Tracking the Serpentinite Feet of the Mediterranean Salt Giant
Abstract
:1. Introduction
2. The Controversial Origin of the Mediterranean Salt Giant
2.1. Beyond the Evaporite Model: The Serpentinite Feet of Salt Giants
3. Salt Occurrences in the Mediterranean Area: The Tethys Serpentinite Perspective
3.1. Salts in the Gulf of Cádiz
3.2. Salts in the Alboran Basin
3.3. Salts in the Algerian-Provençal Basin
3.4. Salts in the Tyrrhenian Basin
3.5. The “Giant” Crops Out: Salts in Central Sicily
3.5.1. Sicilian Salt Deposits: A Tentative Mass Balance
3.6. Salts in Central Part of the Mediterranean Margin of Africa and Pelagian Shelf
3.7. Salts in the Eastern Mediterranean Sea
4. Discussion and Implications
4.1. Problems with Numbers: Quantity and Age of Salts
4.2. Concluding Remark
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duschenes, J.; Sinha, M.C.; Louden, K.E. A seismic refraction experiment in the Tyrrhenian Sea. Geophys. J. Int. 1986, 85, 139–160. [Google Scholar] [CrossRef]
- Suess, E. Are ocean depths permanent? Nat. Sci. A Mon. Rev. Sci. Prog. 1893, 2, 180–187. [Google Scholar]
- Hsü, K.J.; Ryan, W.B.F.; Cita, M.B. Late Miocene desiccation of the Mediterranean. Nature 1973, 242, 240–244. [Google Scholar] [CrossRef]
- Usiglio, M.J. Etudes sur la composition de l’eau de la Mediterranee et sur l’exploitation des sels qu’elle contient. Ann. De Phys. Et De Chim. 1849, 27, 172–191. [Google Scholar]
- Van’t Hoff, J.H. Zur Bildung der ozeanischen Salzlagerstätten; Vieweg: Braunschweig, Germany, 1909. (In German) [Google Scholar]
- Braitsch, O. Salt Deposits–Their Origin and Composition; Springer: Berlin, Germany, 1971; p. 299. [Google Scholar] [CrossRef]
- Hovland, M.; Rueslåtten, H.; Johnsen, H.K.; Kvamme, B.; Kutznetsova, T. Salt formation associated with sub–surface boiling and supercritical water. Mar. Pet. Geol. 2006, 23, 855–869. [Google Scholar] [CrossRef]
- Hovland, M.; Rueslåtten, H.G.; Johnsen, H.K. Large salt accumulations as a consequence of hydrothermal processes associated with ‘Wilson cycles’: A review Part 1: Towards a new understanding. Mar. Pet. Geol. 2018, 92, 128–148. [Google Scholar] [CrossRef]
- Scribano, V.; Carbone, S.; Manuella, F.C.; Hovland, M.; Rueslåtten, H.; Johnsen, H.-K. Origin of salt giants in abyssal serpentinite systems. Int. J. Earth Sci. 2017, 106, 2595–2608. [Google Scholar] [CrossRef]
- Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application; Springer: Berlin, Germany, 2004; p. 976. [Google Scholar]
- Audra, P. The sulfuric hypogene speleogenesis: Processes, cave pattern, and cave features. Berl. Höhlenkundliche Berichte 2008, 26, 5–30. [Google Scholar]
- Dick, H.J.B.; Lin, J.; Schouten, H. An ultraslow–spreading class of ocean ridge. Nature 2003, 426, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Boschi, C.; Früh-Green, G.L.; Delacour, A.; Karson, J.A.; Kelley, D.S. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30° N). Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef]
- Snow, J.E.; Edmonds, H.N. Ultraslow spreading ridges: Rapid paradigm changes. Oceanography 2007, 20, 90–101. [Google Scholar] [CrossRef]
- Ildefonse, B.; Blackman, D.K.; John, B.E.; Ohara, Y.; Miller, D.J.; MacLeod, C.J. Integrated ocean drilling program expeditions 304/305 science party Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 2007, 35, 623–626. [Google Scholar] [CrossRef]
- Miranda, E.A.; Dilek, Y. Oceanic core complex development in modern and ancient oceanic lithosphere: Gabbro-localized versus peridotite-localized detachment models. J. Geol. 2010, 118, 95–109. [Google Scholar] [CrossRef]
- Silantyev, S.A.; Novoselov, A.A.; Mironenko, M.V. Hydrothermal systems in peridotites at slow-spreading ridges. Modeling phase transformations and material balance: Role of gabbroids. Petrology 2011, 19, 227–248. [Google Scholar] [CrossRef]
- Schlindwein, V.; Schmid, F. Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 2016, 535, 276–279. [Google Scholar] [CrossRef] [PubMed]
- Rioux, M.; Niels, J.; Bowring, S.; Lissenberg, C.J.; Bach, W. U-Pb dating of interspersed gabbroic magmatism and hydrothermal metamorphism during lower crustal accretion, Vema lithospheric section, Mid-Atlantic Ridge. J. Geophys. Res. 2015, 120, 2093–2118. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.; Mevel, C.; Banerjee, R. Hydrothermal alteration studies of gabbros from Northern Central Indian Ridge and their geodynamic implications. J. Earth Syst. Sci. 2009, 118, 659–676. [Google Scholar] [CrossRef] [Green Version]
- Sharkov, E.V. Cyclic development of axial parts of slow-spreadingridges: Evidence from Sierra Leone Area, the Mid-Atlantic Ridge, 5–7° N. In Tectonics-Recent Advances; Sharkov, E.V., Ed.; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Natland, J.H.; Dick, H.J.B. Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge. J. Volcanol. Geotherm. Res. 2001, 110, 191–233. [Google Scholar] [CrossRef]
