Transport of Mineral Dust and Its Impact on Climate
Abstract
:1. Introduction
2. From Source to Sink: The Atmospheric Dust Cycle
2.1. Dust Emission
2.2. Dust Transport
2.3. Dust Deposition
3. Mineral Dust in the Atmosphere
3.1. Blowing with the Wind: Atmospheric Transport of Mineral Dust
3.2. Interannual Variability
3.3. Dust Feedbacks and Impacts
3.3.1. Radiation
3.3.2. Clouds
3.4. Processing: Dust Aging
4. Implications for Climate
5. Future Research
Funding
Acknowledgments
Conflicts of Interest
References
- Carslaw, K.S.; Boucher, O.; Spracklen, D.V.; Mann, G.W.; Rae, J.G.L.; Woodward, S.; Kulmala, M. A review on natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 2010, 10, 1701–1731. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.H.; Chappell, A.; Huang, J.; Lin, Z.; MacTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Mahowald, N.M.; Baker, A.R.; Bergametti, G.; Brooks, N.; Duce, R.A.; Jickells, T.D.; Kubilay, N.; Prospero, J.M.; Tegen, I. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 2005, 19, GB4025. [Google Scholar] [CrossRef]
- Okin, G.S.; Mahowald, N.; Chadwick, O.A.; Artaxo, P. Impact of desert dust on the biogeochemistry of phosphors in terrestrial ecosystems. Glob. Biogeochem. Cycles 2004, 18, GB2005. [Google Scholar] [CrossRef]
- Journet, E.; Desboeufs, K.V.; Caquineau, S.; Colin, J.L. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 2008, 35, L07805. [Google Scholar] [CrossRef]
- Griffin, D.W.; Kellogg, C.A. Dust Storms and Their Impact on Ocean and Human Health: Dust in Earth’s Atmosphere. EcoHealth 2004, 1, 284–295. [Google Scholar] [CrossRef]
- Sultan, B.; Labadi, K.; Guegan, J.F.; Janicot, S. Climate drives the meningitis epidemics onset in West Africa. PLoS Med. 2005, 2, e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morman, S.A.; Plumlee, G.S. The role of airborne mineral dusts in human disease. Aeolian Res. 2013, 9, 203–212. [Google Scholar] [CrossRef]
- Tong, D.Q.; Wang, J.X.L.; Gill, T.E.; Lei, H.; Wang, B. Intensified dust storm activity and Valley fever infection in the southwestern United States. Geophys. Res. Lett. 2017, 44, 4304–4312. [Google Scholar] [CrossRef]
- Prospero, J.M.; Blades, E.; Mathison, G.; Naidu, R. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologica 2005, 21, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Martinez, V.; Pelt, S.V.; Moore-Kucera, J.; Baddock, M.C.; Zobeck, T.M. Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Res. 2015, 18, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Gat, D.; Mazar, Y.; Cytryn, E.; Rudich, Y. Origin-Dependet Variations in the Atmospheric Microbiome Community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. Lett. 2017, 51, 6709–6718. [Google Scholar] [CrossRef] [PubMed]
- Schroedter-Homscheid, M.; Oumbe, A.; Benedetti, A.; Morcrette, J.J. Aerosols for concentrating solar electricity production forecasts. Bull. Amer. Meteor. Soc. 2013, 94, 903–914. [Google Scholar] [CrossRef]
- Piedra, P.; Moosmueller, H. Optical losses of photovoltaic cells due to aerosol deposition: Role of particle refractive index and size. Solar Energy 2017, 155, 637–646. [Google Scholar] [CrossRef]
- Rieger, D.; Steiner, A.; Bachmann, V.; Gasch, P.; Förstner, J.; Deetz, K.; Vogel, B.; Vogel, H. Impact of the 4 April 2014 Saharan dust outbreak on the photovoltaic power generation in Germany. Atmos. Chem. Phys. 2017, 17, 13391–13415. [Google Scholar] [CrossRef]
- Lee, J.A.; Gill, T.E. Multiple causes of wind erosion in the Dust Bowl. Aeolian Res. 2015, 19, 15–36. [Google Scholar] [CrossRef]
- Hand, J.L.; Gill, T.E.; Schichtel, B.A. Spatial and seasonal variability in fine mineral dust and coarse aerosol mass at remote sites across the United States. J. Geophys. Res. 2017, 122, 3080–3097. [Google Scholar] [CrossRef]
- Webb, N.P.; Pierre, C. Quantifying Anthropogenic Dust Emissions. Earth’s Future 2018, 6, 286–295. [Google Scholar] [CrossRef]
