Role of Aeolian Dust in Shaping Landscapes and Soils of Arid and Semi-Arid South Africa
Abstract
:1. Introduction
2. The Unusual Mound-Studded Topography of the Succulent Karoo
2.1. Role of Aeolian Sediment Deposition
2.2. Other Influences of Aeolian Deposition
2.3. Comparison of Heuweltjies with other Mounds
2.4. Unanswered Questions
3. Stone Pavements
3.1. Ecohydrology Interrelationships
3.2. Quartz Pavements of the Knersvlakte
3.3. Future Investigation
4. Hillslope Environments
4.1. A South African Example
4.2. A North American Comparison
5. Lessons Learned and Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Simonson, R.W. Airborne dust and its significance to soils. Geoderma 1995, 65, 1–43. [Google Scholar] [CrossRef]
- Lovegrove, B.G.; Siegfried, W.R. Distribution and formation of Mima-like earth mounds in the Western Cape Province of South Africa. S. Afr. J. Sci. 1986, 82, 432–436. [Google Scholar]
- Lovegrove, B.G. Mima-like mounds (heuweltjies) of South Africa: The topographical, ecological, and economic impact of burrowing mammals. Symp. Zool. Soc. Lond. 1991, 63, 183–198. [Google Scholar]
- Laurie, H. Optimal transport in central place foraging, with and application to the overdispersion of heuweltjies. S. Afr. J. Sci. 2002, 98, 141–146. [Google Scholar]
- Moore, J.; Picker, M. Heuweltjies (earth mounds) in the Clanwilliam District, Cape Province, South Africa: 4000-year-old termite nests. Oecologia 1991, 86, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Picker, M.; Hoffman, M.T.; Leverton, B. Density of Microhodotermes viator (Hodototermitidae) mounds in southern Africa in relation to rainfall and vegetative productivity. J. Zool. 2007, 271, 37–44. [Google Scholar] [CrossRef]
- Francis, J.L.; Ellis, F.; Lambrechts, J.J.N.; Poch, R.M. A micromorphological view through a Namaqualand termitaria (Heuweltjie, a Mima-like mound). Catena 2012, 100, 57–73. [Google Scholar] [CrossRef]
- Lovegrove, B.G.; Siegfried, W.R. Spacing and origins of Mima-like earth mounds in the Cape Province of South Africa. S. Afr. J. Sci. 1989, 85, 108–112. [Google Scholar]
- Cox, G.W.; Lovegrove, B.G.; Siegfried, W.R. The small stone content of Mima-like mounds in the South African Cape region: Implications for mound origin. Catena 1987, 14, 165–176. [Google Scholar] [CrossRef]
- Milton, S.J.; Dean, W.R.J. Mima-like mounds in the southern and western Cape: Are the origins so mysterious? S. Afr. J. Sci. 1990, 86, 207–208. [Google Scholar]
- Midgley, J.J.; Harris, C.; Hesse, H.; Swift, A. Heuweltjie age and vegetation change based on δ13C and 14C analyses. S. Afr. J. Sci. 2002, 98, 202–204. [Google Scholar]
- Potts, A.J.; Midgley, J.J.; Harris, C. Stable isotope and 14C study of biogenic calcrete in a termite mound, Western Cape, South Africa, and its paleoenvironmental significance. Quat. Res. 2009, 72, 258–264. [Google Scholar] [CrossRef]
- Cramer, M.D.; Innes, S.N.; Midgley, J.J. Hard evidence that heuweltjie earth mounds are relictual features produced by differential erosion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 350–352, 189–197. [Google Scholar] [CrossRef]
- Slabber, M.H. ‘n Grondopname in die Malmesbury-Piketberg Streek. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 1945. (In Afrikaans). [Google Scholar]
- Van der Merwe, C.R. Soil Groups and Sub-Groups of South Africa; Chemistry Series No. 165, Science Bulletin 231; Government Printer; Union of South Africa Department of Agriculture and Forestry: Pretoria, South Africa, 1941; 316p.