- Chamot-Rooke, N.; Jestin, F.; de Voogd, B.; Phèdre Workink Group. Intraplate shortening in the Central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile. Geology 1993, 21, 1043–1046. [Google Scholar] [CrossRef]
- Sokolov, S.Y. Sedimentary cover deformations in the equatorial Atlantic and their comparison with geophysical fields. Geotectonics 2016, 51, 74–88. [Google Scholar] [CrossRef]
- Sokolov, S.Y.; Mazarovich, A.O.; Turko, N.N.; Dobrolyubova, K.O.; Abramova, A.S.; Zaraiskaya, Y.A.; Moroz, E.A. Deformations and Manifestations of Degassing in the Sedimentary Cover of the Equatorial Segment of the West Atlantic: Implications for Lithospheric Geodynamics. Geotectonics 2018, 52, 401–420. [Google Scholar] [CrossRef]
- Tripsanas, E.K.; Piper, D.J.W.; Jenner, K.A.; Bryant, W.R. Submarine mass–transport facies: New perspectives on flow processes from cores on the eastern North American margin. Sedimentology 2008, 55, 97–136. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Royden, L.H. Antler Orogeny: A Mediterranean–type Orogeny. Geology 1991, 19, 66–69. [Google Scholar] [CrossRef]
- Bonatti, E.; Seyler, M.; Channel, J.; Girardeau, J.; Mascle, J. Peridotites drilled from the Tyrrhenian sea. In Proceedings Ocean Drilling Program, Scientific Results; Kasten, K.A., Mascle, J., Eds.; Ocean Drilling Program: College Station, TX, USA, 1990; Volume 107, pp. 37–47. [Google Scholar] [CrossRef]
- Camerlenghi, A.; Pini, G.A. Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region. Sedimentology 2009, 56, 319–365. [Google Scholar] [CrossRef]
- Chen, S.C.; Hsü, S.K.; Wangb, Y.; Chung, S.H.; Chen, P.C.; Tsai, C.H.; Liu, C.S.; Lin, H.S.; Lee, Y.W. Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. J. Asian Earth Sci. 2014, 92, 201–214. [Google Scholar] [CrossRef]
- Hannington, M.D.; De Ronde, C.E.J.; Petersen, S. Sea-floor tectonics and submarine hydrothermal systems. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littelton, Colorado, USA, 2005; pp. 111–141. [Google Scholar]
- Manuella, F.C.; Scribano, V.; Carbone, S. Abyssal serpentinites as gigantic factories of marine salts and oil. Mar. Pet. Geol. 2018, 92, 1041–1055. [Google Scholar] [CrossRef]
- Hensen, C.; Nuzzo, M.; Hornibrook, E.; Pinheiro, L.M.; Bock, B.; Magalhaes, V.H.; Bruckmann, W. Sources of mud volcano fluids in the Gulf of Cádiz—Indications for hydrothermal imprint. Geochim. Cosmochim. Acta 2007, 71, 1232–1248. [Google Scholar] [CrossRef]
- Haffert, L.; Haeckel, M.; Liebetrau, V.; Berndt, C.; Hensen, C.; Nuzzo, M.; Reitz, A.; Scholz, F.; Schonfeld, J.; Perez-Garcia, C.; et al. Fluid evolution and authigenic mineral paragenesis related to salt diapirism—The Mercator mud volcano in the Gulf of Cádiz. Geochim. Et Cosmochim. Acta 2013, 106, 261–286. [Google Scholar] [CrossRef]
- Robertson, A. Mud volcanism on the Mediterranean Ridge: Initial results of Ocean Drilling Program Leg 160. Geology 1996, 24, 239–242. [Google Scholar] [CrossRef]
- Robertson, A.H.F. Late Miocene paleoenvironments and tectonic setting of the southern margin of Cyprus and the Eratosthenes seamount. In Proceedings of the Ocean Drilling Program, Scientific Results; Robertson, A.H.F., Emeis, K.C., Richter, C., Camerlenghi, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1998; Volume 160, pp. 453–463. [Google Scholar] [CrossRef]
- Van Rensbergen, P.; Depreiter, D.; Pannemans, B.; Henriet, J.P. Seafloor expression of sediment extrusion and intrusion at the El Arraiche mud volcano field, Gulf of Cádiz. J. Geophys. Res. 2005, 110, F02010. [Google Scholar] [CrossRef]
- Festa, A.; Pini, G.A.; Dilek, Y.; Codegone, G. Mélanges and mélange-forming processes: A historical overview and new concepts. Int. Geol. Rev. 2010, 52, 1040–1105. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprint of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Nayak, D.; Rao, B.V. Petrogenesis and Geochemical characteristics of Plagiogranites from Naga Ophiolite Belt, northeast India: Fractional crystallization of MORB–type magma. Chem. Der Erde Geochem. 2016, 77, 183–194. [Google Scholar] [CrossRef]
- Silantyev, S.A.; Bibikova, E.V.; Ariskin, A.A. Formation of the primordial sialic material of the earth: Possible mechanisms and sources. In Problems of Biosphere Origin and Evolution; Galimov, E.M., Ed.; Nova Science Publishers: New York, NY, USA, 2014; Volume 2, pp. 1–31. [Google Scholar]
- Viccaro, M.; Scribano, V.; Cristofolini, R.; Ottolini, L.; Manuella, F.C. Primary origin of some trachytoid magmas: Inferences from naturally quenched glasses in hydrothermally metasomatized gabbroic xenoliths (Hyblean area, Sicily). Lithos 2009, 113, 659–672. [Google Scholar] [CrossRef]
