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Abstract: Accurate estimation of forest biomass to enable the mapping of forest C stocks over large
areas is of considerable interest nowadays. Airborne laser scanning (ALS) systems bring a new
perspective to forest inventories and subsequent biomass estimation. The objective of this research
was to combine growth models used to update old inventory data to a reference year, low-density
ALS data, and k-nearest neighbor (kNN) algorithm Random Forest to conduct biomass inventories
aimed at estimating the C sequestration capacity in large Pinus plantations. We obtained a C stock
in biomass (Wt-S) of 12.57 Mg·ha−1, ranging significantly from 19.93 Mg·ha−1 for P. halepensis to
49.05 Mg·ha−1 for P. nigra, and a soil organic C stock of the composite soil samples (0–40 cm) ranging
from 20.41 Mg·ha−1 in P. sylvestris to 37.32 Mg·ha−1 in P. halepensis. When generalizing these data to
the whole area, we obtained an overall C-stock value of 48.01 MgC·ha−1, ranging from 23.96 MgC·ha−1

for P. halepensis to 58.09 MgC·ha−1 for P. nigra. Considering the mean value of the on-site C stock,
the study area sustains 1,289,604 Mg per hectare (corresponding to 4,732,869 Mg CO2), with a net
increase of 4.79 Mg·ha−1

·year−1. Such C cartography can help forest managers to improve forest
silviculture with regard to C sequestration and, thus, climate change mitigation.

Keywords: airborne laser scanning; forest inventory; Pinus plantations; C stocks; k-nearest neighbor;
forest management

1. Introduction

Forest ecosystems, covering 31% of the total land area globally, can help to mitigate the effects of
climate change since carbon (C) is retained in phytomass through photosynthesis [1]. The world’s forest
C stock was estimated to be 861 Pg C in 2011; biomass was the second major pool, representing 42% of
this total amount [2]. At the global scale, approximately 80% of the total C contained in aboveground
vegetation biomass is held in forests [3]. In the Mediterranean region, between 0.01 and 1.08 MgC·ha−1

are sequestered in forest ecosystems annually [4]. For Spain, this means that around 19% of total CO2

emissions are fixed by forests [5].
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In addition to biomass, C is also stored in litter and forest soils. In fact, soils are the largest
reservoir of terrestrial C, for both organic and inorganic forms [6]. Soil organic carbon (SOC) can be
stored in soils for thousands of years under, suitable conditions, and is a vital component of plant
nutrient cycles [7]. Forest management aimed at increasing stand growth has been shown to be effective
in increasing the C sequestration capacity [8,9]. Thinning treatments improve health and tree vigor,
increasing forest productivity [10], while the soil C content shows a slight decrease in the first stages,
recovering its level and increasing once the canopy is restored [11].

Accurate estimation of forest biomass to produce spatially explicit mapping of forest C stocks over
large study areas is of considerable interest nowadays [12]. In this regard, the field-based inventory
is the most common method for evaluating the dendrometric characteristics and stand dynamics of
forests. These classic forest inventories have a high demand for labor, are expensive, and require lots of
field plots to obtain full inventory data for large areas on the ground [13,14]. Thus, with the advances
in remote sensing techniques, these traditional methods are being replaced or supplemented with Light
Detection and Ranging (LiDAR) techniques, which provide stand data over large areas, optimizing
time and costs. LiDAR technology brings a new perspective to forest inventories by directly providing
three-dimensional information on the entire surface [12].

LiDAR (Laser Imaging Detection and Ranging) systems from an airborne platform (airborne
laser scanning, ALS) are equipped with a scanning device that distributes the emitted pulse across
a swath width along the aircraft’s flight path [15]. ALS is currently considered a very useful
technique for forest-characteristics estimation in both small- and large-scale studies and in different
applications [14,16–18]. The main advantage of ALS is its ability to return forest vertical structure
measurements directly, including tree crown heights, the topography of the sub-canopies, and the
vertical distribution of intercepted surfaces (e.g., undergrowth). This large amount of data helps
forest characterization and returns quantitative information to support forest management of large
areas [19,20]. This is possible due to the strong relationship between these direct measurements and
dendrometric parameters of forest stands, such as aboveground biomass and, thus, C content. By
using ALS data, it is possible to produce qualitative and quantitative information about the function
and productivity of forest areas. However, the use of ALS data also has limitations, like the high
flight costs and the time lag between field data acquisition and the ALS flight date. In addition,
commercial airborne lasers are only now becoming available on a cost-effective basis [15]. By using
these techniques, forest attributes such as basal area, height, and tree diameter can be estimated using
modelling algorithms and ALS data [21,22]. In Spain, in 2008–2009, the National Geographic Institute
(IGN) started the capture of ALS data for a large part of Spain, within the National Plan of Aerial
Orthophotography (PNOA), with low-density points in most of the flights. In Andalusia, the ALS
flights were conducted between 2014 and 2016 with a pulse-density range of up to 0.5 points m−2

