (ka) | Climate Cycle | ||||
MIS 1 | 430 | MIS 12 | T V | 5th | |||
12 | MIS 2 | T I | 1st | 478 | MIS 13 | ||
35 | MIS 3 | 532 | MIS 14 | T VI | 6th | ||
58 | MIS 4 | 564 | MIS 15 | ||||
72 | MIS 5 | 620 | MIS 16 | T VII | 7th | ||
130 | MIS 6 | T II | 2nd | 678 | MIS 17 | ||
190 | MIS 7 | 710 | MIS 18 | T VIII | 8th | ||
243 | MIS 8 | T III | 3rd | 758 | MIS 19 | ||
280 | MIS 9 | 785 | MIS 20 | T IX | 9th | ||
338 | MIS 10 | T IV | 4th | 812 | MIS 21 | ||
366 | MIS 11 | 865 | T X |
References
- Berger, W.H.; Fischer, K.; Lai, C.; Wu, G. Ocean Productivity and Organic Carbon Flux. Part. 1. Overview and Maps of Primary Production and Export Production; University of California: San Diego, CA, USA, 1987. [Google Scholar]
- Laws, E.A.; Falkowski, P.G.; Smith, W.O.J.; Ducklow, H.; McCarthy, J.J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 2000, 14, 1231–1246. [Google Scholar] [CrossRef] [Green Version]
- Henson, S.A.; Sanders, R.; Madsen, E.; Morris, P.J.; Le Moigne, F.; Quartly, G.D.S. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett. 2011, 38, L04606. [Google Scholar] [CrossRef]
- Honjo, S.; Manganini, S.J.; Krishfield, R.A.; Francois, R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog. Ocean. 2008, 76, 217–285. [Google Scholar] [CrossRef]
- Longhurst, A.R.; Bedo, A.W.; Harrison, W.G.; Head, E.J.H.; Sameoto, D.D. Vertical flux of respiratory carbon by oceanic diel migrant biota. Deep-Sea Res. 1990, 37, 685–694. [Google Scholar] [CrossRef]
- Al-Mutairi, H.; Landry, M.R. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep-Sea Res. II 2001, 48, 2083–2103. [Google Scholar] [CrossRef]
- Steinberg, D.K.; Carlson, C.A.; Bates, N.R.; Goldthwait, S.A.; Madin, L.P.; Michaels, A.F. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. Deep-Sea Res. I 2000, 47, 137–158. [Google Scholar] [CrossRef]
- Steinberg, D.K.; Van Mooy, B.A.S.; Buesseler, K.P.; Boyd, P.W.; Kobari, T.; Karl, D.M. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 2008, 53, 1327–1338. [Google Scholar] [CrossRef]
- Álvarez-Salgado, X.A.; Arístegui, J.; Barton, E.D.; Hansell, D.A. Contribution of upwelling filaments to offshore carbon export in the subtropical Northeast Atlantic Ocean. Limnol. Oceanogr. 2007, 52, 1287–1292. [Google Scholar] [CrossRef] [Green Version]
- Neuer, S.; Ratmeyer, V.; Davenport, R.; Fisher, G.; Wefer, G. Deep water particle flux in the Canary Island region: Seasonal trends in relation to long-term satellite derived pigment data and lateral sources. Deep-Sea Res. 1997, 44, 1451–1466. [Google Scholar] [CrossRef]
- Abrantes, F.; Meggers, H.; Nave, S.; Bollman, J.; Palma, S.; Sprengel, C.; Henderiks, J.; Spies, A.; Salgueiro, E.; Moita, T.; et al. Fluxes of micro-organisms along a productivity gradient in the Canary Islands region (29° N): Implications for paleoreconstructions. Deep-Sea Res. II 2002, 49, 3599–3629. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- Imbrie, J.; Berger, A.; Boyle, E.A.; Clemens, S.C.; Duffy, A.; Howard, W.R.; Kukla, G.; Kutzbach, J.; Martinson, D.G.; Mcintyre, A.; et al. On the structure and origin of major glaciation cycles: 2. The 100,000-year cycle. Paleoceanography 1993, 8, 699–735. [Google Scholar] [CrossRef]
- Ruddiman, W.F. Orbital insolation, ice volume and greenhouse gases. Quat. Sci. Rev. 2003, 22, 1597–1629. [Google Scholar] [CrossRef]
- Ruddiman, W.F. Ice-driven CO2 feedback on ice volume. Clim. Past 2006, 2, 43–55. [Google Scholar] [CrossRef]
