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Abstract: Backscatter mosaics based on a multi-frequency multibeam echosounder survey in the
continental shelf setting of the North Sea were compared. The uncalibrated backscatter data were
recorded with frequencies of 200, 400 and 600 kHz. The results showed that the seafloor appears
mostly featureless in acoustic backscatter mosaics derived from 600 kHz data. The same area surveyed
with 200 kHz reveals numerous backscatter anomalies with diameters of 10–70 m deviating between
−2 dB and +4 dB from the background sediment. Backscatter anomalies were further subdivided
based on their frequency-specific texture and were attributed to bioturbation within the sediment
and the presence of polychaetes on the seafloor. While low frequencies show the highest overall
contrast between different seafloor types, a consideration of all frequencies permits an improved
interpretation of subtle seafloor features.
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1. Introduction

A reliable, repeatable and objective classification of seabeds, ultimately comprising both geological
and biological habitats, continues to be an important issue for marine spatial planning and management
as well as for research. Acoustic remote sensing by side scan sonar and multibeam echosounder obtains
information on seafloor habitats based on measuring the intensity of acoustic signals backscattered
from the seafloor [1,2]. The intensity of a backscattered signal depends on a number of geo-acoustic
properties of the sediment surface and shallow subsurface, the water column, geometrical and
technical parameters, and has been described by a number of physical and heuristic models [3–5].
The bulk backscattering level measured by the sonar comprises specular reflection, seafloor scatter and
volume scatter and depends on the incidence angle and frequency of the acoustic wave. The angular
dependence of backscatter levels has been used to characterize different seabeds [6,7]. A disadvantage
of angular response curve (ARC)-based seafloor classification is their inherent half-swath width
resolution (except for survey geometries with strongly overlapping survey lines) [8]. Therefore,
ARCs are less sensitive to small-scale variations in seafloor composition and a strong synergy with
backscatter mosaics corrected for the angular dependence exists, albeit this is rarely utilized [7].
A standard geological application utilizing backscatter data is the creation of sediment distribution
maps [9]. In contrast to geological applications, the use of acoustic data for the delineation of biological
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seafloor habitats has become more widespread only in the past years [1], although it is well-established
in fisheries management [10,11].

Available studies involve surveys of cold water corals [12–14] and different benthic habitats
and assemblages [15–22]. Remote sensing of benthic habitats remains a field of active research,
which strongly benefits from the ongoing optimization of multibeam echosounder backscatter and the
introduction of multi-frequency capabilities [23–25]. Also, based on stationary scatter experiments on
the seafloor in the past [26,27], multiple frequencies have been considered as a means of improving
backscatter mosaics [23]. Several of the parameters controlling backscatter are frequency dependent
and the scattering itself is modulated by geological and biological inhomogeneities in the seabed.
For example, seafloor roughness pertinent to acoustic scatter is defined relative to the wavelength of
the acoustic source and different acoustic wavelengths are sensitive to different parts of the surface
roughness power spectrum. In addition, the effects of volume scatter depend on the penetration
depth of the acoustic signal into the subsurface and are generally more prominent with decreasing
frequency [28].

Multi-frequency multibeam echosounder surveys are expected to improve backscatter
mosaics [23] for geological and biological applications. Applications of multi-frequency datasets
for seafloor surface characterization have been rare in the past, an early example being [29]. With the
majority of all modern side scan sonars having a dual-frequency capacity, dual-frequency approaches
were first developed for side scan sonar surveys. These studies found both distinct [30,31] and
less-distinct [32] frequency dependences of marine sediments and acoustic scatter. Strong frequency
dependence was reported from multibeam and single beam multi-frequency studies in regard to
shallow gas surveying, taking advantage of frequency-dependent penetration depth and resonance
effects [33,34]. In contrast, the frequency-dependent visibility of benthic habitats is not yet known.
In this study, we show data from a multibeam echosounder survey in the North Sea recorded three
times with different frequencies. With this comprehensive dataset, we showcase the possibilities
and demonstrate the current limitations of using multi-frequency mosaics for the interpretation of
small-scale benthic habitats in the North Sea.