- Bester, J.A. Gronde van Piketberg-Porterville Gebied. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 1966. (In Afrikaans). [Google Scholar]
- Ten Cate, H. Die Gronde van die Overhex-Nuy Gebied Naby Worcester. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 1966. (In Afrikaans). [Google Scholar]
- Cramer, M.D.; Midgley, J.J. The distribution and spatial patterning of mima-like mounds in South Africa suggests genesis through vegetation induced aeolian sediment deposition. J. Arid Environ. 2015, 119, 16–26. [Google Scholar] [CrossRef]
- McAuliffe, J.R.; Hoffman, M.T.; McFadden, D.; King, M.P. Role of aeolian sediment accretion in the formation of heuweltjie earth mounds, western South Africa. Earth Surf. Process. Landf. 2014, 39, 1900–1912. [Google Scholar] [CrossRef]
- Chase, B.M.; Thomas, D.S.G. Multiphase late Quaternary aeolian sediment accumulation in western South Africa: Timing and relationship to palaeoclimatic changes inferred from the marine record. Quat. Int. 2007, 166, 29–41. [Google Scholar] [CrossRef]
- Cramer, M.D.; von Holdt, J.; Khomo, L.; Midgley, J.J. Evidence for aeolian origin of heuweltjies from buried gravel layers. S. Afr. J. Sci. 2016, 112, 1–10. [Google Scholar] [CrossRef]
- Merryweather, F.R. The Soils of the Wellington-Malmesbury Area. Master’s Thesis, University of Stellenbosch, Stellenbosch, South Africa, 1965. (In Afrikaans). [Google Scholar]
- Midgley, J.J.; Harris, C.; Harington, A.; Potts, A.J. Geochemical perspective on origins and consequences of heuweltjie formation in the southwestern Cape, South Africa. S. Afr. J. Geol. 2012, 115, 577–588. [Google Scholar] [CrossRef]
- Ellis, F. Contribution of termites to the formation of hardpans in soils of arid and semi-arid regions of South Africa. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002. [Google Scholar]
- Musekiwa, C.; Majola, K. Groundwater Vulnerability Map for South Africa; Council for Geosciences Report No. 2011-0063; Council for Geoscience: Western Cape Unit, Bellville, Cape Town, 2011. [Google Scholar]
- Milne, G. A soil reconnaissance journey through parts of Tanganyika Territory, December 1935 to February 1936. J. Ecol. 1947, 35, 192–265. [Google Scholar] [CrossRef]
- Lobry de Bruyn, L.A.; Conacher, A.J. The role of termites and ants in soil modification: A review. Aust. J. Soil Res. 1990, 28, 55–93. [Google Scholar]
- Mujinya, B.B.; Mees, F.; Boeckx, P.; Bodé, S.; Baert, G.; Erens, H.; Delefortrie, S.; Verdoodt, A.; Ngongo, M.; Van Ranst, E. The origin of carbonates in termite mounds of the Lubumbashi area, DR Congo. Geoderma 2011, 165, 95–105. [Google Scholar] [CrossRef]
- Tilahun, A.; Kebede, F.; Yamoah, C.; Erens, H.; Mujinya, B.B.; Verdoodt, A.; Van Ranst, E. Quantifying the masses of Macrotermes subhyalinus mounds and evaluating their use as a soil amendment. Agric. Ecosyst. Environ. 2012, 157, 54–59. [Google Scholar] [CrossRef]
- Erens, H.; Mujinya, B.B.; Mees, F.; Baert, G.; Boeckx, P.; Malaisse, F.; Van Ranst, E. The origin and implications of variations in soil-related properties within Macrotermes falciger mounds. Geoderma 2015, 249, 40–50. [Google Scholar] [CrossRef]
- Trapnell, C.G.; Friend, M.T.; Chamberlain, G.T.; Birch, H.F. The effects of fire and termites on a Zambian woodland soil. J. Ecol. 1976, 64, 577–588. [Google Scholar] [CrossRef]
- Braissant, O.; Verrecchia, E.P.; Aragno, M. Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften 2002, 89, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Verrecchia, E.P.; Braissant, O.; Cailleau, G. The oxalate-carbonate pathway in soil carbon storage: The role of fungi and oxalotrophic bacteria. In Fungi in Biogeochemical Cycles; Gadd, G.M., Ed.; Cambridge University Press: Cambridge, UK, 2006; pp. 289–310. [Google Scholar]