- Broecker, W.S. Glacial to interglacial changes in ocean chemistry. Progr. Oceanogr. 1982, 2, 151–197. [Google Scholar] [CrossRef]
- Sigman, D.M.; Boyle, E.A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 2000, 407, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Berner, R.A.; Lasaga, A.C.; Garrels, R.M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 1983, 283, 641–683. [Google Scholar] [CrossRef]
- Archer, D.E.; Winguth, A.; Lea, D.; Mahowald, N. What caused the Glacial/Interglacial atmospheric pCO2 cycles? Rev. Geophys. 2000, 38, 159–189. [Google Scholar]
- Archer, D.E.; Eshel, G.; Winguth, A.; Broecker, W.; Pierrehumbert, R.; Tobis, M.; Jacob, R. Atmospheric pCO2 sensitivity to the biological pump in the ocean. Glob. Biogeochem. Cycl. 2000, 14, 1219–1230. [Google Scholar] [CrossRef]
- Buesseler, K.O.; Lamborg, C.H.; Boyd, P.W.; Lam, P.J.; Trull, T.W.; Bidigare, R.R.; Bishop, J.K.; Casciotti, K.L.; Dehairs, F.; Elskens, M.; et al. Revisiting Carbon Flux through the Ocean’s Twilight Zone. Science 2007, 316, 567. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C.; et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef] [Green Version]
- Ezat, M.M.; Rasmussen, T.; Hoönisch, B.; Groeneveld, J.; de Menocal, P. Episodic release of CO2 from the high-latitude North Atlantic Ocean during the last 135 kyr. Nat. Commun. 2017, 8, 14498. [Google Scholar] [CrossRef] [PubMed]
- Gray, W.R.; Rae, J.W.B.; Wills, R.C.J.; Shevenell, A.E.; Taylor, B.; Burke, A.; Foster, G.L.; Lear, C.H. Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean. Nat. Geosci. 2018, 11, 340–344. [Google Scholar] [CrossRef]
- De Abreu, L.; Shackleton, N.J.; Schönfeld, J.; Hall, M.A.; Chapman, M. Millennial-scale oceanic climate variability off the western Iberian margin during the last two glacial periods. Mar. Geol. 2003, 196, 1–20. [Google Scholar] [CrossRef]
- Rodrigues, T.; Voelker, A.H.L.; Grimalt, J.O.; Abrantes, F.; Naughton, F. Iberian Margin sea surface temperature during MIS15 to 9 (580–300 ka): Glacial suborbital variability versus interglacial stability. Paleoceanography 2011, 26, 1–16. [Google Scholar] [CrossRef]
- Amore, F.O.; Flores, J.A.; Voelker, A.H.L.; Lebreiro, S.M.; Palumbo, E.; Sierro, F.J. A Middle Pleistocene Northeast Atlantic coccolithophore record: Paleoclimatology and paleoproductivity aspects. Mar. Micropaleontol. 2012, 90–91, 44–59. [Google Scholar] [CrossRef]
- Martin-Garcia, G.M. Environmental Variations in the North. Atlantic in Response to Quaternary Glaciations; Nova Science Pub. Inc.: New York, NY, USA, 2018; 139p. [Google Scholar]
- Martin-Garcia, G.M. Changes in carbon cycle dynamics associated to rapid cooling events in the Northeast Atlantic upwelling region during 530–400 ka (MIS13-11). Env. Res. Lett. 2018. under review. [Google Scholar]
- Martin-Garcia, G.M.; Alonso-Garcia, M.; Sierro, F.J.; Hodell, D.A.; Flores, J.A. Severe cooling episodes at the onset of deglaciations on the Southwestern Iberian margin from MIS 21 to 13 (IODP site U1385). Glob. Planet. Chang. 2015, 135, 159–169. [Google Scholar] [CrossRef]
- Martin-Garcia, G.M.; Sierro, F.J.; Flores, J.A.; Abrantes, F. Change in the North Atlantic circulation associated with the mid-Pleistocene transition. Clim. Past 2018, 14, 1–12. [Google Scholar] [CrossRef]
- Poirier, R.K.; Billups, K. The intensification of northern component deepwater formation during the mid-Pleistocene climate transition. Paleoceanography 2014, 29, 1046–1061. [Google Scholar] [CrossRef] [Green Version]
