Petrologic History of Lunar Phosphates Accounts for the Water Content of the Moon’s Mare Basalts
Abstract
:1. Introduction
2. Methods and Rationale
3. Mesostasis Petrology
3.1. Sample 10003 Petrology
3.2. Sample 14053 Petrology
4. Reaction Balance of Sample 10003
4.1. Melt Compositions, and Choice of Chemical System
- (a)
- crystallization of Ol, then Ol + Pl, then Ol + Pl + Cpx,
- (b)
- resorption of Ol and crystallization of more Cpx + Pl after passing the peritectic point,
- (c)
- crystallization of Cpx + Pl + SiO2 at the pseudo-eutectic point.
4.2. Bulk Mass Balance, Early Reactions and Thermodynamic Modeling
4.3. Mesostasis Reactions
5. Reaction Balance of Sample 14053
5.1. Defining the Chemical System for the Parental Melt and Mesostasis Reactions
5.2. Residual Mesostasis Reactions
6. Discussion
6.1. The Onset of SLI in Lunar Basalts
6.2. Phosphate OH/Halogen Ratios
6.3. REE Budget
6.4. Estimating the OH Content of Lunar Mare Basalts and the Lunar Mantle
7. Conclusions
- Modeling the mesostasis mineral assemblage for Apollo sample 10003, the reaction-balancing matches well the observed mineral modes in the context that the residual Si-K-rich liquid is the major H2O-bearing phase. The calculations indicate the occurrence of several generations of apatite potentially occurring within both the mafic and felsic immiscible melt fractions, each with its own H2O-halogen ratio. This carries important implications for the interpretation of apatite volatile chemistry, e.g., selecting appropriate partition coefficients. Our results present a way to track the apatite crystallization history, leading to more robust magmatic H2O back-calculations from lunar apatite.
- By contrast, only one generation of apatite (associated with the mesostasis pocket) crystallized in Apollo sample 14053. The calculations suggest that the bulk sample contains between 15 to 35 ppm H2O, which is consistent with estimates for the mantle source region of 14053 from [8].
- Our calculations indicate a discrepancy between H2O values reported for single minerals and whole-rock contents. The reason may be that only values above the detection limits are commonly reported, rather than average values. We suggest that in many geochemical studies, it may be a useful exercise to compare bulk rock analyses with phase compositions and modal abundances to detect potential discrepancies. It may also be a way of detecting non-equilibrated, heterogeneous trace element distributions.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jolliff, B.L.; Haskin, L.A.; Colson, R.O.; Wadhwa, M. Partitioning in REE saturating minerals: Theory, experiment, and modeling of whitlockite, apatite, and evolution of lunar residual magmas. Geochim. Cosmochim. Acta 1993, 57, 4069–4094. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Hughes, J.M.; Freeman, J.J.; Zeigler, R.A. Crystal chemistry of lunar merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite. Am. Mineral. 2006, 91, 1583–1595. [Google Scholar] [CrossRef]
- McSween, H.Y.; Eisenhour, D.D.; Taylor, L.A.; Wadhwa, M.; Crozaz, G. QUE94201 shergottite: Crystallization of a Martian basaltic magma. Geochim. Cosmochim. Acta 1996, 60, 4563–4569. [Google Scholar] [CrossRef]
- Hughes, J.M.; Jolliff, B.L.; Gunter, M.E. The atomic arrangement of merrillite from the Fra Mauro Formation, Apollo 14 lunar mission: The first structure of merrillite from the Moon. Am. Mineral. 2006, 91, 1547–1552. [Google Scholar] [CrossRef]
