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Abstract: Safety is one of the key aspects related to crane-based material transport. In order to ensure
safe crane operation and material transport, it is necessary to meet certain geometrical conditions.
The authors addressed the geometrical conditions of a crane bridge, a substantial crane component.
The paper presents the method to compute displacement components of points on the top of a bridge
crane relative to their design position. Theoretical considerations presented in the paper have been
verified on simulated data. Keeping in mind the proper operation of a crane bridge, the authors
proposed in the analyses the use of geometrical relations (perpendicular and parallel character)
between end carriages and girders, not previously included in the available literature. The obtained
results show that the presented method may be successfully applied to check the geometry of a
crane bridge.

Keywords: geometry measurements; the parametric method with conditions; civil engineering;
transport engineering

1. Introduction

Cranes are popular devices in the maritime economy. Crane transport is an important element
of equipment work in ports and shipyards. It is most often used to move goods of considerable size,
for example, moving containers at trans-shipment quays. It should be noted that this kind of transport
may be performed horizontally or vertically. Cranes may be located in various positions on the quay,
including locations of unfavorable geotechnical conditions, thus a risk emerges of soil displacement that
can act on the crane structure. Thus, the issues discussed in this paper clearly refer and are particularly
important for geoscientific activities. The authors’ earlier studies allowed for the determination
of the method of adjustment of crane rails in 3D [1,2] as well as the method to determine vertical
displacements of rails working under crane loading and their prediction using a Kalman filter [3].
Comprehensive support for the proper operation of the crane also requires testing of the geometrical
conditions of the crane bridge, which is subjected to various forces associated with the transfer of loads
and the need for actions such as braking with a load, which can lead to deformation of the bridge.
Consequently, correct geometry of the crane may be disturbed, possibly leading to structural disaster.
The weight of the transported goods and the work of lifting equipment in highly industrialized areas
demand safe operation of cranes. Therefore, it is mandatory to perform cyclic geodetic measurements
in order to fulfill a number of geometrical conditions for the cranes. Both measurement and further
analysis are often associated with the crane roadway, shown previously [4–10]. However, in addition to
the crane roadway, the measurements should also include major geometry checks of the crane bridge.
This paper focuses on checking geometric conditions of the crane bridge as a major element of the
crane. The current national industry standards and guidelines specify acceptable deviations related
to the geometrical conditions that must be met by the crane bridge. These values are important not
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only during assembly, but also during crane operation. They most often depend on the crane size
and impact the proper operation of the crane, therefore, periodic control of geometrical conditions
allows for the prevention of deformation of the crane bridge. Due to the fact that small deviations
(within a few mm) are significant in most cases, periodic measurements play a very important role
here, and the interpretation of the obtained results allows for the assessment of the safety of the crane
operation as well as prevents the occurrence of failures caused by, for example, a force friction increase.
In order to verify the geometrical conditions of a crane bridge, the authors proposed development of the
observation (pseudo-observation) results using a parametric method with conditions on parameters.
This method takes into account the necessary conditions of the parallel and perpendicular characters
of crane bridge structural elements, which are an important factor affecting the crane safety. Previous
works [1–3] addressed the geodetic methods invented to develop the measurement results based on
the parametric method with the conditions imposed on parameters in order to check the geometry
of the rail axes of the crane roadway. In addition to outlining theoretical considerations, this paper
presents their practical applications. Practical considerations were performed on the basis of simulated
measurement results (horizontal angles, vertical angles, and distances). The measurements involving
the total station were based on the polar method and trigonometric method to determine the height.
They allow for a high-precision determination of the coordinates of points corresponding to the
structural elements of cranes in their local coordinate system.

2. Materials and Methods

2.1. Preliminary Processing of Measurement Results

While checking the necessary conditions (parallel and perpendicular characters) of the proper
crane performance, there is a need to introduce the coordinates X, Y, and Z of the crane bridge controlled
points. They can be obtained on the basis of measurements performed using a total station. Assuming
the coordinates X′I = 0, Y′I = 0, Z′I = 0 of the geometrical center (centroid) of the instrument (the origin
of the local coordinate system) based on the measured values the coordinates X′j, Y′j, Z′j of the bridge,
points of the crane bridge at level 0 (measurement level) can be derived from the following relation:

X′i = X′I + s cosα
Y′i = Y′I + s sinα

Z′i = Z′I + iT + stgβ

where: s is horizontal distance, α is horizontal angle, β is vertical angle, iT is height of the instrument
(total station), and i is the number of controlled points.