- Aumento, F. Diorites from the Mid-Atlantic Ridge at 45° N. Science 1969, 165, 1112–1113. [Google Scholar] [CrossRef] [PubMed]
- Kalangutkar, N.G.; Iyer, S.D. Submarine silicic volcanism: Processes and products. Geo Spectr. Interface 2012, 6, 30–39. [Google Scholar]
- Granot, R. Palaeozoic oceanic crust preserved beneath the eastern Mediterranean. Nat. Geosci. 2016, 9, 701–705. [Google Scholar] [CrossRef]
- Arculus, R.J.; Ishizuka, O.; Bogus, K.A.; Gurnis, M.; Hickey-Vargas, R.; Aljahdali, M.H.; Zhang, Z. A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc. Nat. Geosci. 2015, 8, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.; Gurnis, M. Strength of fracture zones from their bathymetric and gravitational evolution. J. Geophys. Res. 2005, 110, B1. [Google Scholar] [CrossRef]
- Niu, Y.; O’Hara, M.J.; Pearce, J.A. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrological perspective. J. Pet. 2003, 44, 851–866. [Google Scholar] [CrossRef]
- Van der Lee, S.; Regenauer-Lieb, K.; Jacobsen, S.; Yuen, D. The role of water in connecting past and future episodes of subduction. Earth Planet. Sci. Lett. 2008, 273, 15–27. [Google Scholar] [CrossRef]
- Van der Meer, D.G.; Torsvik, T.H.; Spakman, W.; van Hinsbergen, D.J.J.; Amaru, M.L. Intra–Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure. Nat. Geosci. 2012, 5, 215–219. [Google Scholar] [CrossRef]
- Tirel, C.; Brun, J.-P.; Burov, E.; Wortel, M.J.R.; Lebedev, S. A plate tectonics oddity: Caterpillar-walk exhumation of subducted continental crust. Geology 2013, 5, 555–558. [Google Scholar] [CrossRef]
- Gazel, E.; Hayes, J.L.; Hoernle, K.; Kelemen, P.; Everson, E.; Holbrook, W.S.; Hau, F.; van den Bogaard, P.; Vance, E.A.; Chu, S.; et al. Continental crust generated in oceanic arcs. Nat. Geosci. 2015, 8, 321–327. [Google Scholar] [CrossRef]
- Regenauer-Lieb, K.; Yuen, D.A.; Branlund, J. The initiation of subduction: Critically by addition of water? Science 2001, 294, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Lofi, J.; Sage, F.; Déverchère, J.; Loncke, L.; Maillard, A.; Gaullier, V.; Thinon, I.; Gillet, H.; Guennoc, P.; Gorini, C. Refining our knowledge of the Messinian salinity crisis records in the offshore domain through multi–site seismic analysis. Bull. Société Géologique Fr. 2011, 182, 163–180. [Google Scholar] [CrossRef]
- Roveri, M.; Flecker, R.; Krijgsman, W.; Lofi, J.; Lugli, S.; Manzi, V.; Sierro, F.J.; Bertini, A.; Camerlenghi, A.; De Lange, G.J.; et al. The Messinian Salinity Crisis: Past and future of a great challenge for marine sciences. Mar. Geol. 2014, 352, 25–58. [Google Scholar] [CrossRef]
- Auzende, J.M.; Bonnin, J.; Olivet, J.L.; Pautot, J.; Mauffret, A. Upper Miocene salt layer in the Western Mediterranean Basin. Nat. Phys. Sci. 1971, 230, 82–84. [Google Scholar] [CrossRef]
- Lugli, S.; Manzi, V.; Roveri, M.; Schreiber, B.C. The deep record of the Messinian salinity crisis: Evidence of a non-desiccated Mediterranean Sea. Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 433, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Ryan, W.B.F. Geodynamic implications of the Messinian crisis of salinity. In Messinian Events in the Mediterranean; Drooger, C.W., Ed.; Elsevier: Amsterdam, The Netherlands, 1973; pp. 26–38. [Google Scholar]
- Vissers, R.L.M. Extension in a convergent tectonic setting: A lithospheric view on the Alboran system of SW Europe. Geol. Belg. 2012, 15, 53–72. [Google Scholar]
- Christeleit, E.C.; Brandon, M.T.; Zhuang, G. Evidence for deep–water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis. Earth Planet. Sci. Lett. 2015, 427, 226–235. [Google Scholar] [CrossRef]
- De Lange, G.J.; Catalano, G.; Klinkhammer, G.P.; Luther, G.W. The interface between oxic seawater and the anoxic Bannock Brine; its sharpness and the consequences for the redox-related cycling of Mn and Ba. Mar. Chem. 1990, 31, 205–217. [Google Scholar] [CrossRef]
- Anschutz, P.; Blanc, G. Heat and salt fluxes in the Atlantis II Deep (Red Sea). Earth Planet. Sci. Lett. 1996, 142, 147–159. [Google Scholar] [CrossRef]
- Feldens, P.; Mitchell, N.C. Salt flows in the Central Red Sea. In The Red Sea; Rasul, N.M.A., Stewart, I.C.F., Eds.; Springer: Berlin, Heidelberg, Germany, 2015; pp. 205–218. [Google Scholar] [CrossRef]
- Ramboz, C.; Oudin, E.; Thisse, Y. Geyser–type discharge in Atlantis II Deep, Red Sea: Evidence of boiling from fluid inclusions in epigenetic anhydrite. Can. Miner. 1988, 26, 765–786. [Google Scholar]
- Hovland, M.; Rueslåtten, H.; Johnsen, H.K. Red Sea salt formations–A result of hydrothermal processes. In The Red Sea; Rasul, N.M.A., Stewart, I.C.F., Eds.; Springer: Berlin, Germany, 2015; pp. 187–203. [Google Scholar] [CrossRef]