- Boyce, J.W.; Tomlinson, S.M.; McCubbin, F.M.; Greenwood, J.P.; Treiman, A.H. The lunar apatite paradox. Science 2014, 344, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Pernet-Fisher, J.F.; Howarth, G.H.; Liu, Y.; Chen, Y.; Taylor, L.A. Estimating the lunar mantle water budget from phosphates: Complications associated with silicate-liquid-immiscibility. Geochim. Cosmochim. Acta 2014, 144, 326–341. [Google Scholar] [CrossRef]
- Shearer, C.K.; Burger, P.V.; Papike, J.J.; McCubbin, F.M.; Bell, A.S. Crystal chemistry of merrillite from Martian meteorites: Mineralogical recorders of magmatic processes and planetary differentiation. Meteor. Planet. Sci. 2015, 50, 649–673. [Google Scholar] [CrossRef]
- McCubbin, F.M.; Kaaden, K.E.V.; Tartèse, R.; Klima, R.L.; Liu, Y.; Mortimer, J.; Elardo, S.M. Magmatic volatiles (H, C, N, F, S, Cl) in the lunar mantle, crust, and regolith: Abundances, distributions, processes, and reservoirs. Am. Mineral. 2015, 100, 1668–1707. [Google Scholar] [CrossRef]
- Xie, X.; Yang, H.; Gu, X.; Downs, R.T. Chemical composition and crystal structure of merrillite from the Suizhou meteorite. Am. Mineral. 2016, 100, 2753–2756. [Google Scholar] [CrossRef]
- Beaty, D.W.; Albee, A.L. Comparative petrology and possible genetic relations among the Apollo 11 basalts. In Proceedings of the 9th Lunar and Planetary Science Conference, New York, NY, USA, 13–17 March 1978. [Google Scholar]
- Gamble, R.P.; Coish, R.A.; Taylor, L.A. The consanguinity of the oldest Apollo 11 mare basalts. In Proceedings of the 9th Lunar and Planetary Science Conference, New York, NY, USA, 13–17 March 1978. [Google Scholar]
- Sharp, Z.D.; Shearer, C.K.; McKeegan, K.D.; Barnes, J.D.; Wang, Y.Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 2010, 329, 1050–1053. [Google Scholar] [CrossRef]
- Paniello, R.C.; Day, J.M.; Moynier, F. Zinc isotopic evidence for the origin of the Moon. Nature 2012, 490, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.W.; Liu, Y.; Rossman, G.R.; Guan, Y.; Eiler, J.M.; Stolper, E.M.; Taylor, L.A. Lunar apatite with terrestrial volatile abundances. Nature 2010, 466, 466–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCubbin, F.M.; Steele, A.; Hauri, E.H.; Nekvasil, H.; Yamashita, S.; Hemley, R.J. Nominally hydrous magmatism on the Moon. Proc. Nat. Acad. Sci. USA 2010, 107, 11223–11228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, J.P.; Itoh, S.; Sakamoto, N.; Warren, P.; Taylor, L.; Yurimoto, H. Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon. Nat. Geosci. 2011, 4, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Mosenfelder, J.L.; Guan, Y.; Rossman, G.R.; Eiler, J.M.; Taylor, L.A. SIMS analysis of water abundance in nominally anhydrous minerals in lunar basalts. In Proceedings of the 43rd Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2012. [Google Scholar]
- Tartèse, R.; Anand, M.; Barnes, J.J.; Starkey, N.A.; Franchi, I.A.; Sano, Y. The abundance, distribution, and isotopic composition of Hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochim. Cosmochim. Acta 2013, 122, 58–74. [Google Scholar] [CrossRef]
- Barnes, J.J.; Tartèse, R.; Anand, M.; McCubbin, F.M.; Franchi, I.A.; Starkey, N.A.; Russell, S.S. The origin of water in the primitive Moon as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 2014, 390, 244–252. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Liu, Y.; Guan, Y.; Eiler, J. Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet. Sci. Lett. 2015, 427, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Hui, H.J.; Peslier, A.H.; Zhang, Y.X.; Neal, C.R. Water in lunar anorthosites and evidence for a wet early Moon. Nat. Geosci. 2013, 6, 177–180. [Google Scholar] [CrossRef]
