Airflow Dynamics over a Beach and Foredune System with Large Woody Debris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Setup
2.3. Data Description and Analysis
3. Results and Discussion
3.1. Flow Dynamics over LWD
3.2. Flow Steering over LWD
3.3. Implications of Flow over LWD for Beach-Dune System Morphodynamics
3.4. Limitations
4. Conclusions
- LWD acts as a highly effective flow modifier over the beach by inducing roughness drag that serves to deflect the incoming flow upward and away from the surface. The absolute magnitude of near-surface mean wind speed, turbulent kinetic energy, and Reynolds stress are reduced in the presence of a LWD matrix. In addition, there is a transfer of energy from the mean flow field to the turbulent fluctuations, such that the overall turbulence intensity increases along with a slight shift in the quadrant geometry toward Q2/Q4 event activity. These flow modifications would seem to favor sediment transport potential, but not so in light of the overall reductions in the mean energy of the flow field. The effect of the LWD matrix on flow considered in this paper does not include the localized flow patterns around individual pieces of LWD nor the substantial physical barrier they present to saltating grains.
- Shore-parallel aligned LWD has the potential to cause alongshore flow steering of obliquely onshore winds, although this depends on incoming flow angle. An alongshore flow steering effect of highly oblique incident winds could enhance the decoupling effect of beach and dune sediment transport pathways described by Bauer et al. [42] minimizing landward transport [53].
- Downwind of the LWD, on the stoss slope of the dune, there is evidence of flow compression and streamline concavity that conveys turbulent flow structures toward the bed. The presence of these flow patterns suggests that flow downwind of a LWD matrix responds characteristically to topographic forcing as would be expected in the absence of LWD, thus providing the potential for sediment transport on the stoss slope of the dune.
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
T1 (LWD) | T2 (No LWD) | |||||||
---|---|---|---|---|---|---|---|---|
Beach Lower (0.5 m) | Beach Upper (1.5 m) | Stoss Lower (0.5 m) | Stoss Upper (1.5 m) | Beach Lower (0.5 m) | Beach Upper (1.5 m) | Stoss Lower (0.5 m) | Stoss Upper (1.5 m) | |
surface slope angle (o) | −4 | −4 | −23 | −23 | −4 | −4 | −37 | −37 |
13 April 2016 | ||||||||
Run 1 (13:35:20–13:45:19) | ||||||||
Flow angle (o) | 151 | 153 | 145 | 148 | 152 | 153 | 159 | 155 |
S | 2.4 | 3.2 | 2.3 | 2.9 | 3.5 | 3.8 | 2.7 | 3.2 |
Streamline angle (o) | −3 | −3 | −8 | −10 | 0 | −2 | −16 | −16 |
