Geochemistry and Structure of Krakatoa Volcano in the Sunda Strait, Indonesia
Abstract
:1. Introduction
2. Regional Geology
3. Geology of Krakatoa
- Pre-historic Krakatoa; these products were erupted around 416 AD and consist of 2 dacitic lava flows, 1 pyroclastic flow and 1 pyroclastic fall.
- Young Krakatoa; these products were erupted around 1200 AD and consist of 3 eruption centers: Rakata, Danan and Parbuwatan. During this period, the products were dominated by lava.
- 1883; period of the destruction of the Rakata, Danan and Parbuwatan volcanoes, characterized by the 1883 caldera formation, and produced typical eruptive products. This rock unit was distributed on all three islands—Rakata, Panjang and Sertung—and was composed of pumice pyroclastic flows, minor pyroclastic falls and surge deposits.
- Anak Krakatoa; since its birth in 1927 to 2017, Anak Krakatoa has erupted at least thirty-two times, showing a combination of explosive and effusive activities. Anak Krakatoa, with an elevation of about 300 m above sea level, is a volcano island, lying in the center of the Krakatoa volcanic complex. It is constructed of alternating layers of 18 lava flows and 18 pyroclastic deposits that have been built since 1927.
4. Data and Method
5. Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Davidson, J.P. Crustal contamination versus subduction zone enrichment: Examples from the Lesser Antilles and implications for mantle source compositions of island arc volcanic rocks. Geochim. Cosmochim. Acta 1987, 51, 2185–2198. [Google Scholar] [CrossRef]
- Hildreth, W.; Moorbath, S. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions Mineral. Petrol. 1988, 98, 455–489. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Gamble J., A. Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet. Sci. Lett. 1991, 102, 358–374. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Hergt, J.M.; Ellam, R.M.; McDermott, F. Element fluxes associated with subduction related magmatism. Philos. Trans. R. Soc. Lond. A 1991, 335, 393–405. [Google Scholar] [CrossRef]
- Pearce, J.A.; Peate, D.W. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 1995, 24, 251–285. [Google Scholar] [CrossRef]
- Gardner, M.F.; Troll, V.R.; Gamble, J.A.; Gertisser, R.; Hart, G.L.; Ellam, R.M.; Harris, C.; Wolff, J.A. Crustal differentiation processes at Krakatau Volcano, Indonesia. J. Petrol. 2013, 54, 149–182. [Google Scholar] [CrossRef]
- Turner, S.; Foden, J.U. Th and Ra disequilibria, Sr, Nd, and Pb isotope and trace element variations in Sunda arc lavas: Predominance of a subducted sediment component. Contributions Mineral. Petrol. 2001, 142, 43–57. [Google Scholar] [CrossRef]
- Handley, H.K.; Blichert-Toft, J.; Gertisser, R.; Macpherson, C.G.; Turner, S.P.; Zaennudin, A.; Abdurrachman, M. Insights from Pb and O isotopes into along-arc variations in subduction inputs and crustal assimilation for volcanic rocks in Java, Sunda arc, Indonesia. Geochim. Cosmochim. Acta 2014, 139, 205–226. [Google Scholar] [CrossRef] [Green Version]
- Abdurrachman, M. Geology and Petrology of Quaternary Papandayan Volcano and Genetic Relationship of Volcanic Rocks from the Triangular Volcanic Complex around Bandung Basin, West Java, Indonesia. Unpublished Ph.D. Thesis, Akita University, Akita, Japan, 2012. [Google Scholar]
- Abdurrachman, M.; Yamamoto, M. Geochemical variation of Quaternary volcanic rocks in Papandayan area, West Java, Indonesia: A role of crustal component. J. Geol. Soc. Thailand 2013, 40–57. [Google Scholar]
- Widiyantoro, S.; Pesicek, J.D.; Thurber, C.H. Subducting slab structure below the eastern Sunda arc inferred from non-linear seismic tomographic imaging. Geol. Soc. Lond. Spec. Publ. 2011, 355, 139–155. [Google Scholar] [CrossRef]
- Abdurrachman, M.; Widiyantoro, S.; Priadi, B.; Alim, M.Z.A.; Dewangga, A.H. Proposed new wadati—benioff zone model in Java-Sumatra subduction zone and its tectonic implication. In Proceedings of the Joint Convention Balikpapan 2015 HAGI-IAGI-IAFMI-IATMI, Balikpapan, Indonesia, 5–8 October 2015. [Google Scholar]
- Widiyantoro, S.; van der Hilst, R.D. Mantle structure beneath Indonesia inferred from high-resolution tomographic imaging. Geophys. J. Int. 1997, 130, 167–182. [Google Scholar] [CrossRef]
- Widiyantoro, S.; van der Hilst, R.D. Structure and evolution of lithospheric slab beneath the Sunda arc, Indonesia. Science 1996, 271, 1566–1570. [Google Scholar] [CrossRef]
- Hamilton, W.B. Tectonics of the Indonesian Region. Available online: https://pubs.usgs.gov/pp/1078/report.pdf (accessed on 10 January 2018).