- Marticorena, B.; Bergametti, G. Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res. 1995, 100, 16415–16430. [Google Scholar] [CrossRef]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Foster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Palmer, T.Y. Large fire winds, gases and smoke. Atmos. Environ. 1981, 15, 2079–2990. [Google Scholar] [CrossRef]
- Schlosser, J.; Braun, R.A.; Bradley, T.; Dadashazar, H.; MacDonald, A.B.; Aldhaif, A.A.; Aghdam, M.A.; Mardi, A.H.; Peng, X.; Sorooshian, A. Analysis of aerosol composition data for western United States wildfires between 2005 and 2015: Dust emission, chloride depletion, and most enhanced aerosol constituents. J. Geophys. Res. 2017, 122, 8951–8966. [Google Scholar] [CrossRef] [PubMed]
- Schuster, G.L.; Vaughan, M.; MacDonnell, D.; Su, W.; Winker, D.; Dubovik, O.; Lapyonok, T.; Trepte, C. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the LiDAR ratio of dust. Atmos. Chem. Phys. 2012, 12, 7431–7452. [Google Scholar] [CrossRef]
- Gross, S.; Freudenthaler, V.; Schepanski, K.; Toledano, C.; Schäfler, A.; Ansmann, A.; Weinzierl, B. Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarisation Raman LiDAR measurements. Atmos. Chem. Phys. 2015, 15, 11067–11080. [Google Scholar] [CrossRef] [Green Version]
- Calrson, T.N. Atmospheric Turbidity in Saharan Dust Outbreaks as Determined by Analyses of Satellite Brightness Data. Mon. Weather Rev. 1979, 107, 322–335. [Google Scholar]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Baddock, M.C.; Bullard, J.E.; Bryant, R.G. Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sens. Environ. 2009, 113, 1511–1528. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Schepanski, K.; Tegen, I.; Laurent, B.; Heinold, B.; Macke, A. A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels. Geophys. Res. Lett. 2007, 34, L18803. [Google Scholar] [CrossRef]
- Schepanski, K.; Tegen, I.; Macke, A. Comparison of satellite based observations of Saharan dust source areas. Remote Sens. Environ. 2012, 123, 90–97. [Google Scholar] [CrossRef]
- Vickery, K.J.; Eckardt, F.D.; Bryant, R.G. A sub-basin scale dust plume source frequency inventory for southern Africa, 2005–2008. Geophys. Res. Lett. 2013, 40, 5274–5279. [Google Scholar] [CrossRef]
- von Holdt, J.R.; Eckardt, F.D.; Wiggs, G.F.S. Landsat identifies dust emission dynamics at the landform scale. Remote Sens. Environ. 2017, 198, 229–243. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J. An analysis of global aerosol type as retrieved by MISR. J. Geophys. Res. 2015, 120, 4248–4281. [Google Scholar] [CrossRef]
- Luo, T.; Wang, Y.; Zhang, D.; Liu, X.; Wang, Y.; Yuan, R. Global dust distribution from improved thin dust layer detection using A-train satellite LiDAR observations. Geophys. Res. Lett. 2015, 42, 620–628. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Koren, I.; Remer, L.A.; Tanré, D.; Ginoux, P.; Fan, S. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J. Geophys. Res. 2005, 110, D10S12. [Google Scholar] [CrossRef]
- Schepanski, K.; Tegen, I.; Macke, A. Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys. 2009, 9, 1173–1189. [Google Scholar] [CrossRef]
- Brindley, H.E. Estimating the top-of-atmosphere longwave radiative forcing due to Saharan dust from satellite observations over a west African surface site. Atmos. Sci. Lett. 2007, 8, 74–79. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef] [PubMed]
- Banks, J.R.; Schepanski, K.; Heinold, B.; Hunerbein, A.; Brindley, H.E. The influence of dust optical properties on the colour of simulated MSG-SEVIRI Desert Dust imagery. Atmos. Chem. Phys. Discuss. 2018. [Google Scholar] [CrossRef]
- Formenti, P.; Schuütz, L.; Balkanski, Y.; Desboeufs, K.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys. 2011, 11, 8231–8256. [Google Scholar] [CrossRef] [Green Version]