The coordinates of the points corresponding to the structural elements of the crane bridge are
determined in the local coordinate system of the total station with an arbitrarily oriented axis, OX,
from which the horizontal angle α is measured. This coordinate system can be considered as an
external coordinate system. In order to carry out detailed theoretical and empirical analyses, it is
necessary to determine an internal local coordinate system associated with the crane bridge. This
procedure makes the analyses insensitive to measurement errors, including: centering errors and
leveling errors of the instrument and signals; deviation of the angular and linear reference; and
measurement errors of distances and angles (horizontal and vertical). Thus, the assumed internal, local
coordinate system associated with the crane bridge produces a more accurate solution. Therefore, an
isometric transformation of coordinates should be performed from the measurement level to the level
of the object using two common points. Two common points should be chosen on the crane bridge,
making it possible to perform an isometric transformation [11].

The coordinates of Point 1 on the object are assumed to be X1 = 0, Y1 = 0, Z1 = 0, and it is
assumed that the X axis in the internal coordinate system passes through points 1 and 2 (hence

X1 = X2 = 0, coordinate Y2 =
√
(X′2 −X′1)

2 + (Y′2 −Y′1)
2). While the coordinates of the common
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points are determined, it is necessary to perform isometric transformation of the remaining coordinates
by means of formulas that are literature-based. The coordinates of points in the internal coordinate
system should be complemented by their mean errors, which are determined subsequently.

The propagation law of cofactors is applied in the form Q = DQLDT, where D is the transformation
matrix, QL = P−1 is the matrix of cofactors of measurement results, P is the weight matrix, and P = Q−1

L ).
While the mean error values (e.g., mentioned in the total station user manual) of measurements of
horizontal angles mα, vertical angles mβ, and distances ms are known, the weight matrix P takes
the form

P =


1

m2
s

0 0

0 1
m2
α

0

0 0 1
m2
β

. (1)

Assuming that

D j =


∂X j
∂d

∂X j
∂α

∂X j
∂β

∂Y j
∂d

∂Y j
∂α

∂Y j
∂β

∂Z j
∂d

∂Z j
∂α

∂Z j
∂β

, (2)

the matrix of cofactors (approximations of variances) QXYZ j
for particular controlled points (j) takes

the form (not taking into account mean errors of the instrument position and mean error of the
instrument height)

QXYZ j
= D jP−1

j DT
j =


m2

X j
c̃ov(X j, Y j) c̃ov(X j, Z j)

c̃ov(Y j, X j) m2
Y j

c̃ov(Y j, Z j)

c̃ov(Z j, X j) c̃ov(Z j, Y j) m2
Zj

. (3)

Equation (3) represents the most commonly used variant in practical applications, here,
the measurements are made in a single instrument position (there is no need to set up the network).
Selected elements of the matrix (3) will be used in further computational stages. The horizontal
coordinates X, Y defined in the local system of the crane bridge are input data to assess the distance
dob

k between the corners of the crane bridge.
These distances are involved in the equation:

dob
k =

√
∆X2

i j + ∆Y2
i j (4)

and are further considered as pseudo-observations.
Expanding the Equation (4) in the Taylor series (limited to initial terms), we obtain the following

functional model of corrections for pseudo-observation:

vdk = −
∆Xi j

dt
k

dXi −
∆Yi j

dt
k

dYi +
∆Xi j

dt
k

dXj +
∆Yi j

dt
k

dY j + dt
k − dob

k (5)

where:

vd are corrections for pseudo-observation (distances),

dob
k are distances calculated on the basis of approximate coordinates (pseudo-observations),

dt
k are theoretical distances (from the technical design),

dXi , dYi , dX j , dY j are increments to approximate coordinates,

i, j are numbers of controlled points,
k is the next number of the distance, and
X̂ = Xob + d̂X, Ŷ = Yob + d̂Y (X̂, Ŷ are adjusted coordinates, Xob, Yob are approximate coordinates).
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Theoretical and empirical tests of the crane bridge should be carried out in the vertical plane too.
Hence the equation of pseudo-observation (height) corrections takes the following form:

vZi = dZi + Zt
i −Zob

i , (6)

where

vZi is the equation of correction to height,
Zob

i are the points’ heights determined from measurements,

Zt
i are the theoretical point heights (from technical design),

dZi are the increments to approximate heights, and
Ẑ = Zob + d̂Z (Ẑ is adjusted height, Zob is approximate height).