- Konecke, B.A.; Fiege, A.; Simon, A.C.; Holtz, F. Cryptic metasomatism during late-stage lunar magmatism implicated by sulfur in apatite. Geology 2017, 45, 739–742. [Google Scholar] [CrossRef]
- Roedder, E.; Weiblen, P.W. Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks. Science 1970, 167, 641–644. [Google Scholar] [CrossRef]
- Philpotts, A.R. Compositions of immiscible liquids in volcanic rocks. Contrib. Mineral. Petrol. 1982, 80, 201–218. [Google Scholar] [CrossRef]
- Ghiorso, M.S.; Sack, R.O. Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 1995, 119, 197–212. [Google Scholar] [CrossRef]
- Asimow, P.D.; Ghiorso, M.S. Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am. Mineral. 1998, 83, 1127–1131. [Google Scholar] [CrossRef]
- Longhi, J. Comparative liquidus equilibria of hypersthene-normative basalts at low pressure. Am. Mineral. 1991, 76, 785–800. [Google Scholar]
- Davenport, J.D.; Longhi, J.; Neal, C.R.; Bolster, D.; Jolliff, B.L. Simulating Planetary Igneous Crystallization Environments (SPICEs): A Suite of Igneous Crystallization Programs. In Proceedings of the 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014. [Google Scholar]
- Taylor, L.A.; Kullerud, G.; Bryan, W.B. Opaque mineralogy and textural features of Apollo 12 samples and a comparison with Apollo 11 rocks. In Proceedings of the 1971 Lunar Science Conference, Houston, TX, USA, 11–14 January 1971. [Google Scholar]
- Charlier, B.; Namur, O.; Toplis, M.J.; Schiano, P.; Cluzel, N.; Higgins, M.D.; Vander Auwera, J. Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap. Geology 2011, 39, 907–910. [Google Scholar] [CrossRef]
- Potts, N.J.; Tartèse, R.; Anand, M.; Westrenen, W.V.; Griffiths, A.A.; Barrett, T.J.; Franchi, I.A. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation. Meteor. Planet. Sci. 2016, 51, 1555–1575. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.A.; Patchen, A.; Mayne, R.G.; Taylor, D.H. The most reduced rock from the moon, Apollo 14 basalt 14053: Its unique features and their origin. Am. Mineral. 2004, 89, 1617–1624. [Google Scholar] [CrossRef]
- Kriegsman, L.M.; Hensen, B.J. Back reaction between restite and melt: Implications for geothermobarometry and pressure–temperature paths. Geology 1998, 26, 1111–1114. [Google Scholar] [CrossRef]
- Álvarez-Valero, A.M.; Kriegsman, L.M. Chemical, petrological and mass balance constraints on the textural evolution of pelitic enclaves. Lithos 2010, 116, 300–309. [Google Scholar] [CrossRef]
- Álvarez-Valero, A.M.; Gómez-Barreiro, J.; Alampi, A.; Castiñeiras, P.; Martínez-Catalán, J.R. Local isobaric heating metamorphic history in the lower crust of a Variscan exotic unit (NW Spain). Lithosphere 2014, 6, 409–418. [Google Scholar] [CrossRef]
- Thompson, J.B. Composition space: An algebraic and geometric approach. In: Ferry J.M. (Ed.), Characterization of Metamorphism through Mineral Equilibria. Rev. Mineral. 1982, 10, 1–32. [Google Scholar]
- McGee, P.E.; Warner, J.L.; Simonds, C.H. Introduction to the Apollo collections. Part 1: Lunar igneous rocks. NASA STI/Recon Tech. Rep. 1977, 77, 22034. [Google Scholar]
- Meyer, C. Lunar Sample Compendium. 2011. Available online: http://curator.jsc.nasa.gov/lunar/compendium.cfm (accessed on 26 September 2019).