(http://www.juntadeandalucia.es/medioambiente/site/rediam).
Among the wide range of algorithms used to estimate forest metrics through ALS analyses found

in the literature, the k-nearest neighbor (kNN) model was selected in this study. The kNN techniques are
multivariate, nonparametric methods, which find a group of k mostly similar objects for an unlabeled
item and use them to assign a class label to match the class of the majority of the k-similar cases during
the training [23]. These techniques have been progressively applied to forest inventory and remotely
sensed data in order to map production or estimate forest attributes (e.g., forest biomass and volume
stock). Particularly, the combination of a forest inventory and ALS data analysis together with the
kNN technique has shown satisfactory results for the estimation of aboveground biomass [24,25].

Between the 1960s and 1970s, important reforestations were carried out in Southern Spain, mainly
for soil protection purposes. In particular, at Sierra de Los Filabres (hereafter abbreviated as Filabres),
these forest plantations involved different coniferous species, among which stand out—for their
extension—Pinus halepensis Mill., Pinus pinaster Aiton., Pinus nigra Arnold., and Pinus sylvestris L.
These plantations gave rise to forests of great homogeneity, but also of notable forestry and restorative
interest [26]. This area, which also has traditional forest inventories carried out over its entire extension,
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is presented as a potential study area to demonstrate our hypothesis. In this regard, the general
objective of this study was to combine growth models (used to update old inventory data to a
reference year) and low-density ALS data to conduct biomass inventories aimed at estimating the
C sequestration capacity in large plantation areas. The specific objectives were the following: (i) to
collect and process classic forest inventories data, to create an updated database by applying growth
models/equations; (ii) to collect SOC samples in areas under different thinning treatments; (iii) to
develop C estimation models, to evaluate the sequestration capacity of a large area of forest plantations
by using discrete, multiple-return, low-point-density ALS data; and (iv) to map the distribution of
sequestered C as a basis for forestry management and systems optimization. The results are discussed
in the context of adaptive forest management, using airborne ALS systems to monitor forest C stocks,
and emission-reduction programs.

2. Materials and Methods

2.1. Study Area

The study area was located at Filabres (Andalusia region, Almería, Southeastern Spain, 37◦22′ N,
2◦50′W; around 45,000 ha between 750 and 2168 m.a.s.l; Figure S1, Supplementary Materials). The mean
annual precipitation is around 320 mm, while the monthly temperature oscillates between 7 and
16 ◦C. Present thermotypes range from the thermo-Mediterranean (below approximately 350 m) to the
oro-Mediterranean, for the highest areas. The dominant soils are xerorthents regosols, mainly developed
on schists and quartzites, with steep slopes (>35%) as the predominant topography [27]. The current
vegetation shows a marked altitudinal gradient and is strongly influenced by reforestation programs
carried out between 1955 and 1983. The most commonly used species were pines, including Pinus
halepensis, P. pinaster, P. nigra, and P. sylvestris. Despite this regular plantation pattern, some reduced
areas of native pine stands still exist in the area. Within Filabres, our study focused on forests
owned by the Andalusia Forest Service, where most forest inventories were conducted (Figure S1.
Supplementary Materials).

Our study used several data sets and required the development of remote sensing indices and
data analysis procedures. Therefore, a flowchart outlining the steps and relationships of each process
is provided in Figure 1.

2.2. Biomass Data

Dendrometric data were obtained from 2302 inventory plots measured in 2007, from both National
Forest Inventory (IFN3) [28] and Forest Management Plans of Filabres public forests. In terms of
species, there were 789, 740, 665 and 108 plots for P. halepensis, P. pinaster, P. nigra, and P. sylvestris,
respectively. We considered all plots with a radius of 12.6 m and slope correction. In addition, the plot
radius was used to generate vector files to divide the normalized LiDAR data, so that point clouds
referring to each inventory plot were obtained. In this regard, coherence in the point clouds is needed
so that their metrics are comparable and, thus, the subsequent statistical models are more robust.