In order to provide proper work of the crane bridge, it is necessary to maintain perpendicularity of
end carriages and girders, as well as parallel end carriages and girders (Figure 1). Most cases described
in the available literature have not taken this issue into account while performing various types of
specialized analyses [9,12,13].

According to Figure 2, the following conditions of parallel character have been adopted:

X̂4 − X̂1 − dt
4 = 0

X̂3 − X̂2 − dt
2 = 0

Ŷ2 − Ŷ1 − dt
1 = 0

Ŷ3 − Ŷ4 − dt
3 = 0

Xob
4 + dX4 −Xob

1 − dX1 − dt
4 = 0

Xob
3 + dX3 −Xob

2 − dX2 − dt
2 = 0

Yob
2 + dY2 −Yob

1 − dY1 − dt
1 = 0

Yob
3 + dY3 −Yob

4 − dY4 − dt
3 = 0

dX4 − dX1 + Xob
4 −Xob

1 − dt
4 = 0

dX3 − dX2 + Xob
3 −Xob

2 − dt
2 = 0

dY2 − dY1 + Yob
2 −Yob

1 − dt
1 = 0

dY3 − dY4 + Yob
3 −Yob

4 − dt
3 = 0

(7)

where: X̂1, Ŷ1, X̂2, Ŷ2, X̂3, Ŷ3, X̂4, Ŷ4 are adjusted coordinates of controlled points located on the
crane bridge.
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The condition of perpendicularity between pairs of end carriages and girders should also be
maintained, therefore:

X̂1 − X̂2 = 0
X̂4 − X̂3 = 0
Ŷ4 − Ŷ1 = 0
Ŷ3 − Ŷ2 = 0

Xob
1 + dX1 −Xob

2 − dX2 = 0
Xob

4 + dX4 −Xob
3 − dX3 = 0

Yob
4 + dY4 −Yob

1 − dY1 = 0
Yob

3 + dY3 −Yob
2 − dY2 = 0

dX1 − dX2 + Xob
1 −Xob

2 = 0
dX4 − dX3 + Xob

4 −Xob
3 = 0

dY4 − dY1 + Yob
4 −Yob

1 = 0
dY3 − dY2 + Yob

3 −Yob
2 = 0

(8)

For the conditions imposed on pseudo-observations, the height of controlled points can be
presented in the form (all controlled points are located at the same height)

Ẑ = 0 (9)

2.2. Adjustment of Observations Results

The system of correction equations presented earlier as relation (5) can be written in the following
matrix Form (10):

V = AX + λ (10)

where:

VT = [vd1 , . . . , vdn ]
T is the vector of correction to pseudo-distances,

XT = [dX1 , dY1 , . . . , dXm , dYm ]
T is the vector of increments to approximate parameters (coordinates of

points),

λT = [dt
1 − dob

1 , . . . , dt
i − dob

i ]
T

is the vector of deviations of theoretical lengths from the corresponding
value of pseudo-observation (i is the number of pseudo-observations), and
A is the known matrix of coefficients standing at the estimated parameters of the model.
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Applying the least squares method [14], specified in form of VTPV = min, the estimator of the
parameter vector X̂ may be derived from the following equation:

X̂ = −
(
ATPdA

)−1
ATPdλ. (11)

The matrix of weights assigned to the appropriate pseudo-observations is marked as Pd = Q−1
d ,

whereas the matrix Qd is a matrix of pseudo-observation cofactors in the form of

Qd = DQXDT, (12)

where the transformation matrix is

D =



∂d1
∂X1

∂d1
∂Y1

· · ·
∂d1
∂Xm

∂d1
∂Ym

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
∂dn
∂X1

∂dn
∂Y1

· · ·
∂dn
∂Xm

∂dn
∂Ym


(13)

The matrix of cofactors:

QX =



m2
X1

c̃ov(X1, Y1)

c̃ov(X1, Y1) m2
Y1

. . .
. . .

m2
Xm

c̃ov(Xm, Ym)

c̃ov(Xm, Ym) m2
Ym


(14)

was formed from the corresponding elements of the matrix QXYZ j
designated earlier by the Form (3).