2. Material and Methods

2.1. Regional Setting of the Study Area

The study site is located approx 15 km offshore the island Sylt (Figure 1) in the German Bight
in water depths of 15–18 m, covering an area of 8 km2. In the area, glacial sediments of the Saalian
period were covered by Weichselian periglacial and Holocene fluvial deposits [35]. These deposits
were reworked during the Holocene sea level rise, leaving a low relief seafloor topography mainly
composed of marine sand [36,37]. The thickness of the uppermost layer of mobile sand deposits
(potentially moved by tides and storm events) reaches 1–3 m [37]. Locally, east–west directed
sorted bedforms (rippled scour depressions) composed of medium to coarse sand are observed,
often exposing a transgressive layer of gravel and coarse sand present at the base of the marine
sands [35,36]. Sorted bedforms in the study site have a length of ~350 m and depths of 1–2 m [36].
These bedforms can remain stable over decades, although their oscillating boundaries may be covered
by fine sand for varying amounts of time [36,38,39]. Reefs of the polychaete Lanice conchilega are
widespread in the study site but show a high seasonal and annual change in population density [22].
The tubes of L. conchilega, formed by cemented sediment grains and shell fragments, have a diameter
of up to 0.5 cm, and protrude 1–4 cm above the seafloor by [40,41]. Aggregating in patches, these reefs
can have high densities of thousands of individuals per m2 and reach elevations of up to 20 cm [42].
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Figure 1. Location of the study site in the North Sea, marked with a red rectangle. Bathymetric data 
is derived from the BSH GeoSeaPortal (www.geoseaportal.de). Coordinates of the inset are in 
UTM32N WGS84. 

2.2. Multibeam Echosounder 

A Norbit iWBMSe multibeam echosounder mounted on the moonpool of FS Heincke was used 
together with an Applanix SurfMaster inertial navigation and attitude system. For the three surveys 
(recorded 13–16 May 2017), frequencies were set to 200, 400 and 600 kHz. EGNOS correction data 
were received to improve navigation to 0.5 m lateral accuracy. We registered backscatter strength 
using the Hypack 2016 software. Processing focused on removing the angular variations present in 
the data by applying an angular varied gain (AVG) and comparing relative backscatter levels between 
the frequencies [23]. No absolute dB values are given, as recommended by the authors of [25]. 

Except for frequency, the user-controllable settings of the multibeam system were kept constant 
and are shown in Table 1. System gains are largely removed from the multibeam output by the Norbit 
software (level BL1). Residual effects may still be observed because the instruments are not 
individually calibrated. Pulse lengths and frequencies are constant throughout the swath with no 
sector dependence. Backscatter data were loaded in QPS Geocoder and corrected considering survey 
settings and frequency-dependent absorption (Table 1). For calculation of absorption coefficients [43], 
the temperature was estimated as 11° with salinity to 35. AVG to flatten the backscatter mosaics was 
calculated using a flat seafloor assumption, given that morphological differences across the study site 
are minor. AVGs were averaged for complete survey lines to avoid artifacts across boundaries of 
changing backscatter, accepting a less ideal removal of along-track artifacts. The average seafloor 
response within an incidence angle interval of 30° to 60° was used to normalize the data. Beam pattern 
effects were removed by applying the AVG. Backscatter intensities were linearly mapped to a 
greyscale mosaic with a resolution of 0.3 m. The dynamic range of the mosaics is 10 dB. Dark colors 
represent low backscatter intensities and bright colors represent high backscatter intensities. The final 
mosaics were filtered using a 3 × 3 box average filter. Multi-frequency mosaics were created by using 
three mono-frequency greyscale mosaics as input channels of an RGB image using open source GIS 
software (QGIS 2.18.9, www.qgis.org). The 200 kHz frequency represents the red channel, the 400 
kHz frequency the green channel, and the 600 kHz frequency the blue channel. 