- Shvartsev, S.L. Internal Evolution of the Water–Rock System: Nature and Mechanisms. Earth Sci. Res. 2012, 1, 106–116. [Google Scholar] [CrossRef]
- O’Hanly, D.S. Serpentinites: Record of Tectonic and Petrological History; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Sharp, Z.D.; Barnes, J.D. Water-soluble chlorides in massive seafloor serpentinites: A source of chloride in subduction zones. Earth Planet. Sci. Lett. 2004, 226, 243–254. [Google Scholar] [CrossRef]
- Reynard, B.; Mibe, K.; van de Moortele, B. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth Planet. Sci. Lett. 2011, 307, 387–394. [Google Scholar] [CrossRef]
- Lamadrid, H.; Rimstidt, M.J.; Schwarzenbach, E.M.; Klein, F.; Ulrich, S.; Dolocan, A.; Bodnar, R.J. Effect of water activity on rates of serpentinization of olivine. Nat. Commun. 2017, 8, 16107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salhotra, A.M.; Adams, E.E.; Harleman, R.F. Effect of salinity and ionic com–position on evaporation: Analysis of Dead Sea evaporation pans. Water Resour. Res. 1985, 21, 1336–1344. [Google Scholar] [CrossRef]
- Rudge, J.F.; Kelemen, P.B.; Spiegelman, M. A simple model of reaction induced cracking applied to serpentinization, carbonation of peridotite. Earth Planet. Sci. Lett. 2010, 291, 215–227. [Google Scholar] [CrossRef]
- Jackson, M.P.A.; Hudec, M.R. Salt Tectonics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar] [CrossRef]
- Ostwald, W. Lehrbuch der Allgemeinen Chemie, 2nd ed.; Verlag GmbH & Co. KGaA: Weinheim, Leipzig, Germany; p. 444. (In German)
- Evans, B.W. The serpentinite multisystem revisited: Chrysotile is metastable. Int. Geol. Rev. 2004, 46, 479–506. [Google Scholar] [CrossRef]
- Brantut, N.; Passelègue, F.X.; Deldicque, D.; Rouzaud, J.N.; Schubnel, A. Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology 2016, 44, 607–610. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.; Pepper, A. Observations on structures associated with Mud Diapirism and their role in petroleum charging and trapping. In Proceedings of the AAPG International Conference and Exhibition, Cape Town, South Africa, 26–29 October 2008. [Google Scholar]
- Jones, I.F.; Davison, I. Seismic imaging in and around salt bodies. Interpretation 2014, 2, SL1–SL20. [Google Scholar] [CrossRef]
- Perez–Garcia, C.; Berndt, C.; Klaeschen, D.; Mienert, J.; Haffert, L.; Depreiter, D.; Haeckel, M. Linked halokinesis and mud volcanism at the Mercator mud volcano, Gulf of Cádiz. J. Geophys. Res. 2011, 116, B5. [Google Scholar] [CrossRef]
- Bonatti, E.; Simmons, E.C.; Breger, D.; Hamlyn, P.R.; Lawrence, J. Ultramafic rock/seawater interaction in the oceanic crust: Mg-silicate (sepiolite) deposit from the Indian Ocean floor. Earth Planet. Sci. Lett. 1983, 62, 229–238. [Google Scholar] [CrossRef]
- Boillot, G.; Feraud, G.; Recq, M.; Girardeau, J. Undercrusting by serpentinite beneath rifted margins. Nature 1989, 341, 523–525. [Google Scholar] [CrossRef]
- Kido, Y.; Machida, S.; Sato, H.; Fujioka, K. Origin of magnetic dipole anomaly of Shikoku: An example of Jamstec Frontier Database system. JAMSTEC J. Deep. Sea Res. 2001, 18, 1–13. [Google Scholar]
- Ji, S.; Zhu, J.; He, H.; Tao, Q.; Zhu, R.; Ma, L.; Chen, M.; Li, S.; Zhou, J. Conversion of serpentine to smectite under hydrothermal condition: Implication for solid-state transformation. Am. Miner. 2018, 103, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Jackson, M.P.A.; Cornelius, R.R.; Craig, C.H.; Gansser, A.; Stocklin, J.; Talbot, C.J. Salt diapirs of the Great Kavir, Central Iran. Geol. Soc. Am. Mem. 1990, 177. [Google Scholar] [CrossRef]
- Talbot, C.J.; Medvedev, S.; Alavi, M.; Shahrivar, H.; Heidari, E. Salt extrusion rates at Kuh-e-Jahani. In Salt, Shale and Igneous Diapirs in and around Europe; Vendeville, B., Mart, Y., Vigneresse, J.L., Eds.; Geological Society of London Special Publication; The Geological Society: London, UK, 2000; Volume 174, pp. 93–110. [Google Scholar] [CrossRef]
- Arian, M.; Noroozpour, H. Tectonic Geomorphology of Iran’s Salt Structures. Open J. Geol. 2015, 5, 61–72. [Google Scholar] [CrossRef]
- Etiope, G.; Schoell, M.; Hosgörmez, H. Abiotic methane flux from the Chimaera seep and Tekirova ophiolites (Turkey): Understanding gas exhalation from low temperature serpentinization and implications for Mars. Earth Planet. Sci. Lett. 2011, 310, 96–104. [Google Scholar] [CrossRef]
- Worden, R.H.; Smalley, P.C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chem. Geol. 1996, 133, 157–171. [Google Scholar] [CrossRef]
- Stanley, D.J.; Wezel, C.F. Geological Evolution of the Mediterranean Basin: Raimondo Selli Commemorative Volume; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Peacock, S.M. Serpentinization of the forearc mantle. Earth Planet. Sci. Lett. 2003, 212, 417–432. [Google Scholar] [CrossRef]