- Visser, J.N.J. Chapter 1. Geology. In The Karoo Biome: A Preliminary Synthesis. Part 2—Vegetation and History; South African National Scientific Programmes Report No. 124; Cowling, R.M., Roux, P.W., Eds.; CSIR: Pretoria, South Africa, 1987; pp. 2–18. [Google Scholar]
- Moore, J.M. A Comparative Study of Metamorphosed Supracrustal Rocks from the Western Namaqualand Metamorphic Complex. Ph.D. Thesis, University of Cape Town, Cape, South Africa, 1986; 370p. [Google Scholar]
- Soderberg, K.; Compton, J.S. Dust as a nutrient source for fynbos ecosystems, South Africa. Ecosystems 2007, 10, 550–561. [Google Scholar] [CrossRef]
- Quade, J.; Cerling, T.E.; Bowman, J.R. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States. Geol. Soc. Am. Bull. 1989, 101, 464–475. [Google Scholar] [CrossRef]
- Burnham, J.L.H.; Johnson, L. (Eds.) Mima Mounds: The Case for Polygenesis and Bioturbation; Geological Society of America Special Paper 490; Geological Society of America: Boulder, CO, USA, 2012; 205p. [Google Scholar]
- Cox, G.W.; Gakahu, C.G. Mima mounds in the Kenya highlands: Significance for the Dalquest-Scheffer hypothesis. Oecologia 1983, 57, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Cox, G.W. Alpine and montane Mima mounds of the western United States. In Mima Mounds: The Case for Polygenesis and Bioturbation; Geological Society of America Special Paper 490; Burnham, L.H., Johnson, D.L., Eds.; Geological Society of America: Boulder, CO, USA, 2012; pp. 63–70. [Google Scholar]
- Cramer, M.D.; Barger, N.N. Are mima-like mounds the consequence of long-term stability of vegetation spatial patterning? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 409, 72–83. [Google Scholar] [CrossRef]
- Seifert, C.L.; Cox, R.T.; Forman, S.L.; Foti, T.L.; Wasklewicz, T.A.; McColgan, A.T. Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States. Quat. Res. 2009, 71, 329–339. [Google Scholar] [CrossRef]
- Johnson, D.L.; Johnson, D.N. The polygenic origin of prairie mounds in northeastern California. In Mima Mounds: The Case for Polygenesis and Bioturbation; Geological Society of America Special Paper 490; Burnham, J.L.H., Johnson, D.L., Eds.; Geological Society of America: Boulder, CO, USA, 2012; pp. 135–159. [Google Scholar]
- Reed, S.; Amundson, R. Using LIDAR to model Mima mound evolution and regional energy balances in the Great Central Valley, California. In Mima Mounds: The Case for Polygenesis and Bioturbation; Geological Society of America Special Paper 490; Burnham, J.L.H., Johnson, D.L., Eds.; Geological Society of America: Boulder, CO, USA, 2012; pp. 21–41. [Google Scholar]
- Irvine, L.L.; Dale, J.E. “Pimple” mound microrelief in southern Saskatchewan, Canada. In Mima Mounds: The Case for Polygenesis and Bioturbation; Geological Society of America Special Paper 490; Burnham, J.L.H., Johnson, D.L., Eds.; Geological Society of America: Boulder, CO, USA, 2012; pp. 43–61. [Google Scholar]
- Krishna, K.; Grimaldi, D.A.; Krishna, V.; Engel, M.S. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 2013, 377, 973–1495. [Google Scholar] [CrossRef]