- Caquineau, S.; Gaudichet, A.; Gomes, L.; Legrand, M. Mineralogy of Saharan dust transported over northwestern tropical Atlantic Ocean in relation to source regions. J. Geophys. Res. 2002, 107, 4251. [Google Scholar] [CrossRef]
- Nickovic, S.; Vukovic, A.; Vujadinovic, M.; Djurdjevic, V.; Pejanovic, G. Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modelling. Atmos. Chem. Phys. 2012, 12, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Journet, E.; Balkanski, Y.; Harrison, S. A new data set of soil mineralogy for dust-cycle modeling. Atmos. Chem. Phys. 2014, 14, 3801–3816. [Google Scholar] [CrossRef] [Green Version]
- Perlwitz, J.; Garcia-Pando, C.P.; Miller, R.L. Predicting the mineral composition of dust aerosols—Part 1: Representing key processes. Atmos. Chem. Phys. 2015, 15, 11593–11627. [Google Scholar] [CrossRef]
- Perlwitz, J.; Garcia-Pando, C.P.; Miller, R.L. Predicting the mineral composition of dust aerosols—Part 2: Model evaluation and identification of key processes with observations. Atmos. Chem. Phys. 2015, 15, 11629–11652. [Google Scholar] [CrossRef]
- Scanza, R.A.; Mahowald, N.; Ghan, S.; Zender, C.S.; Kok, J.F.; Liu, X.; Zhang, Y.; Albani, S. Modeling dust as component minerals in the Community Atmosphere Model: Development of framework and impact on radiative forcing. Atmos. Chem. Phys. 2015, 15, 537–561. [Google Scholar] [CrossRef]
- Huneeus, N.; Schulz, M.; Balkanski, Y.; Griesfeller, J.; Prospero, J.; Kinne, S.; Bauer, S.; Boucher, O.; Chin, M.; Dentener, F.; et al. Global dust model inter comparison in AeroCom phase I. Atmos. Chem. Phys. 2011, 11, 7781–7816. [Google Scholar] [CrossRef] [Green Version]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen: New York, NY, USA, 1941. [Google Scholar]
- Kok, J.F.; Parteli, E.J.R.; Michaels, T.I.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [PubMed]
- Gillette, D. A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production. Atmos. Environ. 1978, 12, 1735–1743. [Google Scholar] [CrossRef]
- Kok, J.F.; Renno, N.O. A comprehensive numerical model of steady-state saltation (COMSALT). J. Geophys. Res. 2010, 114, D17204. [Google Scholar] [CrossRef]
- Reheis, M.C.; Kihl, R. Dust deposition in southern Nevada and California, 1984–1989: Relations to climate, source area and source lithology. J. Geophys. Res. 1995, 100, 8893–8918. [Google Scholar] [CrossRef]
- Schepanski, K.; Wright, T.J.; Knippertz, P. Evidence for flash floods over deserts from loss of coherence in InSAR imagery. J. Geophys. Res. 2012, 117, D20101. [Google Scholar] [CrossRef]
- Bullard, J.E.; Harrison, S.P.; Baddock, M.C.; Drake, N.; Gill, T.E.; McTainsh, G.; Sun, Y. Preferential dust sources: A geomorphological classification designed for use in global dust-cycle models. J. Geophys. Res. 2011, 116, F04034. [Google Scholar] [CrossRef]
- Schepanski, K.; Flamant, C.; Chaboureau, J.P.; Kocha, C.; Banks, J.R.; Brindley, H.E.; Lavaysse, C.; Marnas, F.; Pelon, J.; Tulet, P. Characterization of dust emission from alluvial sources using aircraft observations and high-resolution modeling. J. Geophys. Res. 2013, 118, 7237–7259. [Google Scholar] [CrossRef]
- Mahowald, N.M.; Albani, S.; Kok, J.F.; Engelstaedter, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef]
- Middleton, N.J.; Betzer, P.R.; Bull, R.A. Long-range transport of ‘giant’ aeolian quartz grains: linkage with discrete sedimentary sources and implications for protective particle transfer. Mar. Geol. 2001, 117, 411–417. [Google Scholar] [CrossRef]
- Ryder, C.L.; Highwood, E.J.; Rosenberg, P.D.; Trembath, J.; Brooke, J.K.; Bart, M.; Dean, A.; Crosier, J.; Dorsey, J.; Brindley, H.; et al. Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmos. Chem. Phys. 2013, 13, 1303–1325. [Google Scholar] [CrossRef] [Green Version]