2.03 | 2.61 | 1.11 | 1.61 | 2.01 | 2.15 | 1.41 | 1.72 | |
0.63 | 1.24 | 0.89 | 1.15 | 1.21 | 1.38 | 1.17 | 1.52 | |
0.08 | 0.15 | 0.18 | 0.24 | 0.04 | 0.10 | 0.27 | 0.40 | |
TKE | 1.37 | 2.00 | 1.09 | 1.51 | 1.63 | 1.82 | 1.43 | 1.82 |
0.11 | 0.08 | 1.61 | 0.31 | 0.09 | 0.10 | 0.47 | 0.57 | |
CVu | 0.67 | 0.57 | 0.53 | 0.50 | 0.43 | 0.41 | 0.52 | 0.47 |
Run 2 (13:56:40–14:06:39) | ||||||||
Flow angle (o) | 161 | 161 | 162 | 159 | 151 | 151 | 155 | 151 |
S | 1.8 | 2.6 | 2.0 | 2.4 | 3.1 | 3.3 | 2.2 | 2.6 |
Streamline angle (o) | −7 | −3 | −12 | −10 | 0 | −2 | −15 | −14 |
1.77 | 2.59 | 1.48 | 1.87 | 2.17 | 2.27 | 1.51 | 1.71 | |
0.70 | 1.20 | 1.19 | 1.20 | 1.66 | 1.55 | 1.12 | 1.27 | |
0.09 | 0.21 | 0.16 | 0.29 | 0.06 | 0.14 | 0.26 | 0.37 | |
TKE | 1.28 | 2.00 | 1.42 | 1.68 | 1.95 | 1.98 | 1.44 | 1.68 |
0.19 | 0.04 | 1.87 | 0.25 | 0.16 | 0.13 | 0.43 | 0.47 | |
CVu | 0.96 | 0.77 | 0.87 | 0.72 | 0.54 | 0.51 | 0.68 | 0.61 |
Run 3 (14:43:50–14:53:49) | ||||||||
Flow angle (o) | 155 | 158 | 152 | 150 | 144 | 144 | 155 | 151 |
S | 2.6 | 3.5 | 2.6 | 3.2 | 3.9 | 4.2 | 3.0 | 3.5 |
Streamline angle (o) | −6 | −3 | −10 | −8 | 0 | −1 | −15 | −13 |
2.37 | 3.86 | 2.27 | 3.39 | 3.46 | 3.76 | 2.30 | 3.02 | |
1.15 | 1.97 | 1.91 | 1.99 | 2.66 | 2.82 | 1.67 | 1.90 | |
0.13 | 0.23 | 0.27 | 0.49 | 0.07 | 0.20 | 0.39 | 0.70 | |
TKE | 1.83 | 3.04 | 2.23 | 2.94 | 3.10 | 3.39 | 2.18 | 2.81 |
0.24 | 0.14 | 3.39 | 0.53 | 0.23 | 0.34 | 0.66 | 0.81 | |
CVu | 0.73 | 0.66 | 0.77 | 0.72 | 0.54 | 0.51 | 0.60 | 0.56 |
Run 4 (15:05:50–15:15:49) | ||||||||
Flow angle (o) | 157 | 159 | 153 | 153 | 141 | 143 | 150 | 146 |
S | 2.1 | 3.0 | 2.2 | 2.7 | 3.4 | 3.7 | 2.6 | 3.1 |
Streamline angle (o) | −9 | −3 | −11 | −7 | 0 | −2 | −12 | −12 |
1.88 | 2.82 | 1.49 | 2.06 | 2.91 | 3.33 | 2.09 | 2.46 | |
0.72 | 1.13 | 1.21 | 1.28 | 1.46 | 1.46 | 1.00 | 1.19 | |
0.10 | 0.19 | 0.23 | 0.34 | 0.04 | 0.14 | 0.30 | 0.45 | |
TKE | 1.35 | 2.07 | 1.47 | 1.84 | 2.21 | 2.47 | 1.70 | 2.05 |
0.27 | 0.06 | 2.06 | 0.30 | 0.12 | 0.15 | 0.45 | 0.48 | |
CVu | 0.75 | 0.62 | 0.71 | 0.61 | 0.54 | 0.53 | 0.62 | 0.57 |
15 April 2016 | ||||||||
Run 5 (11:22:00–11:31:59) | ||||||||
Flow angle (o) | 152 | 161 | 157 | 160 | 170 | 172 | 174 | 172 |
S | 3.3 | 4.7 | 3.5 | 4.4 | 4.6 | 5.2 | 3.6 | 4.3 |
Streamline angle (o) | −1 | −5 | −8 | −11 | −1 | −4 | −21 | −20 |
1.19 | 1.42 | 1.11 | 1.39 | 1.05 | 1.29 | 0.92 | 1.14 | |
1.02 | 2.26 | 1.81 | 2.30 | 2.27 | 2.63 | 2.17 | 2.63 | |
0.11 | 0.14 | 0.23 | 0.30 | 0.03 | 0.09 | 0.32 | 0.42 | |
TKE | 1.16 | 1.91 | 1.57 | 2.00 | 1.67 | 2.01 | 1.70 | 2.10 |
0.07 | 0.16 | 0.47 | 0.59 | 0.13 | 0.24 | 0.71 | 0.70 | |
CVu | 0.35 | 0.27 | 0.32 | 0.29 | 0.23 | 0.23 | 0.30 | 0.27 |
Run 6 (11:43:54–11:52:53) | ||||||||