In order to compare the ALS metrics with the dendrometric variables, tree diameter and height
were updated to the ALS flight date (2014) by using the equations of Guzmán Álvarez et al. [29]
(Equations (1) to (3)):

ln(di) = C1 + C2+ C3 ln(Ni)+ C4 ICi (1)

ln(Hi) = C5 + C6 ln(Ei)+ C7 ln(IS) (2)

where di is the diameter at breast height (dbh) in cm, Ni is the density (trees·ha−1), ICi is the competition
index, Hi is the tree height (m), Ei is the tree age, all referred to diameter class i, C1–7 are coefficients
depending on the species and IS the site index. This index was obtained in raster format from the
REDIAM data server (http://descargasrediam.cica.es/repo/s/RUR). ICi (in Equation (3)) is defined
as a competition index (independent of the distance) that considered as competitors all individuals

http://descargasrediam.cica.es/repo/s/RUR
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from diameter class i of the same species present in the plot, including the rest of the individuals of
other species:

ICi= da·Na +
∑Nc

j = 1, j , 1
dj_N j (3)

where da and Na are, respectively, the mean diameter at breast height (cm) and the total density
(trees·ha−1) of other species present in the plot, while dj and Nj are, respectively, the diameter and
density corresponding to the diameter class, j, of the analyzed species, where j is different from i, and
Nc is the total number of diametric classes. In order to calculate this index, the plots were divided in
different groups depending on the number of species present.
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Figure 1. Flowchart describing the methodological steps to derive C-stock distribution maps for 
the species Pinus halepensis, P. pinaster, P. nigra, and P. sylvestris in Sierra de los Filabres from 
historical field data inventory plots, airborne laser scanning (ALS) metrics and soil organic carbon 
(SOC) field data. 

Given the costly procedure for updating IC, it was decided to assign a fixed value equal to 
the 2008 update. This is justified because this index is calculated with field inventory data, with 
relative centimeter-scale errors. The variation caused by the IC factor within the diameter 
equation ranges from precision values of hundredths to thousandths of a centimeter. Finally, the 
tree height and diameter of each diametric class and year were calculated for each species 
according to the expressions shown in Table S1 (Supplementary Material). The tree age in the first 
update year (2007) was needed to start the data update for further calculation of tree height and, 
subsequently, tree diameter, and was inferred from previous equations (Table S1. Supplementary 
Material), once the diameter and density were known from the inventory data. 

The updated tree diameter and height data were used to estimate total biomass (Wt) as the 
sum of the biomass fractions (Wa = aboveground; Wr = root biomass), using equations from Ruiz-
Peinado et al. [30] (Table S1. Supplementary Material). Finally, a standard biomass/C coefficient 

Figure 1. Flowchart describing the methodological steps to derive C-stock distribution maps for the
species Pinus halepensis, P. pinaster, P. nigra, and P. sylvestris in Sierra de los Filabres from historical field
data inventory plots, airborne laser scanning (ALS) metrics and soil organic carbon (SOC) field data.

Given the costly procedure for updating IC, it was decided to assign a fixed value equal to the
2008 update. This is justified because this index is calculated with field inventory data, with relative
centimeter-scale errors. The variation caused by the IC factor within the diameter equation ranges from
precision values of hundredths to thousandths of a centimeter. Finally, the tree height and diameter of
each diametric class and year were calculated for each species according to the expressions shown in
Table S1 (Supplementary Materials). The tree age in the first update year (2007) was needed to start the
data update for further calculation of tree height and, subsequently, tree diameter, and was inferred
from previous equations (Table S1. Supplementary Materials), once the diameter and density were
known from the inventory data.

The updated tree diameter and height data were used to estimate total biomass (Wt) as the sum of
the biomass fractions (Wa = aboveground; Wr = root biomass), using equations from Ruiz-Peinado
et al. [30] (Table S1. Supplementary Materials). Finally, a standard biomass/C coefficient of 0.5 was
applied to obtain the overall C stock in biomass (Wt-S) [31]. All calculations were made for 5 cm
diameter classes between 10 and >70 cm.