- Mueller, R.D.; Roest, W.R.; Royerj, Y.; Gahagan, L.M.; Sclater, J.G. Digital isochrones of the world’s ocean floor. J. Geophys. Res. 1997, 102, 3211–3214. [Google Scholar] [CrossRef]
- Syracuse, E.M.; Abers, G.A. Global compilation of variation in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geasyst. 2006, 7, Q05017. [Google Scholar] [CrossRef]
- Cloetingh, S.; Wortel, R. Stress in the Indo-Australian plate. Tectonophysics 1986, 132, 49–67. [Google Scholar] [CrossRef]
- Minster, J.B.; Jordan, T.H. Present-day plate motions. J. Geophys. Res. 1978, 83, 5331–5354. [Google Scholar] [CrossRef]
- Tregoning, P.; Brunner, F.K.; Bock, Y.; Puntodewo, S.S.O.; McCaffrey, R.; Genrich, J.F.; Calais, E.; Rais, J.; Subarya, C. First geodetic measurement of convergence across the Java trench. Geophys. Res. Lett. 1994, 21, 2135–2138. [Google Scholar] [CrossRef]
- Hall, R. Indonesia, Geology. In Encyclopedia of Islands; Gillespie, R., Clague, D.A., Eds.; University of California Press: Oakland, CA, USA, 2008. [Google Scholar]
- Ghose, R.; Yoshioka, S.; Oike, K. Three dimensional numerical simulations of the subduction dynamics in the Sunda arc region, Southeast Asia. Tectonophysics 1990, 181, 223–255. [Google Scholar] [CrossRef]
- Puspito, N.T.; Shimazaki, K. Mantle structure and seismotectonics of the Sunda and Banda arcs. Tectonophysics 1995, 251, 215–228. [Google Scholar] [CrossRef]
- Stehn, C.E. The geology and volcanism of the Krakatau group. In Guidebook for the 4th Pacific Science Congress; University of Michigan: Ann Arbor, MI, USA, 1929; pp. 1–55. [Google Scholar]
- Engdahl, E.R.; van der Hilst, R.D.; Buland, R. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seism. Soc. Am. 1998, 88, 722–743. [Google Scholar]
- Metcalf, R.V.; Shervais, J.W. Suprasubduction-Zone Ophiolites: Is There Really an Ophiolite Conundrum? In Special Paper 438: Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson; Geological Society of America: Boulder, CO, USA, 2008; Volume 438, pp. 191–222. ISBN 978-0-8137-2438-6. [Google Scholar]
- Bailey, J.C. Geochemical criteria for a refined tectonic discriminant of orogenic andesites. Chem. Geol. 1981, 32, 139–154. [Google Scholar] [CrossRef]
- Mullen, E.D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis. Earth Planet. Sci. Lett. 1983, 62, 53–62. [Google Scholar] [CrossRef]
- Gill, R. Igneous Rocks and Processes: A Practical Guide; John Wiley & Sons, Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 57, ISBN 978-0-632-06377-2. [Google Scholar]
- Brenan, J.M.; Shaw, H.F.; Ryerson, F.J.; Phinney, D.L. Mineral-aqueous fluid partitioning of trace elements at 900 °C and 2.0 GPa: Constraints on the trace element geochemistry of mantle and deep crustal fluids. Geochim. Cosmochim. Acta 1995, 59, 3331–3350. [Google Scholar] [CrossRef]
- Stalder, R.; Foley, S.F.; Brey, G.P.; Horn, I. Mineral-aqueous fluid partitioning of trace elements at 900–1200 °C and 3.0–5.7 GPa: New experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochim. Cosmochim. Acta 1998, 62, 1781–1801. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implication for mantle composition and processes. In Magmatism in Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Gust, D.A.; Arculus, R.J.; Kersting, A.B. Aspect of magma sources and processes in the Honshu arc. Can. Mineral. 1997, 35, 347–365. [Google Scholar]
- Kennett, B.L.N.; Engdahl, E.R.; Buland, R. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
Sampel | L2835 | DR12653 | AK-1 |
---|---|---|---|
Age | 1883 AD | 1981 AD | 2002 AD |
SiO2 (wt %) | 57.86 | 61.45 | 55.71 |
TiO2 | 1.18 | 1.02 | 1.06 |
87Sr/86Sr | 0.704393 | 0.704428 | 0.704417 |
Rb (ppm) | 59 | 40 | 23 |
Ba | 321 | 275 | 181 |
Th | 7453 | 5380 | 3034 |
Nb | 6 | 5 | 4 |
K | 1.73 | 1.21 | 0.78 |
La | 21.2 | 19.9 | 15.02 |
Ce | 49.4 | 45.1 | 35.4 |
Sr | 296 | 324 | 383 |
Nd | 27.7 | 25.7 | 21.5 |
Zr | 185 | 184 | 123 |
Sm | 6.48 | 6.35 | 5.29 |
Ti | 0.71 | 0.61 | 0.65 |
Tb | 1.09 | 1.1 | 0.86 |
Y | 42 | 44 | 33 |
Yb | 4.06 | 4.18 | 3.06 |
Lu | 0.62 | 0.62 | 0.49 |
Sc | 24 | 21 | n.d |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdurrachman, M.; Widiyantoro, S.; Priadi, B.; Ismail, T. Geochemistry and Structure of Krakatoa Volcano in the Sunda Strait, Indonesia. Geosciences 2018, 8, 111. https://doi.org/10.3390/geosciences8040111
Abdurrachman M, Widiyantoro S, Priadi B, Ismail T. Geochemistry and Structure of Krakatoa Volcano in the Sunda Strait, Indonesia. Geosciences. 2018; 8(4):111. https://doi.org/10.3390/geosciences8040111
Chicago/Turabian StyleAbdurrachman, Mirzam, Sri Widiyantoro, Bambang Priadi, and Taufik Ismail. 2018. "Geochemistry and Structure of Krakatoa Volcano in the Sunda Strait, Indonesia" Geosciences 8, no. 4: 111. https://doi.org/10.3390/geosciences8040111
APA StyleAbdurrachman, M., Widiyantoro, S., Priadi, B., & Ismail, T. (2018). Geochemistry and Structure of Krakatoa Volcano in the Sunda Strait, Indonesia. Geosciences, 8(4), 111. https://doi.org/10.3390/geosciences8040111