- Chironi, C.; De Luca, L.; Guerra, I.; Luzio, D.; Moretti, A.; Vitale, M. Sea Land Group Crustal structures of the Southern Tyrrhenian Sea and Sicily Channel on the basis of the M25, M26, M28, M39, WARR profiles. Boll. Della Soc. Geol. Ital. 2000, 119, 189–203. [Google Scholar]
- Calò, M.; Dorbath, C.; Luzio, D.; Rotolo, S.G.; D’Anna, G. Seismic velocity structures of southern Italy from tomographic imaging of the Ionian slab and petrological inferences. Geophys. J. Int. 2012, 191, 751–764. [Google Scholar] [CrossRef] [Green Version]
- Manuella, F.C.; Brancato, A.; Carbone, S.; Gresta, S. A crustal–upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data. J. Geodyn. 2013, 66, 92–102. [Google Scholar] [CrossRef]
- Giampiccolo, E.; Brancato, A.; Manuella, F.C.; Carbone, S.; Gresta, S.; Scribano, V. New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography. Geophys. J. Int. 2017, 211, 1375–1395. [Google Scholar] [CrossRef]
- Scribano, V.; Sapienza, G.T.; Braga, R.; Morten, L. Gabbroic xenoliths in tuff-breccia pipes from the Hyblean Plateau: Insights into the nature and composition of the lower crust underneath Southeastern Sicily, Italy. Miner. Pet. 2006, 86, 63–88. [Google Scholar] [CrossRef]
- Scribano, V.; Ioppolo, S.; Censi, P. Chlorite/smectite-alkali feldspar metasomatic xenoliths from Hyblean Miocenic diatremes (Sicily, Italy): Evidence for early interaction between hydrothermal brines and ultramafic/mafic rocks at crustal levels. Ofioliti 2006, 31, 161–171. [Google Scholar] [CrossRef]
- Manuella, F.C. Vein mineral assemblage in partially serpentinized peridotite xenoliths from Hyblean Plateau (Southeastern Sicily, Italy). Period. Di Miner. 2011, 80, 247–266. [Google Scholar] [CrossRef]
- Manuella, F.C.; Scribano, V.; Carbone, S.; Brancato, A. The Hyblean xenolith suite (Sicily): An unexpected legacy of the Ionian–Tethys realm. Int. J. Earth Sci. 2015, 104, 1317–1336. [Google Scholar] [CrossRef]
- Suess, E. Das Antlitz der Erde. G. Freytag, Leipzig. 1895, Volume 1. Available online: https://www.booklooker.de/B%C3%BCcher/Suess+Das-Antlitz-der-Erde-1-Band-2-Band-3-Band-1-2-H%C3%A4lfte-4-B%C3%A4nde/id/A01T8rlk01ZZZ (accessed on 17 September 2018).
- Iribarren, L.; Vergés, J.; Camurri, F.; Fullea, J.; Fernàndez, M. The structure of the Atlantic-Mediterranean transition zone from the Alboran Sea to the Horseshoe Abyssal Plain (Iberia-Africa plate boundary). Mar. Geol. 2007, 243, 97–119. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.; van den Bogaard, P.; Rupke, L.; Morgan, J.P. Deep roots of the Messinian salinity crisis. Nature 2003, 422, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Gràcia, E.; Dañobeitia, J.; Vergés, J.; Bartolomé, R.; Córdoba, D. Crustal architecture and tectonic evolution of the Gulf of Cádiz (southwest Iberian margin) at the convergence of the Eurasian and African plates. Tectonics 2003, 22, 1033–1042. [Google Scholar] [CrossRef]
- Ryan, W.B.F. Decoding the Mediterranean salinity crisis. Sedimentology 2009, 56, 95–136. [Google Scholar] [CrossRef]
- Sallarès, V.; Gailler, A.A.; Gutscher, M.A.; Graindorge, D.; Bartolomé, R.; Gracia, E.; Diaz, J.; Dañnobeitia, J.J.; Zitellini, N. Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cádiz (SW Iberian margin). Earth Planet. Sci. Lett. 2011, 311, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Martínez–García, P.; Soto, J.I.; Comas, M. Recent structures in the Alboran Ridge and Yusuf fault zones based on swath bathymetry and sub-bottom profiling: Evidence of active tectonics. Geo Mar. Lett. 2011, 31, 19–36. [Google Scholar] [CrossRef]
- Silva, S.; Terrinha, P.; Matias, L.; Duarte, J.C.; Roque, C.; César, R.; Ranero, R.; Geissler, W.H.; Zitellini, N. Micro-seismicity in the Gulf of Cádiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults? Tectonophysics 2017, 717, 226–241. [Google Scholar] [CrossRef]
- Maestro, A.; Somoza, L.; Medialdea, T.; Talbot, C.J.; Lowrie, A.; Vasquez, J.T.; Diaz-del-Rio, V. Large-scale slope failure involving Triassic and Middle Miocene salt and shale in the Gulf of Cádiz (Atlantic Iberian Margin). Terra Nova 2003, 15, 380–391. [Google Scholar] [CrossRef]
- Vázquez, J.T.; Alonso, B.; Fernàndez-Puga, M.C.; Gómez-Ballesteros, M.; Iglesias, J.; Palomino, D.; Roque, C.; Ercilla, G.; Díaz-del-Río, V. Seamounts along the Iberian continental margins. Bol. Geol. Min. 2015, 126, 483–514. [Google Scholar]
- Matias, H.; Kress, P.; Terrinha, P.; Mohriak, W.; Menezes, P.T.L.; Matias, L.; Santos, F.; Sandnes, F. Salt tectonics in the western Gulf of Cádiz, southwest Iberia. Am. Assoc. Pet. Geol. Bull. 2011, 95, 1667–1698. [Google Scholar] [CrossRef]