Angular response curves (ARCs) supporting the mosaic interpretation were calculated directly 
from the recorded raw data files. The angular backscatter strength is [44]: (ߠ)ܵܤ ൌ (ߠ)ܮܧ െ ܮܵ  ܮ2ܶ െ  (1) ((ߠ)ܣ)݃10݈

where BS is the angular backscatter strength, ߠ is the incidence angle, EL is the recorded echo level, 
SL is the (estimated) source level, TL is the transmission loss (spreading + absorption) and A is the 

Figure 1. Location of the study site in the North Sea, marked with a red rectangle. Bathymetric
data is derived from the BSH GeoSeaPortal (www.geoseaportal.de). Coordinates of the inset are in
UTM32N WGS84.

2.2. Multibeam Echosounder

A Norbit iWBMSe multibeam echosounder mounted on the moonpool of FS Heincke was used
together with an Applanix SurfMaster inertial navigation and attitude system. For the three surveys
(recorded 13–16 May 2017), frequencies were set to 200, 400 and 600 kHz. EGNOS correction data were
received to improve navigation to 0.5 m lateral accuracy. We registered backscatter strength using the
Hypack 2016 software. Processing focused on removing the angular variations present in the data
by applying an angular varied gain (AVG) and comparing relative backscatter levels between the
frequencies [23]. No absolute dB values are given, as recommended by the authors of [25].

Except for frequency, the user-controllable settings of the multibeam system were kept constant
and are shown in Table 1. System gains are largely removed from the multibeam output by the
Norbit software (level BL1). Residual effects may still be observed because the instruments are not
individually calibrated. Pulse lengths and frequencies are constant throughout the swath with no
sector dependence. Backscatter data were loaded in QPS Geocoder and corrected considering survey
settings and frequency-dependent absorption (Table 1). For calculation of absorption coefficients [43],
the temperature was estimated as 11◦ with salinity to 35. AVG to flatten the backscatter mosaics was
calculated using a flat seafloor assumption, given that morphological differences across the study
site are minor. AVGs were averaged for complete survey lines to avoid artifacts across boundaries
of changing backscatter, accepting a less ideal removal of along-track artifacts. The average seafloor
response within an incidence angle interval of 30◦ to 60◦ was used to normalize the data. Beam pattern
effects were removed by applying the AVG. Backscatter intensities were linearly mapped to a greyscale
mosaic with a resolution of 0.3 m. The dynamic range of the mosaics is 10 dB. Dark colors represent
low backscatter intensities and bright colors represent high backscatter intensities. The final mosaics
were filtered using a 3 × 3 box average filter. Multi-frequency mosaics were created by using three
mono-frequency greyscale mosaics as input channels of an RGB image using open source GIS software
(QGIS 2.18.9, www.qgis.org). The 200 kHz frequency represents the red channel, the 400 kHz frequency
the green channel, and the 600 kHz frequency the blue channel.

Angular response curves (ARCs) supporting the mosaic interpretation were calculated directly
from the recorded raw data files. The angular backscatter strength is [44]:

BS(θ) = EL(θ)− SL + 2TL − 10log(A(θ)) (1)

where BS is the angular backscatter strength, θ is the incidence angle, EL is the recorded echo level, SL is
the (estimated) source level, TL is the transmission loss (spreading + absorption) and A is the ensonified
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area. The calculation of the texture parameter entropy [45] supporting the mosaic interpretation was
done using 32 grey levels, an inter-pixel distance of 1 and a window size of 4.5 m [46].

Table 1. Multibeam echosounder settings during data acquisition. Multiple values correspond to
frequencies of 200, 400 and 600 kHz respectively. Source levels of the 200 and 600 kHz frequency
are unknown.