- Cox, G.W.; Allen, D.W. Soil translocation by pocket gophers in a Mima moundfield. Oecologia 1987, 72, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Louw, M.A.; Le Roux, P.C.; Meyer-Milne, E.; Haussmann, N.S. Mammal burrowing in discrete landscape patches further increases soil and vegetation heterogeneity in an arid environment. J. Arid Environ. 2017, 141, 68–75. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management; Springer: New York, NY, USA, 1994; pp. 130–147. [Google Scholar]
- Esler, K.J.; Milton, S.J.; Dean, W.R.J. (Eds.) Karoo Veld: Ecology and Management; Briza Publications: Pretoria, South Africa, 2006; 214p. [Google Scholar]
- Rahlao, S.J.; Hoffman, M.T.; Todd, S.W.; McGrath, K. Long-term vegetation change in the Succulent Karoo, South Africa following 67 years of rest from grazing. J. Arid Environ. 2008, 72, 808–819. [Google Scholar] [CrossRef]
- Kunz, N.S.; Hoffman, M.T.; Weber, B. Effects of heuweltjies and utilization on vegetation patterns in the Succulent Karoo, South Africa. J. Arid Environ. 2012, 87, 198–205. [Google Scholar] [CrossRef]
- Cooke, R.; Warren, A. Geomorphology in Deserts; University of California Press: Oakland, CA, USA, 1973; 394p. [Google Scholar]
- Wells, S.G.; Dohrenwend, J.C.; McFadden, L.D.; Turrin, B.D.; Mahrer, K.D. Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 1985, 96, 1518–1529. [Google Scholar] [CrossRef]
- McFadden, L.D.; Wells, S.G.; Dohrenwend, J.C. Influences of Quaternary climatic changes on processes of soil development on desert loess deposits of the Cima volcanic field, California. CATENA 1986, 13, 361–389. [Google Scholar] [CrossRef]
- McFadden, L.D.; Wells, S.G.; Jercinovich, M.J. Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology 1987, 15, 504–508. [Google Scholar] [CrossRef]
- Wells, S.G.; McFadden, L.D.; Poths, J.; Olinger, C.T. Cosmogenic 3He surface-exposure dating of stone pavements: Implications for landscape evolution in deserts. Geology 1995, 23, 613–616. [Google Scholar] [CrossRef]
- Darvill, C.M. Cosmogenic nuclide analysis. In Geomorphological Techniques; British Geomorphological Society: London, UK, 2013; Chapter 2, Section 2.10; Available online: http://geomorphology.org.uk/sites/default/files/geom_tech_chapters/4.2.10_CosmogenicNuclideAnalysis.pdf (accessed on 1 April 2018).
- McFadden, L.D.; McDonald, E.V.; Wells, S.G.; Anderson, K.; Quade, J.; Forman, S.L. The vesicular layer and carbonate collars of desert soils and pavements: Formation, age and relation to climate change. Geomorphology 1998, 24, 101–145. [Google Scholar] [CrossRef]
- Laity, J.E. Pavements and stone mantles. Ch. 9. In Arid Zone Geomorphology: Process, Form and Change in Drylands, 3rd ed.; Thomas, D.S.G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 181–207. [Google Scholar]
- McFadden, L.D. Strongly dust-influenced soils and what they tell us about landscape dynamics in vegetated aridlands of the southwestern United States. Geol. Soc. Am. Spec. Pap. 2013, 500, 501–532. [Google Scholar]
- Goossens, D. Field experiments of aeolian dust accumulation on rock fragment substrata. Sedimentology 1995, 42, 391–402. [Google Scholar] [CrossRef]
- Evenari, J.; Yaalon, D.H.; Gutterman, Y. Note on soils with vesicular structures in deserts. Z. fur Geomorphologie 1974, 18, 162–172. [Google Scholar]
- Turk, J.K.; Graham, R.C. Distribution and properties of vesicular horizons in the western United States. Soil Sci. Soc. Am. J. 2011, 75, 1449–1461. [Google Scholar] [CrossRef]
- Birkeland, P.W. Soils and Geomorphology, 3rd ed.; Oxford University Press: New York, NY, USA, 1999; 430p. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Guidelines for Soil Description, 4th ed.; FAO: Rome, Italy, 2006; Available online: http://www.fao.org/3/a-a0541e.pdf (accessed on 1 April 2018).