- Davison, I.; Alsop, I.; Evans, N.; Safaricz, M. Overburden deformation patterns and mechanism of salt diapir penetration. Mar. Pet. Geol. 2000, 17, 601–618. [Google Scholar] [CrossRef]
- Kopf, A.J. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1005. [Google Scholar] [CrossRef]
- Hovland, M.; Curzi, P. Gas seepage and assumed mud diapirism in the Italian central Adriatic Sea. Mar. Pet. Geol. 1989, 6, 161–169. [Google Scholar] [CrossRef]
- Muñoz, A.; Ballesteros, M.; Montoya, I.; Rivera, J.; Acosta, J.; Uchupi, E. Alborán Basin, southern Spain—Part 1: Geomorphology. Mar. Pet. Geol. 2008, 25, 59–73. [Google Scholar] [CrossRef]
- Puga, E.; Díaz de Frederico, A.; Demant, A. The eclogitized pillows of the Betic Ophiolitic Association: Relics of the Tethys Ocean floor incorporated in the Alpine chain after subduction. Terra Gradiškan 1995, 7, 31–43. [Google Scholar] [CrossRef]
- Vergés, J.; Fernàndez, M.F. Tethys-Atlantic interaction along the Iberia-Africa plate boundary: The Betic-Rif orogenic system. Tectonophysics 2012, 579, 144–172. [Google Scholar] [CrossRef]
- Tandon, K.; Lorenzo, J.M.; de La Linde Rubio, J. Timing of rifting in the Alboran Sea basin-correlation of borehole (ODP Leg 161 and Andalucia A-1) to seismic reflection data: Implications for basin formation. Mar. Geol. 1998, 144, 275–294. [Google Scholar] [CrossRef]
- Gill, R.C.O.; Aparicio, A.; El Azzouzi, M.; Hernandez, J.; Thirlwall, M.F.; Bourgois, J.; Marriner, G.F. Depleted arc volcanism in the Alboran Sea and shoshonitic volcanism in Morocco: Geochemical and isotopic constraints on Neogene tectonic processes. Lithos 2004, 78, 363–388. [Google Scholar] [CrossRef]
- Sautkin, A.; Talukder, A.R.; Comas, M.C.; Soto, J.I.; Alekseev, A. Mud volcanoes in the Alboran Sea: Evidence from micropaleontological and geophysical data. Mar. Geol. 2003, 195, 237–261. [Google Scholar] [CrossRef]
- Comas, M.C.; Dañobetia, J.J.; Álvarez-Marron, J.; Soto, J.I. Crustal reflection and structure in the Alborán basin: Preliminary results of the ESCI-Alborán survey. Rev. Soc. Geológica España 1995, 8, 529–542. [Google Scholar]
- Medaouri, M.; Déverchèreb, J.; Graindorgeb, D.; Bracenea, R.; Badjia, R.; Ouabadic, A.; Yelles-Chaouched, K.; Bendiab, F. The transition from Alboran to Algerian basins (Western Mediterranean Sea): Chronostratigraphy, deep crustal structure and tectonic evolution at the rear of a narrow slab rollback system. J. Geodyn. 2014, 77, 186–205. [Google Scholar] [CrossRef]
- Platt, J.P.; Soto, J.I.; Comas, M.C. Leg 161 Shipboard Scientists Decompression and high-temperature-low-pressure metamorphism in the exhumed floor of an extensional basin, Alboran Sea, western Mediterranean. Geology 1996, 24, 447–450. [Google Scholar] [CrossRef]
- Soto, J.I.; Flinch, J.; Rari, J. Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins: Tectonics and Hydrocarbon Potential; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Dal Cin, M.; Del Ben, A.; Mocnik, A.; Accaino, F.; Geletti, R.; Wardell, N.; Zgur, F.; Camerlenghi, A. Seismic imaging of Late Miocene (Messinian) evaporites from Western Mediterranean back-arc basins. Pet. Geosci. 2016, 22, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Kastens, K.A.; Mascle, J.; Auroux, C.; Bonatti, E.; Broglia, C.; Channell, J.; Curzi, P.; Emeis, K.C.; Glacon, G.; Hasegana, S.; et al. The geological evolution of the Tyrrhenian Sea: An introduction to the scientific results of ODP Leg 107. Proc. Ocean Drill. Progr. Sci. Results 1990, 107, 3–26. [Google Scholar] [CrossRef]
- Christensen, N.I. Elasticity of ultrabasic rocks. J. Geophys. Res. 1966, 71, 5921–5931. [Google Scholar] [CrossRef]
- Courtier, A.M.; Hart, D.J.; Christensen, N.I. Seismic properties of Leg 195 serpentinites and their geophysical implications. Proc. Ocean Drill. Progr. Sci. Results 2004, 195, 1–12. [Google Scholar] [CrossRef]
- Glangeaud, L. Paléogéographie dynamique de la Méditerranée et de ses bordures. Le role des phases Ponto-Plio-Quaternaires. In Océanographie, Géologique et Géophysique de la Méditerranée Occidentale; Bourcart, J., Ed.; Colloque CNRS: Villefranche-sur-Mer, Frence, 1962; pp. 125–161. (In French) [Google Scholar]
- Selli, R.; Fabri, A. Tyrrhenian, a Pliocene Deep Sea. Accad. Naz. Dei Lincei 1971, 8, 580–592. [Google Scholar]
- Mottura, S. Sulla formazione terziaria nella zona zolfifera della Sicilia. Mem. Descr. Della Carta Geol. D’Italia 1871, 1, 1–96. (In Italian) [Google Scholar]
- Ogniben, L. Petrografia della Serie Solfifera Siciliana e considerazioni geologiche relative. Mem. Descr. Della Carta Geol. D’Italia 1957, 33, 1–275. (In Italian) [Google Scholar]
- Decima, A.; Wezel, F.C. Osservazioni sulle evaporiti siciliane della Sicilia centro meridionale. Riv. Mineraria Sicil. 1971, 132, 127–187. (In Italian) [Google Scholar]