In order to assess the accuracy of the adjustment results obtained from Equation (11), the covariance
matrix of the parameter vector CX̂ is applied:

CX̂ = m2
0QX̂ (15)

where QX̂ =
(
ATPdA

)−1
is a matrix of cofactors and m2

0 = V̂TPdV̂
n−r (n is the number of

pseudo-observations, r is the number of parameters).
The accuracy analysis often employs the covariance matrix of corrections vector CV̂:

CV̂ = m2
0

{
P−1

d −A(ATPdA)−1AT
}

(16)

Equation (11) is obtained by means of the traditional least squares method and it is impossible
to apply here the conditions imposed on the estimated parameters. In order to take into account
conditions of parallel and perpendicular characters, and the imposed height of the controlled points
(Equations (7), (8), and (9)), the adjustment task must be solved by the parametric method with the
conditions on estimated parameters. This method has already been used and described by the authors
in the works [1–3], and the broader theoretical considerations can be found in [15,16]. Only the main
dependencies necessary to understand the presented solution will be presented below.
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The parametric method with conditions corresponds to the following optimization task:

AX + λ = V
BX + Ω = 0
VTP̃V = min

 (17)

The first dependence Equation (17), which corresponds to the traditional least squares method, has
been explained above. The second equation, BX + Ω = 0, of Dependence (17) concerns the conditions
imposed on the estimated parameters X. The elements of matrix B are the coefficients standing at the
estimated parameters in Relations (7), (8), and (9). These coefficients may take the following values:
−1, 0, and 1.

Vector Ω =

 Xob
4 −Xob

1 − dt
4, . . .︸                ︷︷                ︸

relation(7)

, Xob
1 −Xob

2 , . . .︸         ︷︷         ︸
relation(8)

, 0︸︷︷︸
relation(9)


T

is a vector of free terms in

this equation.
In search of a solution to the optimization problem (17) by means of the least square method,

the traditional method (e.g., [16]) or a simplified method involving the acceptance for free terms
(occurring in the conditional equations) with enormously high values of weights [16] can be applied.
The proposed solution method is based on the use of conditional equations, as additional equations of
corrections, with very high values of weights, so that VΩ = 0. Hence it reads as follows:

BX + Ω = VΩ (18)

The adoption of very high values of weights allows for the received correction values equal to
zero within the limits of numerical calculations.

Taking these assumptions, the solution is simple enough to use the literature-bound parametric
method [16]. Thus, the system of correction equations takes the form

ÃX + λ̃ = Ṽ (19)

where Ã =

[
A
B

]
, λ̃ =

[
L
Ω

]
, Ṽ =

[
V

VΩ

]
.

The adjustment criterion takes the following form:

Ṽ
T

P̃Ṽ = min

where the weight matrix P̃ is P̃ =

[
Pd 0
0 P∞

]
.

Hence,

X̂ = −(Ã
T

P̃Ã)
−1

Ã
T

P̃λ̃ (20)

Therefore,
ˆ̃V = −Ã(Ã

T
P̃Ã)

−1
Ã

T
P̃λ̃+ λ̃ (21)

In order to assess the accuracy of the obtained results, appropriate covariance matrixes are used
as follows:

(1) The covariance matrix CX̂ of the parameter vector X̂,

CX̂ = m2
0QX̂ (22)

where QX̂ = (Ã
T

P̃Ã)
−1

is a matrix of cofactors.
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(2) The covariance matrix C ˆ̃V
of the integrated corrections vector ˆ̃V,

C ˆ̃V
= m2

0Q ˆ̃V
(23)

where the covariance matrix Q ˆ̃V
takes the form Q ˆ̃V

=

(
P̃− Ã

(
Ã

T
P̃Ã

)−1
Ã

T
)

and m2
0 =

ˆ̃V
T

P̃ ˆ̃V
n−m (n is

the number of pseudo-observations, m is the number of parameters).

3. Results

The theoretical considerations were verified on the basis of simulated data. Simulated data allow
for the determination of the practical properties of the proposed method. Knowing the theoretical
values, we can relate them to the results obtained from computations, and thus confirm or deny the
proper work of the proposed method. The locations of controlled points (1, 2, 3, 4) on the crane bridge
were adopted in accordance with Figure 1.