- Korte, L.F.; Brummer, G.J.A.; van der Does, M.; Guerreiro, C.V.; Hennekam, R.; van Hateren, J.A.; Jong, D.; Munday, C.I.; Schouten, S.; Stuut, J.B.W. Downward particle fluxes of biogenic matter and Saharan dust across the equatorial North Atlantic. Atmos. Chem. Phys. 2017, 14, 6023–6040. [Google Scholar] [CrossRef]
- Arimoto, R. Eolian dust and climate: Relationships to sources, tropospheric chemistry, transport and deposition. Earth-Sci. Rev. 2001, 54, 29–42. [Google Scholar] [CrossRef]
- Ito, A.; Shi, Z. Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean. Atmos. Chem. Phys. 2016, 16, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Tuzet, F.; Dumont, M.; Lafaysse, M.; Picard, G.; Arnaud, L.; Voisin, D.; Lejeune, Y.; Charrois, L.; Nabat, P.; Morin, S. A multilayer physical based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow. Cryosphere 2017, 11, 2633–2653. [Google Scholar] [CrossRef]
- Cuevas, E.; Camino, C.; Benedetti, A.; Basart, S.; Terradellas, E.; Baldasano, J.M.; Morcrette, J.J.; Marticorena, B.; Goloub, P.; Mortier, A.; et al. The MACC-II 2007–2008 reanalysis: Atmospheric dust evaluation and characterization over northern Africa and the Middle East. Atmos. Chem. Phys. 2015, 15, 3991–4024. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K.; Tegen, I.; Todd, M.C.; Heinold, B.; Bönisch, G.; Laurent, B.; Macke, A. Meteorological processes forcing Saharan dust emission inferred from MSG-SEVIRI observations of sub-daily source activation and numerical models. J. Geophys. Res. 2009, 114, D10201. [Google Scholar] [CrossRef]
- Wagner, R.; Schepanski, K.; Heinold, B.; Tegen, I. Interannual variability in the Saharan dust source activation—Toward understanding the differences between 2007 and 2008. J. Geophys. Res. 2016, 121, 4538–4562. [Google Scholar] [CrossRef]
- Washington, R.; Bouet, C.; Cautenet, G.; Mackenzie, E.; Ashpole, I.; Engelstaedter, S.; Lizcano, G.; Henderson, G.M.; Schepanski, K.; Tegen, I. Dust as a tipping element: The Bodélé Depression, Chad. Proc. Natl. Acad. Sci. USA 2009, 106, 20564–20571. [Google Scholar] [CrossRef] [PubMed]
- Chiapello, I.; Bergametti, G.; Chatenet, B.; Bousquet, P.; Dulac, F.; Soares, E.S. Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res. 1997, 102, 13701–13709. [Google Scholar] [CrossRef]
- Kalashnikova, O.V.; Kahn, R.A. Mineral dust plume evolution over the Atlantic from MISR and MODIS aerosol retrievals. J. Geophys. Res. 2008, 113, D24204. [Google Scholar] [CrossRef]
- Foltz, G.R.; McPhaden, M.J. Impact of Saharan dust on tropical North Atlantic SST. J. Clim. 2008, 21, 5048–5060. [Google Scholar] [CrossRef]
- Dunion, J.P.; Velden, C.S. The impact of the Saharan Air Layer on Atlantic tropical cyclone activity. Bull. Am. Meteorol. Soc. 2004, 353–365. [Google Scholar] [CrossRef]
- Evan, A.T.; Dunion, J.; Foley, J.A.; Heidinger, A.K.; Veldern, C.S. New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett. 2006, 33, L19813. [Google Scholar] [CrossRef]
- Sun, D.; Lau, K.M.; Kafatos, M. Contrasting the 2007 and 2005 hurricane season: Evidence of possible impacts of Saharan dry air and dust on tropical cyclone activity in the Atlantic basin. Geophys. Res. Lett. 2008, 35, L15405. [Google Scholar] [CrossRef]
- Swap, R.; Garstang, M.; Greco, S.; Talbot, R.; Kallberg, P. Saharan dust in the Amazon basin. Tellus 1992, 44B, 113–149. [Google Scholar]
- Yu, H.; Chin, M.; Yuan, T.; Bian, H.; Remer, L.A.; Prospero, J.M.; Omar, A.; Winker, D.; Yang, Y.; Zhang, Y.; Zhang, Z.; Zhao, C. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett. 2015, 42, 1984–1991. [Google Scholar] [CrossRef]
- Escudero, M.; Castillo, S.; Querol, X.; Avila, A.; Alarcón, M.; Viana, M.M.; Alastuey, A.; Cuevas, E.; Rodriguez, S. Wet and dry African dust episodes over eastern Spain. J. Geophys. Res. 2015, 110, D18S08. [Google Scholar] [CrossRef]