2.3. SOC Data

In July 2017, 36 soil point survey samples per species were taken systematically using a steel
auger that was 8 cm in diameter and transported to the laboratory undisturbed. In the laboratory,
all the soil soundings were cut into four sections: 0–10, 10–20, 20–30, and 30–40 cm, in the first part of
the mineral soil. All the soil samples were air-dried, and then coarse particles were removed with a
sieve (mesh size 2 mm); the resultant fine-earth fraction was ground to pass through a 0.5 mm mesh
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and stored for SOC determination. In the sieving process, all particulate organic matter (rootlets,
leaves, seeds, and other plant material) was manually extracted. The gravel (>2 mm) was weighed
and stored separately. For each soil sample, three replicates of each measurement were performed in
the laboratory.

The organic carbon content of the fine-earth was determined through wet oxidation by the Walkley
and Black method [32]. The bulk density (BD) of fine-earth in every soil layer was estimated as follows
(g·cm−3) (Equation (4)):

BD = W(fe)/(Volcil. − (W(gr)/BD(gr)) (4)

where W(fe) is the weight of fine-earth fraction, Volcil. is the volume of the cylinder (10 cm height),
W(gr) is the weight of gravel fraction and, BD(gr) is the bulk density of the gravels, obtained in every case
by the quotient between the weight of gravels ant its volume obtained by the displacement of water.

The soil organic carbon stock (SOC-S, Mg·ha−1) was computed for each layer and expressed in
kg·m−2, by Equation (5) [33,34]:

SOC-S = (SOC/100) × BD × Cm × D × 10 (5)

where SOC is soil organic carbon concentration, in weight percent (%), BD is bulk density of fine-earth
(g·cm−3), D is thickness of the analyzed layer (cm), and 10 is the factor for conversion from g/cm3 to
kg/m2. Cm is the fraction of the volume occupied by fine-earth, obtained from Equation (6):

Cm = Vol<2mm/Volwhole = (%(fe)/BD(fe))/(%(fe)/BD(fe) + %(gr)/BD(gr)) (6)

where %(fe) is the fine-earth percentage, BD(fe) is the bulk density of fine-earth, %(gr) is the gravels
percentage, and BD(gr) is the bulk density of gravels. The overall soil organic carbon stock (SOC40-S) in
the first 40 cm from the soil surface was calculated by adding together the values obtained for each
layer. A sub-meter global satellite receiver (Leica Zeno 20 GIS, Leica Geosystems, Switzerland) was
used to survey plot centers and soil samples.

2.4. ALS Data and Processing

Low-density ALS data were provided by the PNOA (http://pnoa.ign.es/presentacion) through
the IGN website. The objective of the LiDAR-PNOA project is to cover the entire Spanish national
territory in point clouds with X, Y, and Z coordinates obtained by airborne ALS sensors, with a density
of 0.5 points m−2 and altimetric accuracy better than 20 cm. In our study area, the ALS flight was
performed in 2014. Data were provided in 2 km × 2 km tiles of raw data points in a LAZ binary file
(compressed LAS files), containing x and y coordinates (EPSG: 25,830 ETRS 1989/UTM Zone 30) and
ellipsoidal elevation Z. The ALS data were processed in FUSION LDV 3.80 [35]. Before starting the
work, the LAZ files were decompressed using the Laszip command from the LAStools software [36],
to obtain the LAS files. Due to the large extension of the study area, all files were divided in different
lots, so the software could handle the heavily normalized surface files obtained throughout the process.
The working flow, using FUSION commands to process and normalize ALS data, is shown below,
in order of execution.

In summary, the ALS point clouds were first filtered to generate a surface model (cell size 0.5 m),
and ALS metrics were computed for each inventory plot after normalizing the data by subtracting
the DTM from the point clouds [37]. Finally, 2302 metrics records were obtained, including 99
statistical parameters for each one. Before implementing the analyses, statistical parameters without
forest significance were deleted (mainly intensity-derived parameters) [38]. Finally, 50 out of the 99
original parameters were used as regressors, including the mean, maximum, and minimum values,
mode, standard deviation, variance, interquartile distance, coefficients of skewness and kurtosis,
average absolute deviation, and percentiles. In addition, the percentage of returns above 2 m (above
this height is considered canopy), mean, and mode were selected (Table S2. Supplementary Materials).

http://pnoa.ign.es/presentacion
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2.5. Data Analysis and kNN Models

A spatial C-stock model depending on ALS metrics was determined using the k-nearest
neighbor (kNN) machine-learning algorithm, in particular using a random forest (RF) model. [25].
When using this model, no assumption regarding the nature of the data is required (e.g., normality
or homoscedasticity) [25]. In terms of the relationships among variables, multicollinear explanatory
variables may alter their effects on the model response due to either true synergistic relationships
among the variables or false correlations. Due to this and prior to variables selection, variance inflation
factor (VIF) analysis was conducted to check multicollinearity among preselected variables (Table S2.
Supplementary Materials).