- Anderson, K.; Wells, S.; Graham, R. Pedogenesis of vesicular horizons, Cima Volcanic Field, Mojave Desert, California. Soil Sci. Soc. Am. J. 2002, 66, 878–887. [Google Scholar] [CrossRef]
- Amit, R.; Gerson, R. The evolution of Holocene reg (gravelly) soils in deserts—An example from the Dead Sea region. CATENA 1986, 13, 59–79. [Google Scholar] [CrossRef]
- McDonald, E.V.; McFadden, L.D.; Wells, S.G.; Enzel, Y. Regional response of alluvial fans to the Pleistocene-Holocene climatic transition, Mojave Desert, California. In Paleoenvironments and Paleohydrology of the Mojave and Southern Great Basin Deserts; Special Paper 378; Enzel, Y., Wells, S.G., Lancaster, N., Eds.; Geological Society of America: Boulder, CO, USA, 2003; pp. 189–206. [Google Scholar]
- Ugolini, F.C.; Hillier, S.; Certini, G.; Wilson, M.J. The contribution of aeolian material to an Aridisol from southern Jordan as revealed by mineralogical analysis. J. Arid Environ. 2008, 72, 1431–1447. [Google Scholar] [CrossRef]
- Adelsberger, K.A.; Smith, J.R. Desert pavement development and landscape stability on the Eastern Libyan Plateau, Egypt. Geomorphology 2009, 107, 178–194. [Google Scholar] [CrossRef]
- Matmon, A.; Simhai, O.; Amit, R.; Haviv, I.; Porat, N.; McDonald, E.; Benedetti, L.; Finkel, R. Desert pavement–coated surfaces in extreme deserts present the longest-lived landforms on Earth. Geol. Soc. Am. Bull. 2009, 121, 688–697. [Google Scholar] [CrossRef]
- Fey, M. Soils of South Africa; Cambridge University Press: Cambridge, UK, 2010; 287p. [Google Scholar]
- Ellis, F. Note on soils with vesicular structure and other micromorphological features in Karoo soils. In Proceedings of the 16th Congress of the Soil Science Society of South Africa, Pretoria, South Africa, 9–12 July 1990; pp. 326–336. [Google Scholar]
- McAuliffe, J.R. The Sonoran Desert: Landscape complexity and ecological diversity. In Ecology of Sonoran Desert Plants and Plant Communities; Robichaux, R.H., Ed.; University of Arizona Press: Tucson, AZ, USA, 1999; pp. 68–114. [Google Scholar]
- McDonald, E.V.; Pierson, F.B.; Flerchinger, G.N.; McFadden, L.D. Application of a soil-water balance model to evaluate the influence of Holocene climate change on calcic soils, Mojave Desert, California, USA. Geoderma 1996, 74, 167–192. [Google Scholar] [CrossRef]
- Hamerlynck, E.P.; McAuliffe, J.R.; McDonald, E.V.; Smith, S.D. Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics. Ecology 2002, 83, 768–779. [Google Scholar] [CrossRef]
- Young, M.H.; McDonald, E.V.; Caldwell, T.G.; Benner, S.G.; Meadows, D.G. Hydraulic properties of a desert soil chronosequence in the Mojave Desert, USA. Vadose Zone J. 2004, 3, 956–963. [Google Scholar] [CrossRef]
