Highlights on Geochemical Changes in Archaean Granitoids and Their Implications for Early Earth Geodynamics
Abstract
:1. Introduction
2. Datasets
3. Bar Diagrams
3.1. Eoarchaean (4.0–3.6 Ga)
3.1.1. Acasta Gneiss Complex, Slave Province
3.1.2. Itsaq Gneiss Complex, West Greenland
3.1.3. Anshan Complex, North China Craton
3.2. Paleoarchaean (3.6–3.2 Ga)
3.2.1. Ancient Gneiss Complex of Swaziland
3.2.2. Singhbhum Craton, Indian Shield
3.3. Mesoarchaean (3.2–2.8 Ga)
3.3.1. Yangtze Block, South China
3.3.2. Sanukitoid granitoids, Carajas Province, Brazil
3.4. Neoarchaean (2.8–2.5 Ga)
4. Discussion
4.1. Eoarchaean Melting within Oceanic Crust
4.2. Paleoarchaean Thickening of the Continental Crust
4.3. Meso-to Neoarchaean Geodynamic Change
4.4. Neoarchaean Diversification of Granitoids
4.5. Unresolved Problems in Archaean Geochemistry
5. Conclusions
- In the Eoarchaean (4.0–3.6 Ga), sodic TTGs were formed mainly by episodic melting within thin or thickened basaltic oceanic crust.
- Paleoarchaean (3.6–3.2 Ga) crustal growth was characterized by episodic TTG formation, generation of low-K calc-alkaline diorites from the mantle, and intracrustal recycling that caused thickening of the continental crust. Intracrustal melting of pre-existing crust produced crust-derived granitoids similar to their Neoarchaean counterparts.
- A significant change in the geodynamics of Earth started in the Mesoarchaean (3.2–2.8 Ga) by the appearance of sanukitoid granitoids (high K-Mg-Ba-Sr-P and LREE) at 3.0 Ga. Sanukitoids originated in an enriched mantle wedge and reflect late-orogenic extensional tectonics. The appearance of enriched mantle signature in sanukitoid granitoids may indicate the onset of modern-style subduction.
- In the Neoarchaean (2.8–2.5 Ga), the production of voluminous TTGs gradually ceased and abundant high-K calc-alkaline magmatism increased, indicating a significant progressive geodynamic change between 3.0–2.5 Ga from stagnant lid/plume/arc tectonics towards modern-style plate tectonics with subduction zones and mantle wedges. Abundant multi-source batholiths involving both mantle- and crust-derived material were formed at convergent and colliding continental margins, possibly indicating an assembly of a supercraton(s) towards the Archaean–Proterozoic boundary.
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Bédard, J.H. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. GSF 2018, 9, 19–49. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Cawood, P.A.; Dhuime, B.; Kemp, T.I.S. Earth’s Continental Lithosphere through Time. Annu. Rev. Earth Planet Sci. 2017, 45, 169–198. [Google Scholar] [CrossRef]
- Joshi, K.B.; Bhattacharjee, J.; Rai, G.; Halla, J.; Ahmad, T.; Kurhila, M.; Heilimo, E.; Choudhary, A.K. The diversification of granitoids and plate tectonic implications at the Archaean–Proterozoic boundary in the Bundelkhand Craton, Central India. In Crust–Mantle Interactions and Granitoid Diversification: Insights from Archaean Cratons; Halla, J., Whitehouse, M.J., Ahmad, T., Bagai, Z., Eds.; Geological Society: London, UK, 2017; pp. 123–149. [Google Scholar]
- Halla, J.; Whitehouse, M.J.; Ahmad, T.; Bagai, Z. Archaean granitoids: An overview and significance from a tectonic perspective. In Crust–Mantle Interactions and Granitoid Diversification: Insights from Archaean Cratons; Halla, J., Whitehouse, M.J., Ahmad, T., Bagai, Z., Eds.; Geological Society: London, UK, 2017; pp. 1–18. [Google Scholar]
- Laurent, O.; Martin, H.; Moyen, J.-F.; Doucelance, R. The diversity and evolution of late-Archean granitoids: Evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 2014, 205, 208–235. [Google Scholar] [CrossRef]
- Moyen, J.-F.; Laurent, O. Archaean tectonic systems: A view from igneous rocks. Lithos 2018, 302–203, 99–125. [Google Scholar] [CrossRef]
- Reimink, J.R.; Chacko, T.; Stern, R.A.; Heaman, L.M. The birth of a cratonic nucleus: Lithochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex. Precambrian Res. 2016, 281, 453–472. [Google Scholar] [CrossRef]
- Hoffmann, J.E.; Nagel, T.J.; Münker, C.; Næraa, T. Constraining the process of Eoarchean TTG formation in the Itsaq Gneiss Complex, southern West Greenland. Earth Planet Sci. Lett. 2014, 388, 374–386. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Li, X.-H.; Wei, J.; Zhang, J.-H. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81 Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Res. 2015, 263, 88–107. [Google Scholar] [CrossRef]