From these previous analyses, 13 ALS variables with little correlation among themselves were
selected (listed in order of significance): all returns above mode/total first returns * 100, percentage of
all returns above mode, elevation maximum, elevation mode, elevation MAD mode (median of the
absolute deviations from the overall mode), elevation L CV (coefficient of variation for cell of elevation
L-moment), elevation kurtosis (kurtosis computed for cell), return 1 count (count of return 1 points
above 2 m), elevation MAD median (median of the absolute deviations from the overall median),
percentage all returns above mean, elevation minimum, percentage all returns above 2 m, and return
2 count (count of return 2 points above 2 m). For complete information about the statistical parameters,
see McGaughey [35].

In order to validate the estimations of the models, the input data were separated into training and
evaluation sets, covering 70% and 30% of the input data, respectively. Later, the variable selection
process was executed by choosing the combination of variables that minimized the generalized
root mean square distance when variables were added or deleted one at a time [38,39]. Once the
best predictor variables were selected, we used random forest (RF) to model the C stock in biomass
(per species) and the soil organic carbon stock (SOC40-S) (for all Pinus species together) [40]. We assessed
the model accuracy through internal validation, including a Q-value overfitting test. External validation
and cross-validation were then run. The RMSE and bias were calculated for each process. Finally,
raster files for Wt, SOC40-S and Wt + SOC40-S were obtained. Each pixel represents the mean value for
the on-site C stock (Mg·ha−1) as a function of the selected independent ALS variables.

All statistical analyses were performed with R software [41], version 3.5.1. The usdm package [42]
was used to perform multicollinearity analysis, while variables selection and regression with kNN
were run with the yaImpute R package [38].

2.6. Quantification and Cartography of C Stocks

A C stock map of the on-site C stock, including the total C stock in biomass (Wt-S) and the
SOC stock of the composite soil samples (0–40 cm, SOC40-S), for each pine species, was developed.
The original raster was reclassified in six different classes, according to the C content per hectare,
using the SAGA Reclassify Grid Values Module (v2.2.5). The pixel size selected to compute the ALS
metrics, and thus to generate the C stock cartography, was 22.3 × 22.3 m, representing a pixel surface
area similar to the field plots surface area (Equation (7)):

cell size =
√
(field plot surface area). (7)

The total C stock sequestered in the Filabres plantations was estimated by using the mean value of
Mg·ha−1 and the total raster surface area. This surface area was calculated considering the pixel surface
area and the total number of pixels, using the r.report GRASS algorithm for QGIS. The original raster
files obtained directly from the RF kNN model were improved through the r.neighbors GRASS algorithm
and reclassified in five different classes according to the C content per hectare (<10, 10–20, 20–30, 30–40,
and >40 MgC·ha−1). The SAGA Reclassify grid values tool for QGIS was used for this purpose.
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3. Results

3.1. C Stocks in Biomass and SOC by Species

Table 1 shows the values of silvicultural characteristics, after updating dendrometric data from
2007 to 2014, Wt-S and SOC-S of the Pinus sp. plantations at Sierra de los Filabres. Pinus pinaster was the
species with the highest height and diameter values, followed by P. nigra. Pinus sylvestris showed the
lowest values, although the plantation of this species was set up in the same years. The Wt-S derived
from the dendrometric data ranged significantly from 19.93 Mg·ha−1 for P. halepensis to 49.05 Mg·ha−1

for P. nigra (F = 295.63, P < 0.001), with an average value of 36.92 Mg·ha−1.
Our estimate of SOC shows a large C stock in the mineral soils, with nonsignificant differences in

SOC-S between species (Table 1, F = 1.95, P = 0.329). The SOC40-S values of the composite soil samples
(0–40 cm) ranged from 20.41 Mg·ha−1 in P. sylvestris to 37.32 Mg·ha−1 in P. halepensis. The value of Wt

+SOC40-S was higher for P. sylvestris (77.63 Mg·ha−1) and P. nigra (73.55 Mg·ha−1), with significant
differences (F = 177.31, P < 0.001, Table 1). The SOC40-S accounted for 65.18% of the total on-site C
stock for P. halepensis and less than 50.00% for the other three species.