Flow angle (o) | 147 | 155 | 148 | 157 | 160 | 162 | 161 | |
S | 4.0 | 5.5 | 4.4 | 5.4 | 6.1 | 4.6 | 5.4 | |
Streamline angle (o) | −1 | −5 | −6 | −1 | −3 | −17 | −16 | |
1.66 | 2.27 | 1.86 | 1.71 | 2.13 | 1.74 | 1.98 | ||
1.06 | 2.69 | 1.81 | 2.43 | 2.80 | 2.43 | 3.08 | ||
0.11 | 0.15 | 0.28 | 0.03 | 0.09 | 0.41 | 0.49 | ||
TKE | 1.42 | 2.56 | 1.98 | 2.09 | 2.51 | 2.29 | 2.78 | |
0.14 | 0.27 | 0.65 | 0.18 | 0.24 | 0.96 | 0.97 | ||
CVu | 0.34 | 0.29 | 0.33 | 0.25 | 0.25 | 0.31 | 0.28 | |
Run 7 (12:09:30–12:19:29) | ||||||||
Flow angle (o) | 149 | 158 | 155 | 167 | 169 | 172 | 171 | |
S | 3.6 | 5.2 | 4.0 | 5.7 | 6.3 | 4.4 | 5.2 | |
Streamline angle (o) | −1 | −5 | −8 | −1 | −4 | −20 | −19 | |
1.40 | 1.84 | 1.57 | 1.63 | 1.95 | 1.33 | 1.54 | ||
1.36 | 3.45 | 2.48 | 3.80 | 4.49 | 3.48 | 4.26 | ||
0.13 | 0.17 | 0.29 | 0.04 | 0.09 | 0.44 | 0.56 | ||
TKE | 1.44 | 2.73 | 2.18 | 2.74 | 3.27 | 2.63 | 3.18 | |
0.12 | 0.29 | 0.73 | 0.24 | 0.35 | 1.06 | 1.22 | ||
CVu | 0.35 | 0.28 | 0.34 | 0.24 | 0.23 | 0.29 | 0.26 | |
Run 8 (13:31:00–13:40:59) | ||||||||
Flow angle (o) | 144 | 152 | 144 | 152 | 154 | 155 | 155 | |
S | 4.1 | 5.8 | 4.2 | 5.6 | 6.2 | 4.9 | 5.7 | |
Streamline angle (o) | −1 | −5 | −6 | 0 | −3 | −15 | −14 | |
1.46 | 2.22 | 1.78 | 2.24 | 2.78 | 2.23 | 2.71 | ||
1.78 | 4.09 | 2.17 | 2.19 | 2.59 | 2.34 | 2.73 | ||
0.14 | 0.23 | 0.36 | 0.03 | 0.09 | 0.48 | 0.58 | ||
TKE | 1.70 | 3.28 | 2.16 | 2.24 | 2.73 | 2.53 | 3.02 | |
0.15 | 0.36 | 0.71 | 0.14 | 0.20 | 1.05 | 1.15 | ||
CVu | 0.32 | 0.27 | 0.34 | 0.28 | 0.28 | 0.33 | 0.30 |
References
- Gillies, J.A.; Nield, J.M.; Nickling, W.G. Wind speed and sediment transport recovery in the lee of a vegetated and denuded nebkha within a nebkha dune field. Aeolian Res. 2014, 12, 135–141. [Google Scholar] [CrossRef]
- Hesp, P.A. Foredunes and blowouts: Initiation, geomorphology and dynamics. Geomorphology 2002, 48, 245–268. [Google Scholar] [CrossRef]
- Mayaud, J.R.; Wiggs, G.F.S.; Bailey, R.M. Characterizing turbulent wind flow around dryland vegetation. Earth Surf. Process. Landf. 2016, 1436, 1421–1436. [Google Scholar] [CrossRef]
- Mayaud, J.R.; Wiggs, G.F.S.; Bailey, R.M. Dynamics of skimming flow in the wake of a vegetation patch. Aeolian Res. 2016, 22, 141–151. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Nickling, W.G. The protective role of sparse vegetation in wind erosion. Prog. Phys. Geogr. 1993, 17, 50–68. [Google Scholar] [CrossRef]
- Arens, S.M. Patterns of sand transport on vegetated foredunes. Geomorphology 1996, 17, 339–350. [Google Scholar] [CrossRef]
- Arens, S.M.; Slings, Q.; de Vries, C.N. Mobility of a remobilised parabolic dune in Kennemerland, The Netherlands. Geomorphology 2004, 59, 175–188. [Google Scholar] [CrossRef]