Theoretical values of the coordinates of the crane bridge’s controlled points are shown in Table 1.

Table 1. List of theoretical coordinates of controlled points.

Point Number Xt
i(mm) Yt

i(mm) Zt
i(mm)

1 0 0 0
2 0 3000 0
3 9000 3000 0
4 9000 0 0

Figure 2 presents the pseudo-distances adopted in the analyses. The values of individual
theoretical distances dt

k are included in Table 2.

Table 2. Theoretical distances dt
k.

Distance Number Distance Value dt
k(mm)

k = 1 3000
k = 2 9000
k = 3 3000
k = 4 9000
k = 5 9487
k = 6 9487

Based on the simulated measurement results (horizontal angles, vertical angles, and distances)
the following coordinates of the controlled points in the external coordinate system (coordinate system
of the total station) were obtained (Table 3).

Table 3. Coordinates of controlled points in the external coordinate system.

Point Number X
′

i(m) Y
′

i(m) Z
′

i(m)

1 −4.500 −1.500 6.723
2 −4.500 1.503 6.717
3 4.508 1.506 6.715
4 4.499 −1.496 6.724

For the sake of the present inquiry, the local coordinate system (Figure 2) was adopted, whose
origin is point 1 (X1 = 0, Y1 = 0, Z1 = 0). It was assumed that the Y axis includes point 2 (X′2 = 0),
hence Y′2 = 3003 mm (end carriage length determined on the basis of coordinates). The coordinates of
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controlled points on the object (Table 4) were obtained by means of transforming coordinates of the
controlled points (Table 3).

Table 4. Practical coordinates of points and their mean errors.

Point Number Xob
i (mm) mXob

i
(mm) Yob

i (mm) mYob
i

(mm) Zob
i (mm) mZob

i
(mm)

1 0 0.6 0 0.9 0 2.2
2 0 0.6 3003 0.9 −6 2.2
3 9008 0.6 3004 0.9 −8 2.2
4 8999 0.6 2 0.9 1 2.2

The Relation (3) makes it possible to determine the values of mean errors of the coordinates of
these points (Table 4).

The coordinates presented in Table 3 made it possible to determine the distance dob
k between

particular controlled points (Table 5) and the values of mean errors obtained from the Relation (12)
(md0

k
=

√
(Qd)ii, (Qd)ii is the diagonal element of the matrix). These distances will be further considered

as pseudo-observations.

Table 5. Distances dob
k (pseudo-observations).

Distance Number dob
k (mm) md0

k
(mm)

k = 1 3003 1.1
k = 2 9008 1.1
k = 3 3002 1.1
k = 4 8999 1.1
k = 5 9496 1.1
k = 6 9486 1.1

The computations were made due to the following three variants:

(1) Variant 1: the least square method solution (Relation (11)).
(2) Variant 2: solution according to the parametric method with the condition on heights

(Relation (20)).
(3) Variant 3: Variant 2 with conditions of perpendicularity and parallelism imposed on the estimated

parameters (Relation (20)).

The coordinates of point 1 and the coordinate X of point 2 were assumed in the analysis.
The following computational results were obtained in the form of adjusted coordinates due to

individual variants (Table 6).

Table 6. Adjusted coordinates of controlled points of the crane bridge (in mm).

Adjusted Coordinates Variant 1 Variant 2 Variant 3

X̂3 9008 9008 9000
X̂4 8999 8999 9000
Ŷ2 3003 3003 3000
Ŷ3 3005 3005 3000
Ŷ4 3 3 0

Ẑ j=1,2,3,4 −3 0 0

The correction values for the pseudo-observation dob
k and the heights of particular controlled

points calculated for all three variants are presented in Table 7.
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Table 7. Values of corrections for pseudo-observations (in mm).

Corrections Variant 1 Variant 2 Variant 3

v̂d1 0.0 0.0 −3.0
v̂d2 −0.1 −0.1 −8.0
v̂d3 0.0 0.0 −2.0
v̂d4 −0.1 −0.1 1.0
v̂d5 0.1 0.1 −9.0
v̂d6 0.1 0.1 1.0
v̂Z1 −3.3 0.0 0.0
v̂Z2 2.8 6.0 6.0
v̂Z3 4.8 8.0 8.0
v̂Z4 −4.3 −1.0 −1.0
v̂Zw − 0.0 0.0

Table 8 presents the differences between the adjusted coordinates of individual controlled points
of the crane bridge and their coordinates obtained from the measurement.