- Rutherford, M.J.; Hess, P.C.; Daniel, G.H. Experimental liquid line of descent and liquid immiscibility for basalt 70017. In Proceedings of the 5th Lunar and Planetary Science Conference, Houston, TX, USA, 18–22 March 1974. [Google Scholar]
- Neal, C.R.; Taylor, L.A. Metasomatic products of the lunar magma ocean: The role of KREEP dissemination. Geochim. Cosmochim. Acta 1989, 53, 529–541. [Google Scholar] [CrossRef]
- Charlier, B.; Grove, T.L. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib. Mineral. Petrol. 2012, 164, 27–44. [Google Scholar] [CrossRef] [Green Version]
- McCubbin, F.M.; Jolliff, B.L.; Nekvasil, H.; Carpenter, P.K.; Zeigler, R.A.; Steele, A.; Lindsley, D.H. Fluorine and chlorine abundances in lunar apatite: Implications for heterogeneous distributions of magmatic volatiles in the lunar interior. Geochim. Cosmochim. Acta 2011, 75, 5073–5093. [Google Scholar] [CrossRef]
- Gancarz, A.J.; Albee, A.L.; Chodos, A.A. Petrologic and mineralogic investigation of some crystalline rocks returned by Apollo 14 mission. Earth Planet. Sci. Lett. 1971, 12, 1–18. [Google Scholar] [CrossRef]
- El Goresy, A.; Taylor, L.A.; Ramdohr, P. Fra Mauro crystalline rocks: Mineralogy, geochemistry, and subsolidus reduction of the opaque minerals. In Proceedings of the 3rd Lunar Science Conference, Houston, TX, USA, 10–13 January 1972. [Google Scholar]
- Papike, J.J.; Hodges, F.N.; Bence, A.E.; Cameron, M.; Rhodes, J.M. Mare basalts: Crystal chemistry, mineralogy and petrology. Rev. Geophys. Space Phys. 1976, 14, 475–540. [Google Scholar] [CrossRef]
- Haggerty, S.E.; Boyd, F.R.; Bell, P.M.; Finger, L.W.; Bryan, W.B. Opaque minerals and olivine in lavas and breccias from Mare Tranquillitatis. Geochim. Cosmochim. Acta Supp. 1970, 1, 513. [Google Scholar]
- Bailey, J.C.; Champness, P.E.; Dunham, A.C.; Esson, J.; Fyfe, W.S.; Mackenzie, W.S.; Zussman, J. Mineralogy and petrology of Apollo 11 lunar samples. Geochim. Cosmochim. Acta Supp. 1970, 1, 169. [Google Scholar]
- Hubbard, N.J.; Gast, P.W.; Rhodes, J.M.; Bansal, B.M.; Wiesmann, H.; Church, S.E. Non mare basalts: Part II. In Proceedings of the 3rd Lunar Science Conference, Houston, TX, USA, 10–13 January 1972. [Google Scholar]
- Willis, J.P.; Erlank, A.J.; Gurney, J.J.; Theil, R.H.; Ahrens, L.H. Major, minor, and trace element data for some Apollo 11, 12, 14 and 15 samples. In Proceedings of the 3rd Lunar Science Conference, Houston, TX, USA, 10–13 January 1972. [Google Scholar]
- Neal, C. Interior of the Moon. J. Geophys. Res. 2001, 106, 27865–27885. [Google Scholar] [CrossRef]
- Patchen, A.; Taylor, L.A. The most reduced rock from the Moon—Apollo 14 basalt 14053: Extreme reduction entirely from a re-heating event. In Proceedings of the 35th Lunar and Planetary Science Conference, League City, TX, USA, 15–19 March 2004. [Google Scholar]
- Lester, G.W.; Clark, A.H.; Kyser, T.K.; Naslund, H.R. Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: Implications for natural magmas. Contrib. Mineral. Petrol. 2013, 166, 329–349. [Google Scholar] [CrossRef]
- Braun, I.; Kriegsman, L.M. Partial melting in crustal xenoliths and anatectic migmatites: A comparison. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 261–266. [Google Scholar] [CrossRef]