- Arens, S.M.; Van Kaam-Peters, H.M.E.; Van Boxel, J.H. Air flow over foredunes and implications for sand transport. Earth Surf. Process. Landf. 1995, 20, 315–332. [Google Scholar] [CrossRef]
- Chapman, C.; Walker, I.J.; Hesp, P.A.; Bauer, B.O.; Davidson-Arnott, R.G.D.; Ollerhead, J. Reynolds stress and sand transport over a foredune. Earth Surf. Process. Landf. 2013, 38, 1735–1747. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G.D.; Bauer, B.O.; Walker, I.J.; Hesp, P.A.; Ollerhead, J.; Chapman, C. High-frequency sediment transport responses on a vegetated foredune. Earth Surf. Process. Landf. 2012, 37, 1227–1241. [Google Scholar] [CrossRef]
- Hesp, P.A.; Smyth, T.A.G.G. Nebkha flow dynamics and shadow dune formation. Geomorphology 2017, 282, 27–38. [Google Scholar] [CrossRef]
- Keijsers, J.G.S.; De Groot, A.V.; Riksen, M.J.P.M. Vegetation and sedimentation on coastal foredunes. Geomorphology 2015, 228, 723–734. [Google Scholar] [CrossRef]
- Walker, I.J.; Barrie, J.V. Geomorphology and sea-level rise on one of Canada’s most sensitive coasts: Northeast Graham Island, British Columbia. J. Coast. Res. 2006, 39, 220–226. [Google Scholar]
- Bauer, B.O. Fundamentals of Aeolian Sediment Transport: Boundary-Layer Processes. In Treatise on Geomorphology, 1st ed.; Shroder, J.F., Lancaster, N., Sherman, D.J., Baas, A.C.W., Eds.; Elsevier Ltd.: San Diego, CA, USA, 2013; Volume 11.2, pp. 7–22. [Google Scholar]
- McKenna Neuman, C.; Bédard, O. A wind tunnel study of flow structure adjustment on deformable sand beds containing a surface-mounted obstacle. J. Geophys. Res. Earth Surf. 2015, 120, 1824–1840. [Google Scholar] [CrossRef]
- Sutton, S.L.F.; McKenna Neuman, C. Sediment entrainment to the lee of roughness elements: Effects of vortical structures. J. Geophys. Res. Earth Surf. 2008, 113, 1–7. [Google Scholar] [CrossRef]
- Gillies, J.A.; Green, H.; McCarley-Holder, G.; Grimm, S.; Howard, C.; Barbieri, N.; Ono, D.; Schade, T. Using solid element roughness to control sand movement: Keeler Dunes, Keeler, California. Aeolian Res. 2015, 18, 35–46. [Google Scholar] [CrossRef]
- Gillies, J.A.; Lancaster, N. Large roughness element effects on sand transport, Oceano Dunes, California. Earth Surf. Process. Landf. 2013, 38, 785–792. [Google Scholar] [CrossRef]
- Gillies, J.A.; Nickling, W.G.; King, J. Aeolian sediment transport through large patches of roughness in the atmospheric inertial sublayer. J. Geophys. Res. 2006, 111, F02006. [Google Scholar] [CrossRef]
- Eamer, J.B.R.; Walker, I.J. Quantifying sand storage capacity of large woody debris on beaches using LiDAR. Geomorphology 2010, 118, 33–47. [Google Scholar] [CrossRef]