- Cachorro, V.E.; Burgos, M.A.; Mateos, D.; Toledano, C.; Bennouna, Y.; Torres, B.; de Frutos, A.M.; Herguedas, A. Inventory of African desert dust events in the north-central Iberian Peninsula in 2003–2014 based on sun-photometer-ARONET and particulate-mass-EMEP data. Atmos. Chem. Phys. 2016, 16, 8227–8248. [Google Scholar] [CrossRef]
- Flentje, H.; Briel, B.; Beck, C.; Coen, M.C.; Fricke, M.; Cyrys, J.; Gu, J.; Pitz, M.; Thomas, W. Identification and monitoring of Saharan dust: An inventory representative for south Germany since 1997. Atmos. Environ. 2015, 109, 87–96. [Google Scholar] [CrossRef]
- Karam, D.B.; Flamant, C.; Cuesta, J.; Pelon, J.; Williams, E. Dust emission and transport associated with a Saharan depression: February 2007 case. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Schepanski, K.; Knippertz, P. Soudano-Saharan depressions and their importance for precipitation and dust: a new perspective on a classical synoptic concept. Q. J. R. Meteorol. Soc. 2011, 137, 1431–1445. [Google Scholar] [CrossRef]
- Fiedler, S.; Schepanski, K.; Heinold, B.; Knippertz, P.; Tegen, I. How important are atmospheric depressions and mobile cyclones for emitting mineral dust aerosol in North Africa? Atmos. Chem. Phys. 2014, 14, 8983–9000. [Google Scholar] [CrossRef]
- Rodríguez, S.; Cuevas, E.; Prospero, J.M.; Alastuey, A.; Querol, X.; López-Solano, J.; García, M.I.; Alonso-Pérez, S. Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys. 2015, 15, 7471–7486. [Google Scholar] [CrossRef]
- Schepanski, K.; Mallet, M.; Heinold, B.; Ulrich, M. North African dust transport toward the western Mediterranean basin: atmospheric controls on dust source activation and transport pathways during June–July 2013. Atmos. Chem. Phys. 2016, 16, 14147–14168. [Google Scholar] [CrossRef]
- Schepanski, K.; Heinold, B.; Tegen, I. Harmattan, Saharan heat low, and West African monsoon circulation: Modulations on the Saharan dust outflow towards the North Atlantic. Atmos. Chem. Phys. 2017, 17, 10223–10243. [Google Scholar] [CrossRef]
- Fiedler, S.; Schepanski, K.; Heinold, B.; Knippertz, P.; Tegen, I. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission. J. Geophys. Res. 2013, 118, 6100–6121. [Google Scholar] [CrossRef] [PubMed]
- Ashpole, I.; Washington, R. Intraseasonal variability and atmospheric controls on daily dust occurrence frequency over the central and Western Sahara during the boreal summer. J. Geophys. Res. 2013, 118, 12915–12926. [Google Scholar] [CrossRef]
- Vizy, E.K.; Cook, K.H. A mechanism for African monsoon breaks: Mediterranean cold air surges. J. Geophys. Res. 2009, 114, D01104. [Google Scholar] [CrossRef]
- Parker, D.J.; Burton, R.R.; Diongue-Niang, A.; Ellis, R.J.; Felton, M.; Taylor, C.M.; Thorncroft, C.D.; Bessemoulin, P.; Tompkins, A.M. The diurnal cycle of the West African monsoon circulaton. Q. J. R. Meteorol. Soc. 2005, 131, 2839–2860. [Google Scholar] [CrossRef]
- Karam, D.B.; Flamant, C.; Knipperz, P.; Reitebuch, O.; Pelon, J.; Chong, M.; Dabas, A. Dust emission over the Sahel associated with the West African monsoon inter-tropical discontinuity region: A representative case study. Q. J. R. Meteorol. Soc. 2008, 134, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Notaro, M.; Alkolibi, F.; Fadda, E.; Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. 2013, 118, 6028–6043. [Google Scholar] [CrossRef]
- Banks, J.R.; Brindley, H.E.; Stenchikov, G.; Schepanski, K. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015). Atmos. Chem. Phys. 2017, 17, 3987–4003. [Google Scholar] [CrossRef]
- Vishkaee, F.A.; Flamant, C.; Cuesta, J.; Oolman, L.; Flamant, P. Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study. J. Geophys. Res. 2012, 117, D03201. [Google Scholar] [CrossRef]
- Yu, Y.; Nataro, M.; Kalashnikova, O.V.; Garay, M.J. Climatology of summer Shamal wind in the Middle East. J. Geophys. Res. 2016, 121, 289–305. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Houssos, E.E.; Solmon, F.; Legrand, M.; Rashki, A.; Dumka, U.C.; Francois, P.; Gautam, R.; Singh, R.P. Impact of atmospheric circulation types on southwest Asian dust and Indian summer monsoon rainfall. Atmos. Res. 2018, 201, 189–205. [Google Scholar] [CrossRef]