- Lisiecki, L.E.; Raymo, M.E. Plio-Pleostocene climate evolution: Trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 2007, 26, 56–69. [Google Scholar] [CrossRef]
- Lang, N.; Wolff, E.W. Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Clim. Past 2011, 7, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Peliz, A.; Dubert, J.; Santos, A.M.P.; Oliveira, P.B.; Le Cann, B. Winter upper ocean circulation in the Western Iberian Basin—Fronts, eddies and poleward flows: An overview. Deep Sea Res. Part. I Oceanogr. Res. Pap. 2005, 52, 621–646. [Google Scholar] [CrossRef]
- Fiúza, A.F.G.; Macedo, V.E.; Guerreiro, M.R. Climatological space and time variation of the Portuguese coastal upwelling. Oceanol. Acta 1982, 5, 31–40. [Google Scholar]
- Sousa, J.M.; Bricaud, A. Satellite-derived phytoplankton pigment structures in the Portuguese upwelling area. J. Geophys. Res. 1992, 97, 11343–11356. [Google Scholar] [CrossRef]
- Hernández-Molina, F.J.; Serra, N.; Stow, D.A.V.; Llave, E.; Ercilla, G.; Van Rooij, D. Along-slope oceanographic processes and sedimentary products around the Iberian margin. Geo-Mar. Lett. 2011, 31, 315–341. [Google Scholar] [CrossRef] [Green Version]
- Stow, D.; Hernández-Molina, F.J.; Hodell, D.; Alvarez Zarikian, C.A. Mediterranean outflow: Environmental significance of the Mediterranean Outflow Water and its global implications. IODP Prel. Rep. 2012, 339. [Google Scholar] [CrossRef]
- Expedition 339 Scientists. Mediterranean outflow: Environmental significance of the Mediterranean Outflow Water and its global implications. IODP Prel. Rept. 2012, 339. [Google Scholar] [CrossRef]
- Hodell, D.; Lourens, L.; Crowhurst, S.; Konijnendijk, T.; Tjallingii, R.; Jiménez-Espejo, F.; Skinner, L.; Tzedakis, P.C.; Members, S.S. A reference time scale for Site U1385 (Shackleton Site) on the Iberian Margin. Glob. Planet. Chang. 2015, 133, 49–64. [Google Scholar] [CrossRef] [Green Version]
- McManus, J.F.; Oppo, D.W.; Cullen, J.L. A 0.5-million.year record of millennial-scale climate variability in the North Atlantic. Science 1999, 283, 971–975. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef]
- Adkins, J.F.; Ingersoll, A.P.; Pasquero, C. Rapid climate change and conditional instability of the glacial deep ocean from the thermobaric effect and geothermal heating. Quat. Sci. Rev. 2005, 24, 581–594. [Google Scholar] [CrossRef]
- Hodell, D.A.; Lourens, L.; Stow, D.A.; Hernández-Molina, F.J.; Alvarez-Zarikian, C.A.; Abrantes, F.; Acton, G.D.; Bahr, A.; Balestra, B.; Llave Barranco, E.; et al. The “Shackleton Site” (IODP Site U1385) on the Iberian Margin. Sci. Drill. 2013, 16, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Kennett, J.P.; Srinivasan, M.S. Neogene Planktonic Foraminifera. A Phylogenetic Atlas; Hutchinson Ross Publishing Company: New York, NY, USA, 1983. [Google Scholar]
- Schmiedl, G.; Mackensen, A.; Muller, P.J. Recent benthic foraminifera from the eastern South Atlantic Ocean: Dependence on food supply and water masses. Mar. Micropaleontol. 1997, 32, 249–287. [Google Scholar] [CrossRef]
- Mojtahid, M.; Jorissen, F.; Lansard, B.; Fontanier, C.; Bombled, B.; Rabouille, C. Spatial distribution of live benthic foraminifera in the Rhone prodelta: Faunal response to a continental-marine organic matter gradient. Mar. Micropaleontol. 2009, 70, 177–200. [Google Scholar] [CrossRef] [Green Version]