- Baddock, M.C.; Wiggs, G.F.S.; Livingstone, I. A field study of mean and turbulent flow characteristics upwind, over and downwind of barchan dunes. Earth Surf. Process. Landf. 2011, 36, 1435–1448. [Google Scholar] [CrossRef]
- Lee, B.E.; Soliman, B.F. An Investigation of the Forces on Three Dimensional Bluff Bodies in Rough Wall Turbulent Boundary Layers. J. Fluids Eng. 1977, 99, 503–510. [Google Scholar] [CrossRef]
- Raupach, M.R. Drag and drag partition on rough surfaces. Bound.-Layer Meteorol. 1992, 60, 375–395. [Google Scholar] [CrossRef]
- Raupach, M.R.; Gillette, D.A.; Leys, J.F. The effect of roughness elements on wind erosion threshold. J. Geophys. Res. 1993, 98, 3023–3029. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Livingstone, I.; Warren, A. The role of streamline curvature in sand dune dynamics: Evidence from field and wind tunnel measurements. Geomorphology 1996, 17, 29–46. [Google Scholar] [CrossRef]
- Iversen, J.D.; Wang, W.-P.; Rasmussen, K.R.; Mikkelsen, H.E.; Hasiuk, J.F.; Leach, R.N. The effect of a roughness element on local saltation transport. J. Wind Eng. Ind. Aerodyn. 1990, 36, 845–854. [Google Scholar] [CrossRef]
- Lancaster, N. Geomorphology of Desert Dunes, 1st ed.; Routledge: New York, NY, USA, 1995. [Google Scholar]
- Leenders, J.K.; van Boxel, J.H.; Sterk, G. The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso. Earth Surf. Process. Landf. 2007, 32, 1454–1474. [Google Scholar] [CrossRef]
- Pattenden, R.J.; Turnock, S.R.; Zhang, X. Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Exp. Fluids 2005, 39, 10–21. [Google Scholar] [CrossRef]
- Gillies, J.A.; Nickling, W.G.; King, J. Shear stress partitioning in large patches of roughness in the atmospheric inertial sublayer. Bound.-Layer Meteorol. 2007, 122, 367–396. [Google Scholar] [CrossRef]
- Lancaster, N.; Baas, A. Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California. Earth Surf. Process. Landf. 1998, 23, 69–82. [Google Scholar] [CrossRef]
- Fryberger, S.G.; Dean, G. Dune Forms and Wind Regime. In A Study Glob. Sand Seas; McKee, E.D., Ed.; USGS Professional Paper 1052; US Geological Survey and United States National Aeronautics and Space Administration: Washington, DC, USA, 1979; pp. 137–170. [Google Scholar]
- Miot da Silva, G.; Hesp, P. Coastline orientation, aeolian sediment transport and foredune and dunefield dynamics of Moçambique Beach, Southern Brazil. Geomorphology 2010, 120, 258–278. [Google Scholar] [CrossRef]
- Eamer, J.B.R. Reconstruction of the Late Pleistocene and Holocene Geomorphology of Northwest Calvert Island, British Columbia; University of Victoria: Victoria, BC, Canada, 2017; Available online: http://hdl.handle.net/1828/7944 (accessed on 12 June 2017).