- Crouvi, O.; Dayan, U.; Amit, R.; Enzel, Y. An Israeli haboob: Sea breeze activating local anthropogenic dust sources in the Negev loess. Aeolian Res. 2017, 24, 39–52. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Mei, F. Modeling mineral dust emission from Chinese and Mongolian deserts. Glob. Planet. Chang. 2006, 52, 121–141. [Google Scholar] [CrossRef]
- Creamean, J.M.; Spackman, J.R.; Davis, S.M.; White, A.B. Climatology of long-range transported Asian dust along the West Coast of the United States. J. Geophys. Res. 2014, 119, 12171–12185. [Google Scholar] [CrossRef]
- Kavouras, I.G.; Etyemezian, V.; DuBois, D.W.; Xu, J.; Pitchford, M. Source reconciliation of atmospheric dust causing visibility impairment in class I areas of the Western United States. J. Geophys. Res. 2009, 114, D02308. [Google Scholar] [CrossRef]
- Indoitu, R.; Kozhoridze, G.; Batyrbaeva, M.; Vitkovskaya, I.; Orlovsky, N.; Blumberg, D.; Orlovsky, L. Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Res. 2015, 17, 101–115. [Google Scholar] [CrossRef]
- Opp, C.; Groll, M.; Aslanov, I.; Lotz, T.; Vereshagina, N. Aeolian dust deposition in the southern Aral Sea region (Uzbekistan): Ground-based monitoring results from the LUCA project. Quat. Int. 2017, 429B, 86–99. [Google Scholar] [CrossRef]
- Hand, J.L.; White, W.H.; Gebhart, K.A.; Hyslop, N.P.; Gill, T.E.; Schichtel, B.A. Earlier onset of the spring fine dust season in the southwestern United States. Geophys. Res. Lett. 2016, 43, 4001–4009. [Google Scholar] [CrossRef]
- Tong, D.Q.; Dan, M.; Wang, T.; Lee, P. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring. Atmos. Chem. Phys. 2012, 12, 5189–5205. [Google Scholar] [CrossRef]
- Gaiero, D.M.; Simonella, L.; Gassó, S.; Gili, S.; Stein, A.F.; Sosa, P.; Becchio, R.; Arce, J.; Marelli, H. Ground/satellite observations and atmospheric modeling of dust storms originating in the high Puna-Altiplano deserts (South America): Implications for the interpretation of paleo-climatic archives. J. Geophys. Res. 2013, 118, 3817–3831. [Google Scholar] [CrossRef] [Green Version]
- Gassó, S.; Stein, A.F. Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean. Geophys. Res. Lett. 2007, 34, L01801. [Google Scholar] [CrossRef]
- Piketh, S.J.; Annegarn, H.J.; Tyson, P.D. Lower tropospheric aerosol loadings over South Africa: The relative contribution of aeolian dust, industrial emissions, and biomass burning. J. Geophys. Res. 1999, 104, 1597–1607. [Google Scholar] [CrossRef]
- O’Loingsigh, T.; Chubb, T.; Baddock, M.; Kelly, T.; Tapper, N.J.; Deckker, P.D.; McTainsh, G. Sources and pathways of dust during the Australian “Millennium Drought” decade. J. Geophys. Res. 2017, 122, 1246–1260. [Google Scholar] [CrossRef]
- Strong, C.L.; Parsons, K.; McTainsh, G.H.; Sheehan, A. Dust transporting wind systems in the lower Lake Eyre Basin, Australia: A preliminary study. Aeolian Res. 2011, 2, 205–214. [Google Scholar] [CrossRef]
- Ekström, M.; McTainsh, G.H.; Chappell, A. Australian dust storms: Temporal trends and relationships with synoptic pressure distributions (1960–99). Int. J. Climatol. 2004, 24, 1581–1599. [Google Scholar] [CrossRef]
- Bullard, J.E. The distribution and biogeochemical importance of high-latitude dust in the Arctic and Southern Ocean-Antarctic regions. J. Geophys. Res. 2017, 122, 3098–3103. [Google Scholar] [CrossRef]
- Zwaaftink, C.D.G.; Grythe, H.; Skov, H.; Stohl, A. Substantial contribution of northern high-latitude sources to mineral dust in the Arctic. J. Geophys. Res. 2016, 121, 13678–13697. [Google Scholar] [CrossRef]
- Bullard, J.E. Contemporary glacigenic inputs to the dust cycle. Earth Surf. Process. Landforms 2013, 38, 71–89. [Google Scholar] [CrossRef]