Parameter Value Parameter Value

Bandwidth chirp (kHz) 80 Spreading 0

Chirp pulse length (ms) 0.2 Absorption (dB/km) 0

Center frequency (kHz) 200/400/600 Static gain (dB) 0

Across track beam width at center
frequency (◦) 1.8/0.9/0.6 Along-track beam width at

center frequency (◦) 3.8/1.9/1.3

Absorption coefficient (dB/km) 60/100/170 Source level (dB re µPa) -/227/-

2.3. Parametric Echosounder

Supporting high-frequency seismic data were acquired using an Innomar parametric sediment
echosounder to determine the shallow subsurface geology, using primary frequencies of 100 kHz and
a low frequency of 12 kHz. Data were binned to 1 m intervals, and a manual time varied gain function
was applied.

2.4. Ground Truthing

Sediment samples for ground truthing were taken using a Van-Veen type grab sampler.
The generally fine-grained sediment samples were analyzed by optical grain size analysis using
a CILAS 1180 particle size analyzer. Given the well-sorted sand composition with low organic content,
no chemical pretreatment was applied. The mode is used as a central statistical parameter, as it is less
affected by the removal of particles exceeding 1 mm in diameter. For ground truthing by underwater
video, we used a Kongsberg Colour Zoom Camera (Kongsberg Maritime, Kongsberg, Norway) and a
GOPRO 3+ Black Edition (GoPro, San Mateo, CA, USA) both mounted on a steel frame that was towed
behind the drifting research vessel.

3. Results

Several features in backscatter mosaics (Figure 2) are frequency dependent and are described
in the following. The geologic framework of these features is observed in the seismic data that
shows two seismic units forming the shallow subsurface of the study site (Figure 3). Seismic unit S1 is
characterized by a chaotic and inhomogeneous appearance and outcrops in the area of sorted bedforms.
S1 is interpreted as the onset of a coarse sand transgression layer reported to form the sorted bedforms.
Sorted bedforms are clearly detectable by morphologic depressions of 0.2–1 m (Figure 3A) and a
characteristic increase in backscatter intensities. Outside of the sorted bedforms, a transparent seismic
unit S2 is present (Figure 3A,C). S2 is interpreted as the layer of mobile marine sediments. Its thickness
across the study site varies between 0 and approx. 1 m. The minimum thickness is observed within
sorted bedforms, and a decreased thickness prevails in the central study site (Figure 3B). Outside of
sorted bedforms, results of the grain size distribution suggest a homogeneous, flat seafloor composed of
well-sorted fine sand with a mode around 2.5 phi (Figure 4). However, various small-scale backscatter
anomalies exist. Fringing the sorted bedforms, 200 kHz data shows rims of decreased backscatter
intensity aligning preferably along their northwestern edges (Figure 2A). The decrease in backscatter
intensities is poorly observed in 400 kHz data, and disappears for the 600 kHz mosaic, causing a bluish
north-western rim adjacent to sorted bedforms in the multi-frequency mosaic (Figure 2A).

Clearly standing out from a homogeneous background, numerous patches of increased backscatter
levels (high backscatter patches, HBPs) are visually delineated. HBPs cannot be observed in