- Malmgren, B.A.; Kucera, M.; Nyberg, J.; Waelbroeck, C. Comparison of statistical and artificial neural network techniques for estimating past sea surface temperatures from planktonic foraminifer census data. Paleoceanography 2001, 16, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Kucera, M.; Weinelt, M.; Kiefer, T.; Pflaumann, U.; Hayes, A.; Weinelt, M.; Chen, M.T.; Mix, A.C.; Barrows, T.T.; Cortijo, E.; et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 2005, 24, 951–998. [Google Scholar] [CrossRef]
- Loulergue, L.; Schilt, A.; Spahni, R.; Masson-Delmotte, V.; Blunier, T.; Lemieux, B.; Barnola, J.M.; Raynaud, D.; Stocker, T.F.; Chappellaz, J. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 2008, 453, 383. [Google Scholar] [CrossRef]
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; Stocker, T.F. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 2008, 453, 379. [Google Scholar] [CrossRef] [Green Version]
- Wollenburg, J.E.; Knies, J.; Mackensen, A. High-resolution paleoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. PA3 2004, 204, 209–238. [Google Scholar] [CrossRef]
- Rodríguez-Tovar, F.J.; Dorador, J.; Martin-Garcia, G.M.; Sierro, F.J.; Flores, J.A.; Hodell, D.A. Response of macrobenthic and foraminifer communities to changes in deep-sea environmental conditions from Marine Isotope Stage (MIS) 12 to 11 at the “Shackleton Site”. Glob. Planet. Chang. 2015, 133, 176–187. [Google Scholar] [CrossRef]
- Grunert, P.; Skinner, L.; Hodell, D.; Piller, W.E. A micropalaeontological perspective on nutrients, oxygenation and temperature in NE Atlantic deep-waters across Terminations I and II. Glob. Planet. Chang. 2015, 131, 174–191. [Google Scholar] [CrossRef]
- McElroy, M.B. Marine biological controls on atmospheric CO2 and climate. Nature 1983, 302, 328–329. [Google Scholar] [CrossRef]
- Broecker, W.S.; Henderson, G. The sequence of events surrounding Termination II and their implication for the cause of glacial-interglacial CO2 changes. Paleoceanography 1998, 13, 352–364. [Google Scholar] [CrossRef]
- Toggweiler, J.R. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 1999, 14, 571. [Google Scholar] [CrossRef]
- Kohfeld, K.E.; Le Quéré, C.; Harrison, S.P.; Anderson, R.F. Role of Marine Biology in Glacial-Interglacial CO2 Cycles. Science 2005, 308, 74–78. [Google Scholar] [CrossRef]
- Railsback, L.B.; Gibbard, P.L.; Head, M.J.; Voarintsoa, N.R.G.; Toucanne, S. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quat. Sci. Rev. 2015, 111, 94–106. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Garcia, G.M. Sea-Air CO2 Exchange in the SW Iberian Upwelling System during Two Contrasting Climate Cycles: 860–780 ka and 630–520 ka. Geosciences 2018, 8, 454. https://doi.org/10.3390/geosciences8120454
Martin-Garcia GM. Sea-Air CO2 Exchange in the SW Iberian Upwelling System during Two Contrasting Climate Cycles: 860–780 ka and 630–520 ka. Geosciences. 2018; 8(12):454. https://doi.org/10.3390/geosciences8120454
Chicago/Turabian StyleMartin-Garcia, Gloria M. 2018. "Sea-Air CO2 Exchange in the SW Iberian Upwelling System during Two Contrasting Climate Cycles: 860–780 ka and 630–520 ka" Geosciences 8, no. 12: 454. https://doi.org/10.3390/geosciences8120454
APA StyleMartin-Garcia, G. M. (2018). Sea-Air CO2 Exchange in the SW Iberian Upwelling System during Two Contrasting Climate Cycles: 860–780 ka and 630–520 ka. Geosciences, 8(12), 454. https://doi.org/10.3390/geosciences8120454