- McAuliffe, J.R.; Hamerlynck, E.P.; Eppes, M.C. Landscape dynamics fostering the development and persistence of long-lived creosotebush (Larrea tridentata) clones in the Mojave Desert. J. Arid Environ. 2007, 69, 96–126. [Google Scholar] [CrossRef]
- McAuliffe, J.R.; McDonald, E.V. Holocene environmental change and vegetation contraction in the Sonoran Desert. Quat. Res. 2006, 65, 204–215. [Google Scholar] [CrossRef]
- Meadows, D.G.; Young, M.H.; McDonald, E.V. Influence of relative surface age on hydraulic properties and infiltration on soils associated with desert pavements. Catena 2008, 72, 169–178. [Google Scholar] [CrossRef]
- Musick, H.B. Barrenness of desert pavement in Yuma County, Arizona. J. Ariz. Acad. Sci. 1975, 10, 24–28. [Google Scholar] [CrossRef]
- Wood, Y.A.; Graham, R.C.; Wells, S.G. Surface control of desert pavement pedologic process and landscape function, Cima Volcanic field, Mojave Desert, California. Catena 2005, 59, 205–230. [Google Scholar] [CrossRef]
- Graham, R.C.; Hirmas, D.R.; Wood, Y.A.; Amrhein, C. Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology 2008, 36, 259–262. [Google Scholar] [CrossRef]
- Schmiedel, U. The Quartz Fields of Southern Africa; Ph.D. Thesis, University of Cologne, Cologne, Germany, 2002; 318p. [Google Scholar]
- Schmiedel, U.; Mucina, L. Vegetation of quartz fields in the Little Karoo, Tanqua Karoo and eastern Overberg (Western Cape Province, South Africa). Phytocoenologia 2006, 36, 1–44. [Google Scholar] [CrossRef]
- Schmiedel, U.; Jürgens, N. Community structure on unusual habitat islands: Quartz-fields in the Succulent Karoo, South Africa. Plant Ecol. 1999, 142, 57–69. [Google Scholar] [CrossRef]
- Schmiedel, U.; Kühne, N.; Twerski, A.; Oldeland, J. Small-scale soil patterns drive sharp boundaries between succulent “dwarf” biomes (or habitats) in the arid Succulent Karoo, South Africa. S. Afr. J. Bot. 2015, 101, 129–138. [Google Scholar] [CrossRef]
- Schmiedel, U.; Jürgens, N. Habitat ecology of southern African quartz fields: Studies on the thermal properties near the ground. Plant Ecol. 2004, 170, 153–166. [Google Scholar] [CrossRef]
- Parsons, A.J.; Abrahams, A.D.; Howard, A.D. Rock-mantled slopes. In Geomorphology of Desert Environments; Springer: Dordrecht, The Netherlands, 2009; pp. 233–263. [Google Scholar]
- Bull, W.B. Geomorphic Responses to Climatic Change; Oxford University Press: Oxford, UK, 1991; 326p. [Google Scholar]
- Kröner, A. The origin of the southern Namaqualand gneiss complex, South Africa, in the light of geochemical data. Lithos 1971, 4, 325–344. [Google Scholar] [CrossRef]
- Kröner, A. The correlation of the pre-Cape sediments in the Vanrhyndorp region, Cape Province. S. Afr. J. Geol. 1969, 72, 127–150. [Google Scholar]
- Office of the Geological Survey. Geological Map of South Africa, Southwestern Sheet; Government Printing and Stationery Office: Pretoria, South Africa; Cape Town, South Africa, 1970.