Geosciences 2018, 8, 214 5 of 14

bathymetric data, suggesting that the depth difference between the patches and the surrounding
seafloor is less than 5 cm. In the northern part of the study site, HBPs have an irregular shape and
a random distribution pattern. Their diameter is 10–25 m. In the 200 kHz mosaics, the HBPs show
increased (~4 dB) backscatter intensities compared to the background sediment. The increase in
intensities is reduced in the 400 kHz data (~2 dB) and hardly observed in the 600 kHz data. This results
in a distinct reddish appearance of the HBP in the multi-frequency data. An increase of the silt
fraction percentage is observed for sample HE486-14 retrieved from an area of densely spaced HBPs,
and a poorly developed ripple pattern is recognized in nearby underwater video footage (Figure 5).
An increased number of polychaetes identified as L. conchilega were observed in grab samples and
underwater video images in the northern part of the investigation area, although overall observed
population densities are low (Figure 5).
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Figure 2. Backscatter data recorded in the study site. The overview image to the left shows the available
data and position of the insets (A–C). The overview mosaic was contrast-stretched. Insets (A), (B) and (C)
show mosaics of 200, 400 and 600 kHz and an RGB multi-frequency mosaic for selected areas. Examples
of high backscatter patches (HBP) and low backscatter patches (LBP) are annotated. The position of
seismic lines (Figure 3), grab samples (Figure 4), underwater video (Figure 5), cross sections through the
multi-frequency mosaic (Figure 6), and angular response curves (ARC, Figure 7) is indicated.
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Figure 3. Seismic data reveals the geological structure of the shallow subsurface in the northern (A),
central (B) and southern part (C) of the investigated area. A transparent layer composed of fine sand
(S2) is observed above a coarse sand transgression layer (S1). Refer to Figure 2 for position of the
seismic lines.

Geosciences 2018, 8, x FOR PEER REVIEW  6 of 14 

 

 
Figure 3. Seismic data reveals the geological structure of the shallow subsurface in the northern (A), 
central (B) and southern part (C) of the investigated area. A transparent layer composed of fine sand 
(S2) is observed above a coarse sand transgression layer (S1). Refer to Figure 2 for position of the 
seismic lines. 

 
Figure 4. Grain size composition in the study site. The majority of the samples have a well-sorted fine 
sand composition. The position of two samples with increased silt content is marked in Figure 2. 

The shape of the HBP changes towards the south of the study site. In the central part of the study 
site, HBPs are aligned NW-SE parallel to the observed sorted bedforms (Figure 2). The length of the 
HBP differs between 5 and 70 m, while their width is approx. constant at 15 m. An intensity profile 
crossing an HBP (Figure 6B) reveals increased backscatter levels (~2 dB) for the low frequency. The 
rims of the HBPs have elevated backscatter intensities, especially in the high frequency. However, an 
intensity decrease to background levels or below can be observed for the inner part of the HBPs 
mostly at high, but sometimes also at low frequencies (Figure 2B,C). In the multi-frequency data, the 
HBPs have a reddish center, with bluish-greenish fringes. An example HBP with a size of ~0.013 km2 
showcasing this behavior exists in the south (Figure 2C). It shows the highest backscatter intensities 
for the 200 kHz frequency (an increase of about 2 dB), and a reverse sensitivity with decreased 
backscatter intensities for the 600 kHz frequency. In the 400 kHz mosaic, only the boundaries of the 
HBP are recognized, while its central area is difficult to distinguish from the surrounding background 

Figure 4. Grain size composition in the study site. The majority of the samples have a well-sorted fine
sand composition. The position of two samples with increased silt content is marked in Figure 2.