- Lee, Z.S.; Baas, A.C.W. Streamline correction for the analysis of boundary layer turbulence. Geomorphology 2012, 171–172, 69–82. [Google Scholar] [CrossRef]
- Van Boxel, J.H.; Sterk, G.; Arens, S.M. Sonic anemometers in aeolian sediment transport research. Geomorphology 2004, 59, 131–147. [Google Scholar] [CrossRef]
- Walker, I.J. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research. Geomorphology 2005, 68, 57–76. [Google Scholar] [CrossRef]
- Lu, S.S.; Willmarth, W.W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 1973, 60, 481–511. [Google Scholar] [CrossRef]
- Sarkar, S.; Dey, S. Double-averaging turbulence characteristics in flows over a gravel bed. J. Hydraul. Res. 2010, 48, 801–809. [Google Scholar] [CrossRef]
- Frank, A.J.; Kocurek, G. Airflow up the stoss slope of sand dunes: Limitations of current understanding. Geomorphology 1996, 17, 47–54. [Google Scholar] [CrossRef]
- Walker, I.J.; Hesp, P.A.; Davidson-Arnott, R.G.D.; Bauer, B.O.; Namikas, S.L.; Ollerhead, J. Responses of three-dimensional flow to variations in the angle of incident wind and profile form of dunes: Greenwich Dunes, Prince Edward Island, Canada. Geomorphology 2009, 105, 127–138. [Google Scholar] [CrossRef]
- Bauer, B.O.; Davidson-Arnott, R.G.D.; Walker, I.J.; Hesp, P.A.; Ollerhead, J. Wind direction and complex sediment transport response across a beach-dune system. Earth Surf. Process. Landf. 2012, 37, 1661–1677. [Google Scholar] [CrossRef]
- Hesp, P.A.; Smyth, T.A.G.; Nielsen, P.; Walker, I.J.; Bauer, B.O.; Davidson-Arnott, R. Flow deflection over a foredune. Geomorphology 2015, 230, 64–74. [Google Scholar] [CrossRef]
- Walker, I.J.; Davidson-Arnott, R.G.D.; Bauer, B.O.; Hesp, P.A.; Delgado-Fernandez, I.; Ollerhead, J.; Smyth, T.A.G. Scale-dependent perspectives on the geomorphology and evolution of beach-dune systems. Earth-Sci. Rev. 2017. [Google Scholar] [CrossRef]
- Hesp, P.A.; Davidson-Arnott, R.; Walker, I.J.; Ollerhead, J. Flow dynamics over a foredune at Prince Edward Island, Canada. Geomorphology 2005, 65, 71–84. [Google Scholar] [CrossRef]
- Svasek, J.N.; Terwindt, J.H.J. Measurements of sand transport by wind on a natural beach. Sedimentology 1974, 21, 311–322. [Google Scholar] [CrossRef]
- Walker, I.J.; Hesp, P.A.; Davidson-Arnott, R.G.D.; Ollerhead, J. Topographic Steering of Alongshore Airflow over a Vegetated Foredune: Greenwich Dunes, Prince Edward Island, Canada. J. Coast. Res. 2006, 225, 1278–1291. [Google Scholar] [CrossRef]
- Bauer, B.O.; Walker, I.J.; Baas, A.C.W.; Jackson, D.W.T.; McKenna-Neuman, C.; Wiggs, G.F.S.; Hesp, P.A. Critical Reflections on the Coherent Flow Structures Paradigm in Aeolian Geomorphology. In Coherent Flow Structures Earth’s Surface; Venditti, J.G., Best, J.L., Church, M., Hardy, R.J., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2013; pp. 111–134. [Google Scholar] [CrossRef]
- Bauer, B.O.; Yi, J.; Namikas, S.L.; Sherman, D.J. Event detection and conditional averaging in unsteady aeolian systems. J. Arid Environ. 1998, 39, 345–375. [Google Scholar] [CrossRef]