- Bullard, J.E.; Baddock, M.; Bradwell, T.; Crusius, J.; Darlington, E.; Gaiero, D.; Gassó, S.; Gisladottir, G.; Hodgkins, R.; McCulloch, R.; et al. High-latitude dust in the Earth system. Rev. Geophys. 2016, 54, 447–485. [Google Scholar] [CrossRef] [Green Version]
- Crusius, J.; Schroth, A.W.; Gassó, S.; Moy, C.M.; Levy, R.C.; Gatica, M. Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron. Geophys. Res. Lett. 2011, 38, L06603. [Google Scholar] [CrossRef]
- Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H. Long-term frequency and characteristics of dust storm events in Northeast Iceland (1949–2011). Atmos. Environ. 2013, 77, 117–127. [Google Scholar] [CrossRef]
- Neff, P.D.; Bertler, N.A.N. Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica. J. Geophys. Res. 2015, 120, 9303–9322. [Google Scholar] [CrossRef]
- Shoenfelt, E.M.; Sun, J.; Winckler, G.; Kaplan, M.R.; Borunda, A.L.; Farrell, K.R.; Moreno, P.I.; Gaiero, D.M.; Recasens, C.; Sambrotto, R.N.; et al. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom. Sci. Adv. 2017, 3, e1700314. [Google Scholar] [CrossRef] [PubMed]
- Schroth, A.W.; Crusius, J.; Gassó, S.; Moy, C.M.; Buck, N.J.; Resing, J.A.; Campbell, R.W. Atmospheric deposition of glacial iron in the Gulf of Alaska impacted by the position of the Aleutian Low. Geophys. Res. Lett. 2017, 44, 5053–5061. [Google Scholar] [CrossRef]
- Prospero, J.M.; Lamb, P.J. African Droughts and Dust Transport to the Caribbean: Climate Change Implications. Science 2003, 302, 1024–1027. [Google Scholar] [CrossRef] [PubMed]
- Chiapello, I.; Moulin, C.; Prospero, J.M. Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale Total Ozone Mapping Spectrometer (TOMS) optical thickness. J. Geophys. Res. 2005, 110, D18S10. [Google Scholar] [CrossRef]
- Doherty, O.M.; Riemer, N.; Hameed, S. Saharan mineral dust transport into the Caribbean: Observed atmospheric controls and trends. J. Geophys. Res. 2008, 113, D07211. [Google Scholar] [CrossRef]
- Achakulwisut, P.; Shen, L.; Mickley, L.J. What controls springtime fine dust variability in the western United States? Investigating the 2002-2015 increase in fine dust in the U.S. Southwest. J. Geophys. Res. 2017, 122, 12449–12467. [Google Scholar] [CrossRef]
- Seager, R.; Hoerling, M. Atmosphere and Ocean Origins of North American Droughts. J. Clim. 2014, 27, 4582–4606. [Google Scholar] [CrossRef]
- Banerjee, P.; Kumar, S.P. ENSO modulation of interannual variability of dust aerosol over the northwest Indian Ocean. J. Clim. 2016, 29, 1287–1303. [Google Scholar] [CrossRef]
- Bryant, R.G.; Bigg, G.R.; Mahowald, N.M.; Eckhardt, F.D.; Ross, S.G. Dust emission response to climate in southern Africa. J. Geophys. Res. 2007, 112, D09207. [Google Scholar] [CrossRef]
- Rotstayn, L.D.; Collier, M.A.; Mitchell, R.M.; Qin, Y.; Campbell, S.K.; Dravitzki, S.M. Simulated enhancement of ENSO-related rainfall variability due to Australian dust. Atmos. Chem. Phys. 2011, 11, 6575–6592. [Google Scholar] [CrossRef]
- Webb, N.P.; McGowan, H.A.; Phinn, S.R.; McTainsh, G.H.; Leys, J.F. Simulation of the spatiotemporal aspects of land erodibility in the northeast Lake Eyre Basin, Australia, 1980–2006. J. Geophys. Res. 2009, 114, F01013. [Google Scholar] [CrossRef]
- Notaro, M.; Yu, Y.; Kalashnikova, O.V. Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought. J. Geophys. Res. 2015, 120, 10229–10249. [Google Scholar] [CrossRef]
- Mao, R.; Ho, C.H.; Shao, Y.; Gong, D.Y.; Kim, J. Influence of Arctic Oscillation on dust activity over northeast Asia. Atmos. Environ. 2011, 45, 326–337. [Google Scholar] [CrossRef]
- Miller, R.; Tegen, I. Radiative Forcing of a Tropical Direct Circulation by Soil Dust Aerosols. J. Atmos. Sci. 1999, 56, 2403–3433. [Google Scholar] [CrossRef]
- Miller, R.L. Adjustment to radiative forcing in a simple coupled ocean-atmosphere model. J. Clim. 2012, 25, 7802–7821. [Google Scholar] [CrossRef]