The shape of the HBP changes towards the south of the study site. In the central part of the
study site, HBPs are aligned NW-SE parallel to the observed sorted bedforms (Figure 2). The length
of the HBP differs between 5 and 70 m, while their width is approx. constant at 15 m. An intensity
profile crossing an HBP (Figure 6B) reveals increased backscatter levels (~2 dB) for the low frequency.
The rims of the HBPs have elevated backscatter intensities, especially in the high frequency. However,
an intensity decrease to background levels or below can be observed for the inner part of the HBPs
mostly at high, but sometimes also at low frequencies (Figure 2B,C). In the multi-frequency data,
the HBPs have a reddish center, with bluish-greenish fringes. An example HBP with a size of
~0.013 km2 showcasing this behavior exists in the south (Figure 2C). It shows the highest backscatter
intensities for the 200 kHz frequency (an increase of about 2 dB), and a reverse sensitivity with
decreased backscatter intensities for the 600 kHz frequency. In the 400 kHz mosaic, only the
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boundaries of the HBP are recognized, while its central area is difficult to distinguish from the
surrounding background sediment. Here, sample HE486-63 revealed an increased amount of silt and
clay. Underwater video footage shows a weakly developed ripple pattern, black anoxic sediment
directly beneath the surface and increased suspension. In contrast, video footage outside the high
backscatter patch shows a distinct rippled seafloor (Figure 5).
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backscatter patch. Outside of the patch, a clear ripple pattern prevails (station 65). Refer to Figure 2
for positions.
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Figure 6. The cross sections (A) and (B) through the multi-frequency mosaic showcase the
frequency-dependent response of high backscatter patches (HBP) and low backscatter patches (LBP).
Refer to Figure 2 for the position of the cross sections. (C) displays the schematic of the different
observed backscatter anomalies.
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Smaller patches of decreased backscatter levels (low backscatter patches, LBP) can be recognized
in the northern study site. For LBP, backscatter levels decrease below the background fine sand
intensity for all frequencies. No rim effects can be recognized. The diameter of LBP is generally smaller
than 10 m. LBPs are best observed in the 200 and 400 kHz data, where the difference to the surrounding
seafloor is largest (~1.5 dB). LBPs are barely visible in the 600 kHz mosaic (Figure 2), causing a dark
bluish appearance in the multi-frequency mosaic.

4. Discussion

4.1. Impact of Volume Scatter

Our multi-frequency seafloor analyses show clear evidence for significantly different
backscattering strengths and image textures at specific frequencies. Principally, the low frequency
mosaics show the highest contrast between different seafloor facies (Figure 2), a trend that was
previously noted [23]. The frequency-specific backscatter differences could be of geological or biological
origin. An example of a geological cause is the increase in high-frequency scatter intensity north of the
sorted bedforms. Adjacent to the sorted bedforms, oscillating boundaries to the surrounding seafloor
exist, indicating the presence of a mobile fine sand layer. It is redeposited on sub-annual timescales [36]
and reduces the number of scatterers in the shallow subsurface. No HBP or LBP patches are present
directly at the rim in any frequency (Figure 2A), supporting a homogenous fine sand seafloor that
registers with stronger backscatter intensities at higher frequencies and decreased intensities at low
frequencies. Comparable trends have been previously observed in side scan sonar [31] and multibeam
data [29] for sediments of low volume scatter that allow penetration of the low, but not the high
frequency [30]. For sandy sediments, penetration depth is limited to ~1 cm for 600 kHz, while 200 kHz
may penetrate ~8 cm into the subsurface [47].