- Fagan, T.J.; Kashima, D.; Wakabayashi, Y.; Suginohara, A. Case study of magmatic differentiation trends on the Moon based on lunar meteorite Northwest Africa 773 and comparison with Apollo 15 quartz monzodiorite. Geochim. Cosmochim. Acta 2014, 133, 97–127. [Google Scholar] [CrossRef]
- Tartèse, R.; Anand, M.; Joy, K.H.; Franchi, I.A. H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteor. Planet. Sci. 2014, 49, 2266–2289. [Google Scholar] [CrossRef]
- Ryerson, F.J.; Hess, P.C. Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta 1978, 42, 921–932. [Google Scholar] [CrossRef]
- Ryerson, F.J.; Hess, P.C. The role of P2O5 in silicate melts. Geochim. Cosmochim. Acta 1980, 44, 611–624. [Google Scholar] [CrossRef]
- McIntosh, E.C.; Rapp, J.F.; Draper, D.S. Results from high-pressure temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to the moon. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016. [Google Scholar]
- Reid, M.R. Ion probe investigation of rare earth element distributions and partial melting of metasedimentary granulites. In Granulites and Crustal Evolution; Vielzeuf, D., Vidal, P., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 507–522. [Google Scholar]
- Férot, A.; Bolfan-Casanova, N. Water storage capacity in olivine and pyroxene to 14 GPa: Implications for the water content of the Earth’s upper mantle and nature of seismic discontinuities. Earth Planet. Sci. Lett. 2012, 349, 218–230. [Google Scholar] [CrossRef]
- Lloyd, A.S.; Ferriss, E.; Ruprecht, P.; Hauri, E.H.; Jicha, B.R.; Plank, T. An assessment of clinopyroxene as a recorder of magmatic water and magma ascent rate. J. Petrol. 2016, 57, 1865–1886. [Google Scholar] [CrossRef]
- Peslier, A.H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J. Volcanol. Geotherm. Res. 2010, 197, 239–258. [Google Scholar] [CrossRef]
- Arndt, N.; Ginibre, C.; Chauvel, C.; Albarède, F.; Cheadle, M.; Herzberg, C.; Jenner, G.; Lahaye, Y. Were komatiites wet? Geology 1998, 26, 739–742. [Google Scholar] [CrossRef]
- Ryder, G.; Schuraytz, B.C. Chemical variation of the large Apollo 15 olivine-normative mare basalt rock samples. J. Geophys. Res. Planet. 2001, 106, 1435–1451. [Google Scholar] [CrossRef]
Ol | Cpx | F-Apt | Apt | Ilm | An | Ab | SiO2 | H2O in Liq | ResLiq3 | PM | |
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 1.000 | 1.958 | 0.000 | 0.000 | 0.000 | 2.000 | 3.000 | 1.000 | 0.000 | 16.708 | 14.122 |
AlO1.5 | 0.000 | 0.060 | 0.000 | 0.000 | 0.000 | 2.000 | 1.000 | 0.000 | 0.000 | 5.405 | 4.507 |
(Fe,Mg,Mn)O | 2.000 | 1.292 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 7.618 | 10.095 |
CaO | 0.000 | 0.703 | 5.000 | 5.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 3.566 | 4.335 |
TiO2 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 3.075 |
NaO0.5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.962 | 0.275 |
KO0.5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.313 | 0.026 |
PO2.5 | 0.000 | 0.000 | 3.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.9945 | 0.0995 |
F, Cl | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0 000 | 0.000 | 0.000 | 0.2652 | 0.0265 |
H2O | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.0694 | 0.0069 |
ppm H2O in melt | 308 | 29 | |||||||||
oxygen pfu | 4 | 6 | 13 | 13 | 3 | 8 | 8 | 2 | 0.5 | 56 | 56 |