Table 1. Silvicultural characteristics, C stock in live-biomass and soil organic carbon stocks (Mg·ha−1)
of Pinus sp. plantations at Sierra de los Filabres (Almería, Southern Spain). Variables and abbreviations:
stem density (N, trees·ha−1); Assman’s dominant height (Ho, m); quadratic mean diameter (Dg, cm);
basal area (G, m2

·ha−1); C stock in biomass (Wt, Mg·ha−1) and soil organic carbon stock (SOCdepth-S,
Mg·ha−1). Values are means ± SE. Different letters indicate significant post hoc differences between
thinning treatments at alpha = 0.05, based on a one-way ANOVA.

Pinus Halepensis Pinus Nigra Pinus Sylvestris Pinus Pinaster

Surface area (ha) 9118 7507 5900 5658
Dg (cm) 17.57 (0.26)b 18.45 (0.16)b 17.94 (0.32)b 23.75 (0.21)a

BA (m2
·ha−1) 10.19 (0.33)c 19.48 (0.50)b 14.41 (1.09)c 24.02 (0.62)a

N (trees·ha−1) 419.32 (10.88)c 732.35 (18.23)a 605.04 (48.29)b 536.81 (12.93)b
Ho (m) 9.10 (0.12)c 9.49 (0.11)b 8.92 (0.18)c 11.30 (0.09)a

Wt (Mg·ha−1) 19.93 (0.75)c 49.05 (1.40)a 35.23 (2.65)b 43.49 (1.19)a
SOC10 (Mg·ha−1) 10.51 (0.57)a 5.88 (0.69)b 6.15 (0.58)b 10.10 (0.75)a
SOC40 (Mg·ha−1) 37.32 (2.24)a 24.50 (1.49)a 20.41 (2.18)a 34.14 (2.29)a

Wt + SOC40 (Mg·ha−1) 57.25 (1.41)c 73.55 (1.29)a 55.64 (2.01)b 77.63 (2.12)a

3.2. kNN Model for C Stocks Predictions

Following the selection of the independent variable data, the RF model used between
five (P. halepensis) and seven (P. sylvestris) among twelve variables: Elev.P90, Elev.mode,
Percentage.all.returns.above.mean, Elev.kurtosis, Elev.MAD.median, Return.1.count, Elev.minimum,
H: Percentage.all.returns.above.mode, Elev.maximum, Canopy.relief.ratio, Elev.P99 and Return.2.count.
(Figure 2; Table S2. Supplementary Materials). We computed the scatter plots for correlations
contrasting the observed versus the estimated values for the C-stock predictions, for all species
(Figure 3; Table S3. Supplementary Materials). For Wt-S, the best model was obtained for P. pinaster
(R2 = 0.93, RMSE = 16.56 Mg·ha−1); for the other species, the fit ranged between R2 = 0.82 (RMSE =

5.26 Mg·ha−1) for P. halepensis and R2 = 0.51 (RMSE = 33.45 Mg·ha−1) for P. sylvestris. The best model
prediction for SOC-S was obtained for SOC10-S for all Pinus species (R2 = 0.81, RMSE = 4.92 Mg·ha−1),
although the model prediction for SOC40-S also provided a high coefficient of determination (R2 = 0.76,
RMSN = 12.92 Mg·ha−1).
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Figure 3. Bivariate relationships between the LiDAR metrics and the C stock in biomass of each pine
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models (“observed”). The linear 1:1 line was fitted. For these equations, the R2 value is included.

3.3. Cartography of C Stocks

Figures 4–7 show the distribution of the overall C stocks (Wt-S + SOC40-S) throughout all the
Filabres forests, for P. halepensis, P. nigra, P pinaster, and P. sylvestris, respectively. We obtained a
mean overall C-stock (Wt and SOC40-S) value for the whole area of 48.01 Mg·ha−1, ranging from
23.96 Mg·ha−1 for P. halepensis to 58.09 Mg·ha−1 for P. nigra. The mean Wt-S value was 31.77 Mg·ha−1,
ranging from 8.26 Mg·ha−1, for P. halepensis to 41.97 Mg·ha−1 for P. nigra. A mean SOC40-S value
of 16.23 Mg·ha−1 was obtained—ranging from 15.70 Mg·ha−1 for P. halepensis, to 17.02 Mg·ha−1 for
P. sylvestris (Table 2).
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Table 2. Stand characteristics—basal area (BA), quadratic mean diameter (Dq), number of stems (N), dominant height (Ho), C stock in live-biomass (Wt-S), and soil
organic carbon stock in the 0–40 cm soil layer (SOC40)—for each of the four Pinus spp.: Pinus halepensis, Pinus nigra, Pinus pinaster, and Pinus sylvestris at Sierra de los
Filabres (Southern Spain). Values are means (SE).