Table 8. Differences between object coordinates after the transformation step and adjusted coordinates
(in mm).

Variant 1 Variant 2 Variant 3

∆X̂1 0 0 0
∆X̂2 0 0 0
∆X̂3 0 0 −8
∆X̂4 0 0 1
∆Ŷ1 0 0 0
∆Ŷ2 0 0 −3
∆Ŷ3 1 1 −4
∆Ŷ4 1 1 −2
∆Ẑ1 −3 0 0
∆Ẑ2 3 6 6
∆Ẑ3 5 8 8
∆Ẑ4 −4 −1 −1

Referring to the results presented in Table 7, Table 8, and Figure 3, we note that differences in
diagonal lengths allow for unambiguous interpretation of the obtained results, for example, whether
these differences are acceptable or not in relation to existing national standards and technical guidelines.
Comparing the theoretical values with the values obtained from the computations, we note that the
most favorable results were obtained for Variant 3. Although the results obtained for this variant
have the highest values, it should be noted that they include the conditions of perpendicularity
and parallelism for end-carriages and girders as opposed to other variants, which affects the safe
operation of the crane. Thus, for example, the obtained difference in Variant 3 for the diagonal length
d5, which is −9 mm, should be in accordance to existing standards in the range 〈−5 mm; 5 mm〉, so
the value obtained from the computations is significant. The use of statistical tests (significance), for
example, kmd < vdi (where md is the value of the mean error determined for the diagonal) may lead to
erroneous interpretation of the results. This happens due to the adopted values of the parameter k
whose value is not strictly determined and depends on knowledge and engineering experience of the
measurement contractors.

The size of differences in values of the X and Y coordinates from Table 8 are shown schematically
in Figure 3.
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4. Discussion

The authors proposed a new method of checking the geometrical conditions of crane bridges.
Their detailed theoretical and empirical analysis assumed that the measurement results, subject to
further elaboration, were obtained by means of a total station. Numerical computations were made in
three different variants taking into account the traditional least square method, a parametric solution
with the conditions on the heights of the points and a parametric solution with the conditions on
heights and conditions of parallel and perpendicular characters imposed on the parameters. The first
two solutions lead to the same results for parameters and distances, whereas considering the adopted
condition in the second variant, the obtained results for heights were different. The results of the third
solution were different from the former variants. The difference originates from the adopted conditions
of parallelism and perpendicularity, and according to the authors these should be met to ensure safe and
efficient work of the crane. The proposed solution indicates that both second and third computational
variants can be employed to check the geometrical conditions of the crane bridge, however, the third
variant additionally takes into account the relations that occur between the girders and end carriages,
which is crucial from the authors’ viewpoint. Therefore, the authors recommend using the third
variant of computations to solve the problem presented in the article. Although the computations were
performed on simulated data, it is assumed that the presented analysis may also be valid for real data.
In their further studies, the authors will focus on checking and using modern instruments, and verifying
which geometrical conditions must be met by crane wheels to prevent failures in crane operation. That
research will help to create a comprehensive measurement technology with calculations using modern
statistical methods and interpret of the obtained results. Due to the fact that displacements are often
caused by locations of objects on unfavorable geotechnical conditions, the issue presented in the paper
constitutes an important problem in reference to geosciences. The proposal presented in this paper can
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also be used (after some modification) in tests of other steel constructions, for example, in tests of roof
displacements of industrial halls, warehouses, sports stadiums, etc.

Most important subscripts and variables used in the paper:

X′j, Y′j, Z′j coordinates in local coordinate system of the instrument (external coordinate system)

X, Y, Z coordinates in local coordinate system of the crane bridge (internal coordinate system)
Q matrix of cofactors
P weight matrix
C covariance matrix
D transformation matrix
A, B known matrix of coefficients
V vector of corrections
X vector of parameters
mX, mY, mZ mean errors of coordinates in the external coordinate system.
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1. Filipiak, D.; Kamiński, W. Determination of rectification corrections for semi gantry crane rail axes in the
local 3d coordinate system. Rep. Geod. Geoinf. 2014, 97, 71–79. [CrossRef]
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