A geologic or biologic cause of the elongated HBP in the central part of the investigation area
is more difficult to establish. The HBPs may be interpreted as buried sorted bedforms covered by
a thin layer of fine sand. Temporarily or completely buried sorted bedforms have been reported
elsewhere [35,38]. Elevated backscatter levels are chiefly observed in the low frequency mosaics,
where acoustic waves penetrated a couple of centimeters into the subsurface. A connection to sorted
bedforms that could influence volume scatter by sub-bottom layering [48] is possible based on the
seismic data (Figure 3B). The transparent layer (S1), interpreted as the mobile layer of fine sand [37],
is of decreased thickness in the area of elongated HBPs. This indicates a thin cover of fine sand on the
coarser transgressive sand layer. However, a number of factors are in contradiction to the HBP being
caused by partially buried sorted bedforms. First, there is no indication of any residual depression
of HBP in seismic or bathymetric data, while the active sorted bedforms in the north and south are
clearly recognized by their bathymetry. Second, no coarse sand was recovered at the top or base of the
grab samples taken in their vicinity, albeit Van-Veen grab samples typically recover several centimeters
of sediment. Finally, angular response curves (ARCs) of the 200 kHz data (Figure 7) from the sorted
bedform in the north, a mostly featureless area composed of fine sand, and different HBPs, indicate
clear differences between sorted bedforms and the remaining seafloor facies. Therefore, the HBP is
less likely to be of geological origin. It cannot be ruled out that geological changes in the shallow
subsurface (below a few centimeters), while not significantly affecting the acoustic backscatter, impact
the benthic biology of the seafloor, thus explaining the similarity in orientation between HBPs and
sorted bedforms. Nevertheless, an increase in volume scatter caused by bioturbation and organic
scatterers in the shallow subsurface is the most likely cause of the increased backscatter strength of the
HBP at low frequencies [49]. Volume scatter is especially prevalent in silty facies [50] due to a generally
decreased acoustic impedance, and generally induced by biological activity [51]. Higher frequencies
capture the fine, partially silty seafloor without notable ripple features, causing a decreased backscatter
intensity [30]. Under the assumption that the rims of the sorted bedforms are composed of frequently
redeposited, homogeneous fine sand, ARCs (Figure 7) confirm volume scatter in the area of HBPs at
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incidence angles >~20◦, apparent by increased scatter intensities for the 200 kHz data. No indications
of volume scatter are observed in ARCs for the 600 kHz dataset. While volume scatter appears
most prominent in the extended southern HBP, where an increased silt fraction is observed (ARC
4 in Figure 7), the extent of almost all HBPs is smaller than a half-swath width, which negatively
affects the ability of ARCs to differentiate seafloor types. Therefore, the combined use of ARCs and
multi-frequency mosaics may allow differences in volume scatter to be traced, for example, caused by
the different presence of burrowing organisms and scatterers, over small scales.
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4.2. Impact of Seafloor Scatter

The comparison of backscatter mosaics of different frequencies shows textural differences between
HBPs in the southern/central and northern area of the study site, including the lack of a rim, the missing
backscatter level inversion between high and low frequencies and a stronger and more rapid increase
in backscatter levels (~4 dB in the northern versus ~2 dB in the central area). These differences could
not have been observed using mono-frequency mosaics. The higher increase in backscatter levels,
missing frequency inversion and comparable ARCs between HBPs in the central and northern study
site indicate that volume scatter effects are not the only cause of the northern HBPs. Based on the
assumption of a biologic cause of the HBPs, the tube-building species, polychaete L. conchilega is the
most likely cause as it is a widespread key species in the North Sea [52] which was frequently observed
in video images of the northern part of the investigation area (Figure 5), and it increases seafloor
scatter [18,22]. Similar roughness-impacting organisms such as brittle star Amphiura filiformis that may
reach high population densities and affect acoustic scatter [53] were not observed in high densities
during the ground truthing. In the present bathymetric data, no morphology of the patches is detectable.
Therefore, elevation differences in the surrounding seafloor are less than 5 cm. Since data collection
took place in the beginning of May, the development of the worm aggregation after deconstruction
during the winter [54] was probably in an early stage with a small number of adult individuals that
are not expressed in ship-based bathymetric data. While video footage confirms the low densities of
tubeworms, low population densities were found to significantly impact seafloor roughness at specific
spatial wavelengths [55] and can be detected in backscatter data [16,22]. The fact that the northern
HBP patches are best observed at 200 kHz is in contrast to previous findings [18] where a 445 kHz
frequency was more effective than 132 kHz for the detection of L. conchilega reefs. The differences
might arise due to the use of different acoustic systems (multibeam and side-scan sonar) with different
footprints and pulse widths, or seasonal differences in the frequency-dependence of the backscatter
strength of L. conchilega due to changing population densities. This needs to be further explored.
In general, the largest impact of L. conchilega on seafloor roughness was found at spatial wavelengths of
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~0.5 to 2 cm [55], where sparse L. conchilega populations increase the magnitude of seafloor roughness
by up to 4 dBm4. Applying the small perturbation approximation to estimate backscatter strengths,
the roughness spectrum used for the calculation of the backscatter cross section is evaluated at the
Bragg wavenumber 2ksin(θ), where k is the acoustic wavenumber and θ the incidence angle [28].
For an incidence angle of 45◦, the spatial wavelengths at the Bragg wavenumber vary between 0.5 cm
for 200 kHz and 0.2 cm for 600 kHz. The agreement of optical measurements of L. conchilega seafloor
roughness and the frequency-dependent appearance of the northern HBP suggests that backscatter
strength may be higher for lower frequencies due to changes in surface roughness caused by benthic
organisms. Eventually, frequencies less than 200 kHz that were not accessible to our system would
be more sensitive to tubeworm presence. Therefore, a frequency-dependent acoustic scatter may be
exploited by multi-frequency surveys for benthic habitat mapping, with roughness controlled by reef
density, local sediment composition, or even life cycle [21,22].