reaction coefficient | 1.199 | 3.089 | 0.004 | 0.001 | 3.075 | 1.839 | 0.195 | 1.223 | 0.000 | 0.083 | −1 |
molar V | 4.365 | 6.491 | 15.839 | 15.84 | 3.17 | 10.09 | 10.01 | 2.634 | 77.89 | 82.64 | |
abundance (vol.%) | 8.0% | 30.7% | 0.1% | 0.0% | 14.9% | 28.4% | 3.0% | 4.9% | 9.9% | ||
volume ratios | Cpx/Ol = 3.8 | Apt/Pl = 0 | Apt/Cpx = 0 | An%(0.90) | molar OH fraction in Apt = 0.21 |
Ol | Cpx | F-Apt | Apt | Ilm | An | Ab | SiO2 | K-glass | K-liq | Fa-liq | ResLiq3 | ResLiq2 | ResLiq1 | PM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 1.000 | 1.958 | 0.000 | 0.000 | 0.000 | 2.000 | 3.000 | 1.000 | 3.000 | 6.866 | 9.842 | 16.708 | 17.868 | 17.505 | 14.122 |
AlO1.5 | 0.000 | 0.060 | 0.000 | 0.000 | 0.000 | 2.000 | 1.000 | 0.000 | 1.000 | 1.104 | 4.301 | 5.405 | 6.193 | 6.351 | 4.507 |
(Fe,Mg,Mn)O | 2.000 | 1.292 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 7.618 | 7.618 | 5.083 | 4.997 | 10.095 |
CaO | 0.000 | 0.703 | 5.000 | 5.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 1.019 | 2.547 | 3.566 | 4.867 | 5.779 | 4.335 |
TiO2 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 3.075 |
NaO0.5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.096 | 0.866 | 0.962 | 0.491 | 0.409 | 0.275 |
KO0.5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 | 0.313 | 0.000 | 0.313 | 0.080 | 0.048 | 0.026 |
PO2.5 | 0.000 | 0.000 | 3.000 | 3.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.497 | 0.4973 | 0.9945 | 0.2766 | 0.1723 | 0.0995 |
F, Cl | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.113 | 0.1526 | 0.2652 | 0.0737 | 0.0460 | 0.0265 |
H2O | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | 0.056 | 0.0132 | 0.0694 | 0.0192 | 0.0120 | 0.0069 |
ppm H2O in melt | -- | -- | -- | -- | -- | -- | -- | -- | 177 | 871 | 82 | 308 | 87 | 54 | 29 |
molar V (J/bar) | 4.365 | 6.491 | 15.839 | 15.839 | 3.17 | 10.086 | 10.009 | 2.634 | 9.79 | 24.21 | 55.55 | 77.89 | 76.36 | 77.15 | 82.64 |
bulk balance (Table 1) | 1.199 | 3.089 | 0.004 | 0.001 | 3.075 | 1.839 | 0.195 | 1.223 | -- | -- | -- | 0.083 | -- | -- | −1 |
reaction coefficients | |||||||||||||||
reaction 1 | 1.496 | 0.984 | 0.001 | 0.000 | 3.075 | 0.448 | 0.049 | -- | -- | -- | -- | -- | -- | 0.552 | −1 |
reaction 2 | −0.548 | 2.363 | 0.002 | 0.000 | 0.000 | 1.195 | 0.115 | -- | -- | -- | -- | -- | 0.598 | −1 | -- |
reaction 3 | -- | 2.429 | 0.006 | 0.002 | 0.000 | 2.211 | 0.245 | 3.686 | -- | -- | -- | 0.255 | −1 | -- | -- |
reaction 4 | -- | -- | -- | -- | -- | -- | -- | -- | -- | 1 | 1 | −1 | -- | -- | -- |
reaction 5 | 3.809 | -- | 0.153 | 0.013 | 0.000 | 1.718 | 0.866 | 0.000 | -- | 0.000 | −1 | -- | -- | -- | -- |
reaction 6 | 0.000 | 0.000 | 0.113 | 0.053 | 0.000 | 0.191 | 0.096 | 4.318 | 0.626 | −1 | -- | -- | -- | -- | -- |
bulk balance check | 1.194 | 3.089 | 0.004 | 0.001 | 3.075 | 1.837 | 0.194 | 1.217 | 0.084 | ||||||
volume ratios of product phases | mineral compositions | Thermodynamics - MELTS | |||||||||||||
reaction nr | Ol/Pl | Cpx/Pl | Apt/Pl | An% in Pl | OH/(OH + F + Cl) in Apt | Fa-Liq / K-Liq ratio | P (kbar) - T (°C) | Modes (%) | |||||||
1 | 1.3 | 1.27 | 0.005 | 90% | 0.24 | -- | 1.5 ± 0.5–1020 ± 40 | Ol(9)RL(33)Pl(12)Cpx(40)Ap(6) | |||||||
2 | -- | 1.16 | 0.003 | 91% | 0.16 | -- | |||||||||