- Kok, J.F.; Ridley, D.A.; Zhou, Q.; Miller, R.L.; Zhao, C.; Heald, C.L.; Ward, D.S.; Albani, S.; Haustein, K. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci. 2017, 10, 274–278. [Google Scholar] [CrossRef]
- Pérez, C.; Nickovic, S.; Pejanovic, G.; Baldasano, J.M.; Özsoy, E. Interactive dust-radiation modeling: A step to improve weather forecasts. J. Geophys. Res. 2006, 111, D16206. [Google Scholar] [CrossRef]
- Miller, R.L.; Slingo, A.; Bernard, J.C.; Kassianov, E. Seasonal contrast in the surface energy balance of the Sahel. J. Geophys. Res. 2009, 114, D00E05. [Google Scholar] [CrossRef]
- Heinold, B.; Tegen, I.; Schepanski, K.; Hellmuth, O. Dust radiative feedback on Saharan boundary layer dynamics and dust mobilization. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef]
- Purppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitations; Kluwer Academic Publisheres: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Ansmann, A.; Tesche, M.; Seifert, P.; Althausen, D.; Engelmann, R.; Fruntke, J.; Wandinger, U.; Mattis, I.; Mueller, D. Evolution of the ice phase in tropical altocumulus: SAMUM LiDAR observations over Cape Verde. J. Geophys. Res. 2009, 114, D17208. [Google Scholar] [CrossRef]
- Niedermeier, D.; Hartmann, S.; Shaw, R.A.; Covert, D.; Mentel, T.F.; Schneider, J.; Poulain, L.; Reitz, P.; Spindler, G.; Clauss, T.; et al. Heteorogeneous freezing of droplets with immersed mineral dust particles—Measurements and parameterization. Atmos. Chem. Phys. 2010, 10, 3601–3614. [Google Scholar] [CrossRef] [Green Version]
- Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V.A.; Kumar, P.; Kottmeier, C.; Blahak, U. Saharan dust event impacts on cloud formation and radiation over Western Europe. Atmos. Chem. Phys. 2012, 12, 4045–4063. [Google Scholar] [CrossRef]
- Cziczo, D.J.; Froyd, K.D. Sampling the composition of cirrus ice residuals. Aeolian Res. 2014, 142, 15–31. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Moore, M.J.K.; Petters, M.D.; Kreidenweis, S.M.; Roberts, G.C.; Prather, K.A. Effect of chemical mixing state on the hygroscopicity and cloud nucleation properties of calcium mineral dust particles. Atmos. Chem. Phys. 2009, 9, 3303–3316. [Google Scholar] [CrossRef]
- Sullivan, R.C.; Petters, M.D.; DeMott, P.J.; Kreidenweis, S.M.; Wex, H.; Niedermeier, D. Irreversible loss of ice nucleation active sites in mineral dust particles caused by sulphuric acid condensation. Atmos. Chem. Phys. 2010, 10, 11471–11487. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Wurzler, S.; Levin, Z.; Reisin, T.G. Interactions of mineral dust particles and clouds: Effects on precipitation and cloud optical properties. J. Geophys. Res. 2002, 107, 4724. [Google Scholar] [CrossRef]
- Baker, A.R.; Croot, P.L. Atmospheric and marine controls on aerosol iron solubility in seawater. Mar. Chem. 2010, 120, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Samset, B.H. How cleaner air changes the climate. Science 2018, 360, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Tegen, I.; Schepanski, K. Climate Feedback on Aerosol Emission and Atmospheric Concentrations. Curr. Clim. Chang. Rep. 2018, 4, 1–10. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schepanski, K. Transport of Mineral Dust and Its Impact on Climate. Geosciences 2018, 8, 151. https://doi.org/10.3390/geosciences8050151
Schepanski K. Transport of Mineral Dust and Its Impact on Climate. Geosciences. 2018; 8(5):151. https://doi.org/10.3390/geosciences8050151
Chicago/Turabian StyleSchepanski, Kerstin. 2018. "Transport of Mineral Dust and Its Impact on Climate" Geosciences 8, no. 5: 151. https://doi.org/10.3390/geosciences8050151
APA StyleSchepanski, K. (2018). Transport of Mineral Dust and Its Impact on Climate. Geosciences, 8(5), 151. https://doi.org/10.3390/geosciences8050151