- Hoffmann, J.E.; Kröner, A.; Hegner, E.; Viehmann, S.; Xie, H.; Iaccheri, L.M.; Schneider, K.P.; Hofmann, A.; Wong, J.; Geng, H.; Yang, J. Source composition, fractional crystallization and magma mixing processes in the 3.48–3.43 Ga Tsawela tonalite suite (Ancient Gneiss Complex, Swaziland)—Implications for Palaeoarchaean geodynamics. Precambrian Res. 2016, 276, 43–66. [Google Scholar] [CrossRef]
- Dey, S.; Topno, A.; Liu, Y.; Zong, K. Generation and evolution of Palaeoarchaean continental crust in the central part of the Singhbhum craton, eastern India. Precambrian Res. 2017, 298, 268–291. [Google Scholar] [CrossRef]
- Qiu, X.-F.; Ling, W.-L.; Liu, X.-M.; Lu, S.-S.; Jiang, T.; Wei, Y.-X.; Peng, L.-H.; Tan, J.-J. Evolution of the Archean continental crust in the nucleus of the Yangtze block: Evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane, South China. J. Asian Earth Sci. 2018, 154, 149–161. [Google Scholar] [CrossRef]
- Oliveira, M.A.; Dall’Agnol, R.; Althoff, F.J.; Leite, A.A.S. Mesoarchean sanukitoid rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian craton, Brazil. J. South Am. Earth Sci. 2009, 27, 146–160. [Google Scholar] [CrossRef]
- Halla, J.; van Hunen, J.; Heilimo, E.; Hölttä, P. Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Res. 2009, 174, 155–162. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar]
- Reimink, J.R.; Chacko, T.; Stern, R.A.; Heaman, L.M. Earth’s earliest evolved crust generated in an Iceland-like setting. Nat. Geosci. 2014, 7, 529–533. [Google Scholar] [CrossRef]
- Reimink, J.R.; Chacko, T.; Carslon, R.W.; Shirey, S.B.; Liu, J.; Stern, R.A.; Bauer, A.M.; Pearson, D.G.; Heaman, L.M. Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology, 142Nd, and 182W extinct nuclide-geochemistry. Earth Planet Sci. Lett 2018, 494, 12–22. [Google Scholar] [CrossRef]
- Rollinson, H. New models for the genesis of plagiogranites in the Oman ophiolite. Lithos 2009, 112, 603–614. [Google Scholar] [CrossRef]
- Fisher, C.M.; Vervoort, J.D. Using the magmatic record to constrain the growth of continental crust—The Eoarchean zircon Hf record of Greenland. Earth Planet Sci. Lett 2018, 488, 79–91. [Google Scholar] [CrossRef]
- Condie, K.C.; Puetz, S.J.; Davaille, A. Episodic crustal production before 2.7 Ga. Precambrian Res. 2018, 312, 16–22. [Google Scholar] [CrossRef]
- Smithies, R.H.; Champion, D.C. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for early Archaean crustal growth. J. Petrol. 2000, 41, 1653–1671. [Google Scholar] [CrossRef]
- Mitra, A.; Dey, S. Occurrence of Two Different Types of Paleoarchean TTGs in Singhbhum craton, Eastern India: Insight from Geochemistry and Zircon Saturation Thermometry. In Proceedings of the American Geophysical Union, Fall Meeting 2017, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Frost, C.D.; McLaughlin, J.F.; Frost, B.R.; Fanning, C.M.; Swapp, S.M.; Kruckenberg, S.C.; Gonzalez, J. Hadean origins of Paleoarchean continental crust in the central Wyoming Province. GSA Bull. 2017, 129, 259–280. [Google Scholar] [CrossRef]
- Heilimo, E.; Halla, J.; Huhma, H. Single-grain zircon U-Pb age constraints of the western and eastern sanukitoid zones in the Finnish part of the Karelian Province. Lithos 2011, 121, 87–99. [Google Scholar] [CrossRef]
- Moyen, J.F. The composite Archean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 2011, 123, 21–36. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halla, J. Highlights on Geochemical Changes in Archaean Granitoids and Their Implications for Early Earth Geodynamics. Geosciences 2018, 8, 353. https://doi.org/10.3390/geosciences8090353
Halla J. Highlights on Geochemical Changes in Archaean Granitoids and Their Implications for Early Earth Geodynamics. Geosciences. 2018; 8(9):353. https://doi.org/10.3390/geosciences8090353
Chicago/Turabian StyleHalla, Jaana. 2018. "Highlights on Geochemical Changes in Archaean Granitoids and Their Implications for Early Earth Geodynamics" Geosciences 8, no. 9: 353. https://doi.org/10.3390/geosciences8090353
APA StyleHalla, J. (2018). Highlights on Geochemical Changes in Archaean Granitoids and Their Implications for Early Earth Geodynamics. Geosciences, 8(9), 353. https://doi.org/10.3390/geosciences8090353