3 | -- | 0.64 | 0.005 | 90% | 0.21 | -- | 1 ± 0.3–860 ±4 0 | Cpx(30)Pl(25)SiO2(21)RL(15)Ap(9) | |||||||
4 | -- | -- | -- | -- | -- | 2.3 | |||||||||
5 | 0.64 | -- | 0.1 | 67% | 0.08 | -- | |||||||||
6 | -- | -- | 0.9 | 67% | 0.32 | -- |
K-glass | Cpx | F-Apt | Apt | Ilm | An | Ab | Or | SiO2 | Ol | H2O in Liq | Ca-Mer | REE-Mer | Fa-liq | K-Liq | mesostasis | bulk 14053 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 3.000 | 2.000 | 0.200 | 0.200 | 0.000 | 2.000 | 3.000 | 3.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 9.959 | 3.000 | 15.804 | 16.192 |
AlO1.5 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 3.089 | 1.000 | 5.037 | 5.594 |
(Fe,Mg.Mn)O | 0.000 | 1.500 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.000 | 0.000 | 2.000 | 2.000 | 9.517 | 0.000 | 9.517 | 9.392 |
TiO2 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.693 |
NaO0.5 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.030 | 0.000 | 1.030 | 0.298 |
CaO | 0.000 | 0.500 | 4.800 | 4.800 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 19.000 | 16.000 | 3.056 | 0.000 | 3.056 | 4.188 |
KO0.5 | 0.500 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.500 | 0.974 | 0.045 |
PO2.5 | 0.000 | 0.000 | 2.800 | 2.800 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 14.000 | 14.00 | 1.252 | 0.000 | 1.252 | 0.034 |
(Y,REE)O 1.5 | 0.000 | 0.000 | 0.200 | 0.200 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 2.000 | 0.089 | 0.000 | 0.089 | 0.002 |
F,Cl | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.100 | 0.260 | 0.000 | 0.260 | 0.007 |
H2O | 0.005 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.095 | 0.005 | 0.105 | 0.003 |
oxygens | 7.8 | 6.0 | 12.5 | 12.5 | 3.0 | 8.0 | 8.0 | 8.0 | 2.0 | 4.0 | 0 | 56 | 56 | 40.9 | 7.8 | 56.0 | 56.0 |
coefficients reaction A | 0.04 | 3.06 | 0.00 | 0.00 | 0.69 | 2.58 | 0.27 | 0.00 | 1.65 | 1.93 | - | - | - | - | - | 0.03 | −1.00 |
coefficients reaction B | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | 1.95 | −1.00 | - | ||
coefficients reaction C | - | 0.00 | 0.26 | 0.09 | 0.00 | 1.03 | 1.03 | 0.00 | 0.00 | 4.74 | - | 0.01 | 0.01 | −1.00 | - | - | - |
coefficients reaction D | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | - | 0.00 | 0.00 | - | −1.00 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Valero, A.M.; Pernet-Fisher, J.F.; Kriegsman, L.M. Petrologic History of Lunar Phosphates Accounts for the Water Content of the Moon’s Mare Basalts. Geosciences 2019, 9, 421. https://doi.org/10.3390/geosciences9100421
Álvarez-Valero AM, Pernet-Fisher JF, Kriegsman LM. Petrologic History of Lunar Phosphates Accounts for the Water Content of the Moon’s Mare Basalts. Geosciences. 2019; 9(10):421. https://doi.org/10.3390/geosciences9100421
Chicago/Turabian StyleÁlvarez-Valero, Antonio M., John F. Pernet-Fisher, and Leo M. Kriegsman. 2019. "Petrologic History of Lunar Phosphates Accounts for the Water Content of the Moon’s Mare Basalts" Geosciences 9, no. 10: 421. https://doi.org/10.3390/geosciences9100421
APA StyleÁlvarez-Valero, A. M., Pernet-Fisher, J. F., & Kriegsman, L. M. (2019). Petrologic History of Lunar Phosphates Accounts for the Water Content of the Moon’s Mare Basalts. Geosciences, 9(10), 421. https://doi.org/10.3390/geosciences9100421