- Lentini, F.; Carbone, S.; Catalano, S.; Grasso, M. Elementi per la ricostruzione del quadro strutturale della Sicilia orientale. Mem. Della Soc. Geol. Ital. 1996, 51, 179–195. (In Italian) [Google Scholar]
- Lentini, F.; Carbone, S. Geologia della Sicilia, con i contributi di Branca S (vulcanico) e Messina A (basamenti cristallini). ISPRA Mem. Descr. Della Carta Geol. D’Italia 2014, 95, 7–414. (In Italian) [Google Scholar]
- Roveri, M.; Lugli, S.; Manzi, V.; Schreiber, B.C. The Messinian Sicilian stratigraphy revisited: New insights for the Messinian salinity crisis. Terra Gradiškan 2008, 20, 483–488. [Google Scholar] [CrossRef]
- Grasso, M. The Apenninic-Maghrebian orogen in southern Italy, Sicily and adjacent areas. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 255–286. [Google Scholar] [CrossRef]
- Blackman, D.K.; Karson, J.; Kelley, D.S.; Cann, J.R.; Früh-Green, G.L.; Gee, J.S.; Hurst, S.D.; John, B.E.; Morgan, J.; Nooner, S.L.; et al. Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30° N): Implications for the evolution of an ultramafic oceanic core complex. Mar. Geophys. Res. 2002, 23, 443–469. [Google Scholar] [CrossRef]
- Finetti, I. Structure, stratigraphy, and evolution of central Mediterranean. Boll. Di Geofis. Teor. E Appl. 1982, 24, 247–312. [Google Scholar]
- Vai, G.B. Crustal evolution and basement elements in the Italian area: Palaeogeography and characterization. Boll. Geofis. Teor. Appl. 1994, 36, 141–144. [Google Scholar]
- Vai, G.B. Development of the palaeogeography of Pangaea from Late Carboniferous to Early Permian. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 196, 125–155. [Google Scholar] [CrossRef]
- Polonia, A.; Torelli, L.; Gasperini, L.; Cocchi, L.; Muccini, F.; Bonatti, E.; Hensen, C.; Schmidt, M.; Romano, S.; Artoni, A.; et al. Lower plate serpentinite diapirism in the Calabrian Arc subduction complex. Nat. Commun. 2017, 8, 2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Avraham, Z.; Boccaletti, M.; Cello, G.; Grasso, M.; Lentini, F.; Torelli, L.; Tortorici, L. Principali domini strutturali originatisi dalla collisione neogenico-quaternaria nel Mediterraneo centrale. Mem. Soc. Geol. Ital. 1990, 45, 453–462. [Google Scholar]
- Scribano, V. The ultramafic and mafic nodule suite in a tuff–breccia pipe from Cozzo Molino (Hyblean Plateau, SE Sicily). Rend. Della Soc. Ital. Miner. E Pet. 1987, 42, 203–217. [Google Scholar]
- Sgroi, T.; de Nardis, R.; Lavecchia, G. Crustal structure and seismotectonics of central Sicily (southern Italy): New constraints from instrumental seismicity. Geophys. J. Int. 2012, 189, 1237–1252. [Google Scholar] [CrossRef]
- Ji, S.; Wang, Q.; Xia, B. Handbook of Seismic Properties of Minerals, Rocks and Ores; Polytechnic International Press: Montreal, QC, Canada, 2002; p. 630. [Google Scholar]
- Baker, M.B.; Beckett, J.R. The origin of abyssal peridotites: A reinterpretation of constraints based on primary bulk compositions. Earth Planet. Sci. Lett. 1999, 171, 49–61. [Google Scholar] [CrossRef]
- Di Bella, M.; Russo, S.; Sabatino, G.; Pino, P.; Baldanza, A. Evidence of Early Oligocene submarine volcanism in the Caltanissetta Basin (Central-Southern Sicily). Period. Miner. 2010, 79, 1–20. [Google Scholar] [CrossRef]
- Perthuisot, V. Diapirism in Northern Tunisia. J. Struct. Geol. 1981, 3, 231–235. [Google Scholar] [CrossRef]
- Schwartz, S.; Guillot, S.; Reynard, B.; Lafay, R.; Debret, B.; Nicollet, C. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 2012, 178, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Francaviglia, A. Risultati di alcune ricerche sulla serie gessoso solfifera siciliana. Ann. Geofis. 1962, 15, 99–114. (In Italian) [Google Scholar]
- Bellon, M.; Perthuisot, V. Age radiométrique (K/Ar) de feldspaths potassiques et de micas néoformés dans le Trias de Tunisie septentrionale. Bull. Société Géologique Fr. 1977, 19, 1179–1184. [Google Scholar] [CrossRef]
- Soto, J.I.; Platt, A.J. Petrological and structural evolution of high-grade metamorphic rocks from the floor of the Alboran Sea Basin, Western Mediterranean. J. Pet. 1999, 40, 21–60. [Google Scholar] [CrossRef]
- Rouchy, J.M.; Caruso, A. The Messinian salinity crisis in the Mediterranean basin: A reassessment of the data and an integrated scenario. Sediment. Geol. 2006, 188, 35–67. [Google Scholar] [CrossRef]
- Fiduk, J.C. Evaporites, petroleum exploration, and the Cenozoic evolution of the Libyan shelf margin, central North Africa. Mar. Pet. Geol. 2009, 26, 1513–1527. [Google Scholar] [CrossRef]
- Klett, T.R. Total Petroleum Systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta—The Bou Dabbous-Tertiary and Jurassic-Cretaceous Composite. US Geological Survey Bulletin 2202-D. 2001. Available online: http://purl.access.gpo.gov/GPO/LPS17374 (accessed on 16 October 2017).