- Persico, L.P.; McFadden, L.D.; Frechette, J.D.; Meyer, G.A. Rock type and dust influx control accretionary soil development on hillslopes in the Sandia Mountains, New Mexico, USA. Quat. Res. 2011, 76, 411–416. [Google Scholar] [CrossRef]
- Hirmas, D.R.; Graham, R.C. Pedogenesis and soil-geomorphic relationships in an arid mountain range, Mojave Desert, California. Soil Sci. Soc. Am. J. 2011, 75, 192–206. [Google Scholar] [CrossRef]
- Gile, L.H.; Hawley, J.W.; Grossman, R.B. Soils and Geomorphology in the Basin and Range Area of Southern New Mexico: Guidebook to the Desert Project, New Mexico. Bur. Mines Miner. Resour. Mem. 1981, 39, 222. [Google Scholar]
- Harden, J.W.; Taylor, E.M.; Hill, C.; Mark, R.K.; McFadden, L.D.; Reheis, M.C.; Sowers, J.M.; Wells, S.G. Rates of soil development from four soil chronosequences in the southern Great Basin. Quat. Res. 1991, 35, 383–399. [Google Scholar] [CrossRef]
- McAuliffe, J.R. Landscape evolution, soil formation, and ecological patterns and processes in Sonoran Desert bajadas. Ecol. Monogr. 1994, 64, 111–148. [Google Scholar] [CrossRef]
- McAuliffe, J.R. The interface between precipitation and vegetation: The importance of soils in arid and semi-arid environments. In Changing Precipitation Regimes in Terrestrial Ecosystems: A North American Perspective; Weltzin, J.F., McPherson, G.R., Eds.; University of Arizona Press: Tucson, AZ, USA, 2003; pp. 9–27. [Google Scholar]
- McAuliffe, J.R.; McFadden, L.D.; Roberts, L.M.; Wawrzyniec, T.F.; Scuderi, L.A.; Meyer, G.A.; King, M.P. Non-equilibrium hillslope dynamics and irreversible landscape changes at a shifting pinyon-juniper woodland. Glob. Planet. Chang. 2014, 122, 1–13. [Google Scholar] [CrossRef]
- Howard, A.D.; Selby, M.J. Rock Slopes. In Geomorphology of Desert Environments, 2nd ed.; Parsons, A.J., Abrahams, A.D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 233–263. [Google Scholar]
- McFadden, L.D.; Knuepfer, P.L. Soil geomorphology: The linkage of pedology and surficial processes. Geomorphology 1990, 3, 197–205. [Google Scholar] [CrossRef]
- Francis, M.L.; Fey, M.V.; Prinsloo, H.P.; Ellis, F.; Mills, A.J.; Medinski, T.V. Soils of Namaqualand: Compensations for aridity. J. Arid Environ. 2007, 70, 588–603. [Google Scholar] [CrossRef]
- Vickery, K.J. Southern African Dust Sources as Identified by Multiple Space Borne Sensors. Master’s Thesis, University of Cape Town, Cape, South Africa, 2010; 155p. [Google Scholar]
- Tyson, P.D. Berg winds of South Africa. Weather 1964, 19, 7–11. [Google Scholar] [CrossRef]
- Tyson, P.D.; Preston-Whyte, R.A. Weather and Climate of Southern Africa; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Tlhalerwa, K.; Freiman, M.T.; Piketh, S.J. Aerosol deposition off the Southern African West Coast by berg winds. S. Afr. Geogr. J. 2005, 87, 152–161. [Google Scholar] [CrossRef]
A. Soil Particle Size Distributions (%) 1 (Underlined Values Statistically Different, p < 0.05) | |||
Heuweltjies | Off-mound | ||
Sand | 72 | 77 | |
Silt | 11 | 5 | |
Clay | 17 | 18 | |
B. Bulk Chemistry (% by Weight) 2 | |||