Species Stands G (m2
·ha−1) Dq (cm) Ho (m) N (stems·ha−1) SOC40 (Mg·ha−1) Wt (Mg·ha−1)

Pinus halepensis

<30 ha 51 9.45 (5.52) 16.57 (2.63) 8.35 (1.48) 455.04 (193.04) 16.12 (7.81) 8.16 (5.21)
30–40 70 9.44 (5.72) 16.47 (2.68) 8.26 (1.51) 445.01 (197.52) 15.82 (7.72) 8.52 (5.73)
40–50 72 8.99 (5.54) 16.33 (2.68) 8.19 (1.51) 442.27 (193.96) 15.45 (7.69) 7.83 (5.10)
50–60 49 9.13 (5.61) 16.54 (2.73) 8.27 (1.54) 443.61 (190.17) 15.64 (7.94) 8.02 (5.11)
60–70 41 9.62 (5.76) 16.51 (2.71) 8.27 (1.52) 456.49 (198.88) 15.52 (7.81) 8.97 (6.03)
70–80 22 9.27 (5.60) 16.42 (2.69) 8.21 (1.51) 435.41 (195.13) 15.60 (7.45) 7.73 (4.82)
80–90 18 10.70 (6.46) 16.91 (2.77) 8.46 (1.51) 475.92 (200.53) 15.06 (7.57) 8.42 (5.49)

90–100 6 11.61 (7.70) 17.51 (3.28) 8.80 (1.80) 459.59 (213.33) 16.74 (7.82) 9.21 (6.25)
>100 1 16.89 (9.80) 21.20 (4.05) 10.72 (2.03) 465.27 (210.04) 22.04 (7.52) 13.54 (9.54)

Pinus nigra

<30 ha 50 12.24 (7.78) 17.78 (3.32) 8.98 (1.79) 503.48 (226.39) 16.53 (8.09) 43.32 (18.94)
30–40 119 12.51 (7.52) 17.64 (3.16) 8.91 (1.69) 517.09 (222.59) 16.35 (8.03) 43.05 (18.40)
40–50 110 11.43 (7.10) 17.29 (3.07) 8.72 (1.67) 494.03 (212.43) 15.99 (8.04) 41.68 (18.41)
50–60 89 11.40 (6.89) 17.29 (3.03) 8.70 (1.65) 501.75 (214.36) 15.85 (7.87) 40.43 (17.64)
60–70 72 11.35 (6.93) 17.27 (3.04) 8.67 (1.65) 498.44 (209.10) 15.89 (7.82) 40.54 (17.76)
70–80 38 12.73 (7.68) 17.63 (3.16) 8.90 (1.67) 521.27 (224.39) 16.28 (7.93) 41.41 (18.48)
80–90 22 13.13 (7.92) 17.91 (3.37) 9.02 (1.76) 531.87 (228.82) 16.34 (7.87) 46.80 (19.15)

90–100 9 11.63 (7.27) 17.47 (3.15) 8.74 (1.69) 504.17 (228.93) 15.91 (7.75) 41.01 (17.99)
>100 - - - - - - -

Pinus pinaster

<30 ha 50 12.23 (7.84) 17.74 (3.34) 8.95 (1.79) 503.33 (230.11) 16.86 (8.11) 45.19 (20.33)
30–40 100 12.27 (7.16) 17.63 (3.12) 8.88 (1.66) 509.70 (219.97) 16.58 (7.88) 44.57 (19.22)
40–50 90 10.78 (6.66) 17.05 (3.00) 8.58 (1.64) 482.24 (210.27) 15.60 (7.93) 40.40 (18.33)
50–60 73 10.79 (6.60) 17.08 (2.95) 8.57 (1.61) 490.15 (211.98) 15.59 (7.81) 37.95 (17.82)
60–70 57 11.69 (7.16) 17.39 (3.10) 8.73 (1.65) 505.11 (214.30) 16.19 (7.76) 42.34 (17.55)
70–80 33 10.25 (6.64) 16.77 (2.90) 8.41 (1.59) 473.82 (218.81) 15.46 (7.70) 38.58 (19.03)
80–90 16 12.74 (8.07) 18.01 (3.54) 9.05 (1.84) 510.64 (230.64) 16.75 (8.10) 49.45 (18.79)