- Casero, P.; Roure, F. Neogene Deformations at the Sicilian-North African Plate Boundary. In Pery-Tethyan Platforms; Roure, F., Ed.; Editions Technip: Paris, France, 1994; pp. 27–50. ISBN 9782710806790. [Google Scholar]
- De Voogd, B.; Truffert, C.; Chamot-Rooke, N.; Huchon, P.; Lallemant, S.; Le Pichon, X. Two-ship deep seismic soundings in the basins of the Eastern Mediterranean Sea (Pasiphae cruise). Geophys. J. Int. 2007, 109, 536–552. [Google Scholar] [CrossRef]
- Catalano, R.; Doglioni, C.; Merlini, S. On the Mesozoic Ionian basin. Geophys. J. Int. 2001, 144, 49–64. [Google Scholar] [CrossRef]
- Della Vedova, B.; Pellis, G. New heat flow density measurements in the Ionian sea. Grup. Naz. Geofis. Della Terra Solida Atti Congr. 1989, 8, 1133–1146. [Google Scholar]
- Polonia, A.; Torelli, L.; Mussoni, P.; Gasperini, L.; Artoni, A.; Klaeschen, D. The Calabrian Arc subduction complex in the Ionian Sea: Regional architecture, active deformation, and seismic hazard. Tectonics 2011, 30, TC5018. [Google Scholar] [CrossRef]
- Gallais, F.; Gutscher, M.A.; Graindorge, D.; Chamot–Rooke, N.; Klaeschen, N.D. A Miocene tectonic inversion in the Ionian Sea (central Mediterranean): Evidence from multichannel seismic data. J. Geophys. Res. 2011, 116, B12. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Zitterd, T.; Roy, N.; Jean-Baptiste, P.; Foucher, J.P.; Woodside, J. Medinaut Scientific Party. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep. Sea Res. Part I Oceanogr. Res. Pap. I 2003, 50, 941–958. [Google Scholar] [CrossRef]
- Cita, M.B. Exhumation of Messinian evaporites in the deep-sea and creation of deep anoxic brine–filled collapsed basins. Sediment. Geol. 2006, 188, 357–378. [Google Scholar] [CrossRef]
- Schuiling, R.D. Troodos: A giant serpentinite diapir. Int. J. Geosci. 2011, 2, 98–101. [Google Scholar] [CrossRef]
- Gaullier, V.; Mart, Y.; Bellaiche, G.; Mascle, J.; Vendeville, B.C.; Zitter, T.; Benkhelil, J.; Buffet, G.; Droz, L.; Ergun, M.; et al. Salt tectonics in and around the Nile deep–sea fan: Insights from the PRISMED II cruise. Geol. Soc. Spéc. Publ. 2000, 174, 111–129. [Google Scholar] [CrossRef]
- Loncke, L.; Gaullier, V.; Mascle, J.; Vendeville, B.; Camera, L. The Nile deep-sea fan: An example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features. Mar. Pet. Geol. 2006, 23, 297–315. [Google Scholar] [CrossRef]
- Maillard, A.; Gaullier, V.; Vendeville, B.; Odonne, F. Influence of differential compaction above basement steps on salt tectonics in the Ligurian-Provençal Basin, northwest Mediterranean. Mar. Pet. Geol. 2003, 20, 13–27. [Google Scholar] [CrossRef]
- Reiche, S.; Hübscher, C.; Beitz, M. Fault-controlled evaporite deformation in the Levant Basin, Eastern Mediterranean. Mar. Geol. 2014, 354, 53–68. [Google Scholar] [CrossRef]
- Bertoni, C.; Kirkham, C.; Cartwright, J.; Hodgson, N.; Rodriguez, K. Seismic indicators of focused fluid flow and cross-evaporitic seepage in the Eastern Mediterranean. Mar. Pet. Geol. 2017, 88, 472–488. [Google Scholar] [CrossRef]
- Lazar, M.; Schattner, U.; Reshef, M. The great escape: An intra Messinian gas system in the eastern Mediterranean. Geophys. Res. Lett. 2012, 39, L20309. [Google Scholar] [CrossRef]
- Ratcliff, D.V.; Gray, S.H.; Whitmore, N.D. Seismic imaging of Salt Structures in the Gulf of Mexico. Lead. Edge 1992, 11, 15–22. [Google Scholar] [CrossRef]
- Farmer, P.; Jones, I.F.; Zhou, H.; Bloor, R.; Goodwin, M.C. Application of reverse time migration to complex imaging problems. First Break. 2006, 24, 65–73. [Google Scholar]
- Sun, S.-C.; Liu, C.-S. Mud diapir and submarine channel deposits in offshore Kaohsiung—Hengchun, southwest Taiwan. Pet. Geol. Taiwan 1993, 28, 1–14. [Google Scholar]
- Stewart, R.R.; Gaiser, J.E.; Brown, R.J.; Lawton, D.C. Converted-wave seismic exploration: Applications. CREWES Res. Rep. 2000, 12, 1–26. [Google Scholar] [CrossRef]
- Chow, J.; Lee, J.S.; Sun, R.; Liu, C.S.; Lundberg, N. Characteristics of the bottom simulating reflectors near mud diapirs: Offshore southwestern Taiwan. Geo Mar. Lett. 2000, 20, 3–9. [Google Scholar] [CrossRef]
- Rüpke, L.H.; Morgan, J.P.; Dixon, J. Earth’s Deep Water Cycle. Am. Geophys. Union Geophys. Monogr. 2006, 168, 263–275. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Mangano, G.; D’Anna, G.; Scudero, S. Evidence for serpentinization of the Ionian upper mantle from simultaneous inversion of P- and S-wave arrival times. J. Geodyn. 2016, 102, 115–120. [Google Scholar] [CrossRef]
- Baraza, J.; Ercilla, G. Gas-charged sediments and large pockmark-like features on the Gulf of Cádiz slope (SW Spain). Mar. Pet. Geol. 1996, 13, 253–261. [Google Scholar] [CrossRef]
- Manuella, F.C.; Ottolini, L.; Carbone, S.; Scavo, L. Metasomatizing effects of serpentinization-related hydrothermal fluids in abyssal peridotites: New contributions from Hyblean peridotite xenoliths (southeastern Sicily). Lithos 2016, 264, 405–421. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scribano, V.; Carbone, S.; Manuella, F.C. Tracking the Serpentinite Feet of the Mediterranean Salt Giant. Geosciences 2018, 8, 352. https://doi.org/10.3390/geosciences8090352
Scribano V, Carbone S, Manuella FC. Tracking the Serpentinite Feet of the Mediterranean Salt Giant. Geosciences. 2018; 8(9):352. https://doi.org/10.3390/geosciences8090352
Chicago/Turabian StyleScribano, Vittorio, Serafina Carbone, and Fabio Carmelo Manuella. 2018. "Tracking the Serpentinite Feet of the Mediterranean Salt Giant" Geosciences 8, no. 9: 352. https://doi.org/10.3390/geosciences8090352
APA StyleScribano, V., Carbone, S., & Manuella, F. C. (2018). Tracking the Serpentinite Feet of the Mediterranean Salt Giant. Geosciences, 8(9), 352. https://doi.org/10.3390/geosciences8090352