No sufficient interpretation is possible for a number of features observed in the backscatter mosaics.
Several explanations are possible for the high backscatter rims observed at the boundaries of the HBP
especially at higher frequencies, including either an increased surface roughness or increased presence
of scatterers directly beneath the surface. However, due to the small extent of these features, a ground
truthing or a detailed analysis using ARC was not possible. Similarly, the origin of the LBP observed in
the northern part of the study site (Figure 2A) remains uncertain. Here, backscatter intensities decrease
with increasing frequency, but are not in agreement with backscatter intensities observed for fine sand
(Figure 2A, rim of the sorted bedform) or silty sediment compositions (Figure 2C). Possible explanations
involve a local decrease in surface roughness (for example, due to changing grain size composition),
causing locally smooth seafloor [30] combined with decreased volume scatter. However, the small
extent and unsuccessful ground truthing of the LBP does not allow for a comprehensive interpretation.

4.3. Impact on Haralick Texture Parameters

Texture parameters derived from mosaics of backscatter intensity are common features for
supervised or unsupervised seabed classification [56]. The acoustic frequency affects the texture
parameters due to both changing survey parameters, such as footprint sizes (Table 1), but also due to
the different sensitivity to seafloor features. Texture parameters derived from the backscatter mosaics
in the northern part of the study site show that the different sensitivity of the mono-frequency mosaics
to seafloor features carries over to derived textural parameters. Maps of seafloor entropy (Figure 8),
a parameter that is closely correlated with homogeneity and contrast in sedimentary facies [46],
demonstrate that the increased density of HBP and LBP in the northern part of the study site is best
captured at low and medium frequencies, supporting the sensitivity of texture parameters to the
presence of benthic organisms [22].
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Figure 8. Texture parameter entropy for the northern region of the study site, corresponding to
Figure 2A. It can be observed that the boundary between the density of less and more high backscatter
patches (HBP) is more clearly observed in the 200 kHz data, while the boundary fringing the sorted
bedforms is better observed in 600 kHz data. The presence of along-track artifacts is amplified in the
texture images.
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5. Conclusions

For sediment classification including the recognition of benthic habitats, backscatter data of
lower frequencies (200 kHz) showed an increased sensitivity to changes in seafloor composition in a
sedimentary continental shelf setting. It is suggested that low frequencies be incorporated in mapping
programs utilizing backscatter information. The consideration of multiple frequencies allowed an
improved interpretation of subtle seafloor features, although the limited availability of calibrated
multi-frequency multibeam echosounders hindered quantitative data interpretation. The application of
multi-frequency mosaics is especially promising for the detection of benthic life, which may vary over
scales not accessible to interpretation by backscatter angular response curves or routine ground truthing.
Introducing multispectral data increases data dimensionality, and may lend itself to automated seafloor
classification. However, our results show that for practical application of multi-frequency data for
habitat mapping, we lack the information to interpret many backscatter features of the seafloor.
Therefore, the concurrent recording of calibrated multi-frequency backscatter data and precisely
positioned geological and biological ground truthing, including the shallow subsurface, are required
to establish interrelationships and fully utilize the potential of modern multibeam echosounders in
the future.
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