Heuweltjies | Off-mound | Bedrock | |
SiO2 | 71.27 | 91.9 | 93.57 |
Al2O3 | 6.08 | 3.1 | 2.51 |
C. Terriginous Trace Elements (ppm) (Off-Mound Soils Not Measured) 2 | |||
Heuweltjies | Bedrock | ||
Zirconium | 65.3 | 16.4 | |
Rubidium | 41.9 | 16.2 | |
Hafnium | 1.96 | 0.54 |
Horizon | Depth (cm) | Color | Structure | Pores | Granules | Wet Consistence | Plasticity | Textural Class |
---|---|---|---|---|---|---|---|---|
A | 0–5 | 10YR 7/4 (ped exterior) 7.5 YR 5.4 (ped interior) | Very coarse platy to weakly prismatic | Many fine vesicular pores | Few (contained within vertical gaps between peds) | Very sticky | Very plastic | Non-gravelly silty clay |
Bt | 5–21 | 2.5–5 YR 5/6 | Single-grain, to weak fine and medium, subangular blocky | Few | Sticky | Plastic | Silty clay | |
Btz1 | 21–32 | 5–7.5 YR 5/6 | Single grain | Few | Sticky | Slightly plastic | Coarse sandy clay loam | |
Btz2 | 32–42 | 5YR 5/6 | Single grain | Very gravelly (angular slate fragments) | Sticky | Plastic | Sandy clay loam | |
R | 42 + |
Surface | Horizon | Depth (cm) | Total Salts (ppm) 1 |
---|---|---|---|
Pavement | A | 0–5 | 5300 |
Bt | 5–21 | 14,700 | |
Btz1 | 21–31 | 16,800 | |
Btz2 | 31–42 | 16,800 | |
Holocene alluvial surfaces | |||
Pit B | A | 0–2 | 280 |
Bw | 2–10 | 553 | |
C | 10–19 | 217 | |
Pit C | A | 0–5 | 105 |
Bw | 5–15 | 98 | |
C | 15–28 | 336 | |
Pit D | A | 0–6 | 308 |
C | 6–42 | 140 | |
Bwb | 42–53 | 84 |
Habitat Types | ||
---|---|---|
S (n = 87 plots) | FS (n = 81 plots) | |
Quartz cover (%) | 87 (13.7–95.0) | 81 (16.6–95.0) |
Mean soil depth (cm) | 18.5 (8.7–45.3) | 20.0 (5.3–49.7) |
E.C. (mS/cm) | 5194 (538–12,660) | 3378 (288–12,660) |
Sand (%) | ||
Coarse | 3.17 (0–14.27) | 4.33 (0–17.66) |
Medium | 14.71 (1.87–46.61) | 19.58 (2.55–47.26) |
Fine | 20.62 (6.63–31.28) | 23.07 (10.37–34.45) |
Silt % | ||
Coarse | 20.18 (8.25–33.53) | 20.27 (8.24–31.84) |
Medium | 29.30 (6.99–51.43) | 22.97 (6.86–51.1) |
Fine | 11.00 (3.22–19.13) | 8.77 (3.2–20.23) |
Total Silt % | 60.48 | 52.01 |
Clay % | ||
Coarse | 1.03 (0–2.78) | 1.01 (0–3.57) |
Medium | 0.003 (0–0.354) | 0.005 (0–0.681) |
Fine | 0 | 0 |
Total clay % | 1.033 | 1.015 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McAuliffe, J.R.; McFadden, L.D.; Hoffman, M.T. Role of Aeolian Dust in Shaping Landscapes and Soils of Arid and Semi-Arid South Africa. Geosciences 2018, 8, 171. https://doi.org/10.3390/geosciences8050171
McAuliffe JR, McFadden LD, Hoffman MT. Role of Aeolian Dust in Shaping Landscapes and Soils of Arid and Semi-Arid South Africa. Geosciences. 2018; 8(5):171. https://doi.org/10.3390/geosciences8050171
Chicago/Turabian StyleMcAuliffe, Joseph R., Leslie D. McFadden, and M. Timm Hoffman. 2018. "Role of Aeolian Dust in Shaping Landscapes and Soils of Arid and Semi-Arid South Africa" Geosciences 8, no. 5: 171. https://doi.org/10.3390/geosciences8050171
APA StyleMcAuliffe, J. R., McFadden, L. D., & Hoffman, M. T. (2018). Role of Aeolian Dust in Shaping Landscapes and Soils of Arid and Semi-Arid South Africa. Geosciences, 8(5), 171. https://doi.org/10.3390/geosciences8050171