- Sterk, G.; Jacobs, A.F.G.; van Boxel, J.H. The Effect of Turbulent Flow Structures on Saltation Sand Transport in the Atmospheric Boundary Layer. Earth Surf. Processes Landf. 1998, 887, 877–887. [Google Scholar] [CrossRef]
- Weaver, C.M.; Wiggs, G.F.S. Field measurements of mean and turbulent airflow over a barchan sand dune. Geomorphology 2011, 128, 32–41. [Google Scholar] [CrossRef]
- Chapman, C.A.; Walker, I.J.; Hesp, P.A.; Bauer, B.O.; Davidson-Arnott, R.G.D. Turbulent Reynolds stress and quadrant event activity in wind flow over a coastal foredune. Geomorphology 2012, 151–152, 1–12. [Google Scholar] [CrossRef]
- Ollerhead, J.; Davidson-Arnott, R.; Walker, I.J.; Mathew, S. Annual to decadal morphodynamics of the foredune system at Greenwich Dunes, Prince Edward Island, Canada. Earth Surf. Process. Landf. 2013, 38, 284–298. [Google Scholar] [CrossRef]
Station Location | Transect 1 | Transect 2 |
---|---|---|
Beach | 13 | 0 |
Dune | 27 | 1 |
T1 (LWD) | T2 (No LWD) | |||||||
---|---|---|---|---|---|---|---|---|
Beach Lower (0.5 m) | Beach Upper (1.5 m) | Stoss Lower (0.5 m) | Stoss Upper (1.5 m) | Beach Lower (0.5 m) | Beach Upper (1.5 m) | Stoss Lower (0.5 m) | Stoss Upper (1.5 m) | |
Surface slope angle (o) | −4 | −4 | −23 | −23 | −4 | −4 | −37 | −37 |
Flow angle (o) | 24.5 | 29.8 | 24.6 | 28.6 | 26.8 | 28.2 | 32.7 | 30.1 |
Streamline angle (o) | −3.6 | −4.0 | −8.7 | −10.0 | −0.3 | −2.6 | −16.3 | −15.4 |
S | 2.99 | 4.20 | 3.15 | 3.62 | 4.41 | 4.87 | 3.50 | 4.14 |
1.72 | 2.45 | 1.58 | 1.81 | 2.15 | 2.46 | 1.69 | 2.03 | |
1.05 | 2.25 | 1.68 | 1.86 | 2.21 | 2.47 | 1.92 | 2.32 | |
0.11 | 0.18 | 0.25 | 0.32 | 0.04 | 0.12 | 0.36 | 0.50 | |
TKE | 1.44 | 2.45 | 1.76 | 2.00 | 2.20 | 2.52 | 1.99 | 2.38 |
0.16 | 0.17 | 0.49 | 0.47 | 0.16 | 0.22 | 0.72 | 0.78 | |
CVu | 0.56 | 0.47 | 0.53 | 0.46 | 0.38 | 0.37 | 0.46 | 0.41 |
T1 (LWD) | T2 (No LWD) | |||||||
---|---|---|---|---|---|---|---|---|
Beach (0.5 m) | Beach (1.5 m) | Dune (0.5 m) | Dune (1.5 m) | Beach (0.5 m) | Beach † (1.5 m) | Dune (0.5 m) | Dune (1.5 m) | |
Run 1 | −1 | 1 | −8 | −5 | 0 | 25 | 7 | 2 |
Run 2 | 10 | 11 | 12 | 9 | 0 | 23 | 4 | 0 |
Run 3 | 10 | 14 | 8 | 6 | 0 | 17 | 11 | 7 |
Run 4 | 14 | 16 | 11 | 10 | −1 | 15 | 7 | 3 |
Run 5 | −20 | −10 | −15 | −12 | −2 | 44 | 2 | 1 |
Run 6 | −13 | −5 | −12 | −3 | 33 | 2 | 1 | |
Run 7 | −10 | −2 | −10 | −2 | 26 | 1 | 1 | |
Run 8 | −20 | −11 | −14 | −2 | 42 | 3 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grilliot, M.J.; Walker, I.J.; Bauer, B.O. Airflow Dynamics over a Beach and Foredune System with Large Woody Debris. Geosciences 2018, 8, 147. https://doi.org/10.3390/geosciences8050147
Grilliot MJ, Walker IJ, Bauer BO. Airflow Dynamics over a Beach and Foredune System with Large Woody Debris. Geosciences. 2018; 8(5):147. https://doi.org/10.3390/geosciences8050147
Chicago/Turabian StyleGrilliot, Michael J., Ian J. Walker, and Bernard O. Bauer. 2018. "Airflow Dynamics over a Beach and Foredune System with Large Woody Debris" Geosciences 8, no. 5: 147. https://doi.org/10.3390/geosciences8050147
APA StyleGrilliot, M. J., Walker, I. J., & Bauer, B. O. (2018). Airflow Dynamics over a Beach and Foredune System with Large Woody Debris. Geosciences, 8(5), 147. https://doi.org/10.3390/geosciences8050147