90–100 10 11.68 (7.40) 17.46 (3.23) 8.76 (1.73) 504.67 (229.02) 15.97 (7.76) 38.35 (19.82)
>100 - - - - - - -

Pinus sylvestris

<30 ha 26 13.67 (8.67) 18.39 (3.61) 9.32 (1.90) 529.36 (239.54) 17.48 (8.41) 34.08 (23.10)
30–40 68 14.18 (8.52) 18.30 (3.45) 9.27 (1.80) 545.13 (233.82) 17.33 (8.14) 36.43 (22.79)
40–50 63 13.20 (8.31) 17.98 (3.44) 9.12 (1.84) 520.31 (227.37) 17.21 (8.22) 35.14 (22.51)
50–60 56 12.25 (7.60) 17.60 (3.20) 8.90 (1.73) 523.79 (226.17) 16.25 (7.95) 32.73 (20.58)
60–70 36 13.13 (7.92) 17.84 (3.28) 8.98 (1.71) 532.18 (221.72) 17.01 (7.70) 34.65 (21.46)
70–80 23 14.21 (8.57) 18.04 (3.34) 9.13 (1.73) 539.97 (228.88) 16.82 (7.98) 36.08 (22.71)
80–90 9 13.79 (8.39) 18.25 (3.65) 9.24 (1.88) 551.74 (241.43) 17.43 (8.27) 39.03 (22.26)

90–100 4 14.69 (8.56) 18.58 (3.50) 9.34 (1.76) 565.71 (251.33) 17.32 (7.61) 31.29 (17.74)
>100 - - - - - - -
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Starting from the abovementioned results, the current on-site C stock estimated for the total forested
area was 1,289,604 Mg, including 833,891 Mg in Wt-S and 455,713 Mg in SOC40-S (corresponding to
4,732,869 Mg CO2), with a net increase of more than 4.79 Mg·ha−1

·year−1.

4. Discussion

In Spain and other Mediterranean countries, restoration efforts have been made to re-establish
forest cover on landscapes previously supporting marginal forest vegetation and crops [43]. Such pine
plantations are managed for multi-objective optimization: to integrate forest products and ecosystem
services, such as erosion and water protection; to re-establish the native forest cover; for social uses;
and, more recently, C sequestration [44]. The purpose of this study was to confirm the hypothesis
that, by combining growth models, data extracted from forest inventories, and low-density ALS data,
we could estimate Wt-S and SOC-S in large plantation areas through biomass models built using a kNN
algorithm. As Maltamo et al. [18] also found the use of ALS data and dendrometric measurements from
inventory plots greatly reduces the fieldwork required to obtain large-surface-area C models and serves
as a very useful tool in the management of forest stands for C sequestration purposes. The ALS-based
cartography of C stocks is an essential tool for the planning of alternative silvicultural management
intended to optimize C sequestration in forests. However, the integration of SOC stocks into on-site
C stocks and the sequestration rates of Mediterranean Pinus plantations remain poorly described [45].
In this study, we highlight the availability of ALS and kNN algorithms for the assessment of C stocks
over large surface areas, which facilitates C-based silviculture; this complements previous research on
the estimation of on-site C stocks in Mediterranean pine plantations [40].

4.1. The C Stocks in Biomass and SOC for Different Pinus sp.

Using the equations proposed by Guzmán Álvarez et al. [29] to update the tree height and diameter
and those of Ruiz-Peinado et al. [30] for biomass estimation, we obtained the total Wt-S of Pinus sp.
plantations at Filabres (Southern Spain). The Wt-S ranged between 19.93 Mg·ha−1 for P. halepensis and
49.05 Mg·ha−1 for P. nigra. These values are higher than those reported for dominant pine forests
in similar ecological conditions (15.91 Mg·ha−1, P. halepensis; 25.33 Mg·ha−1, P. nigra; 22.33 Mg·ha−1,
P. pinaster; and 23.52 Mg·ha−1, P. sylvestris, [29]). By species, the Wt-S were lower than those reported
for dominant Aleppo pine forests in similar ecological conditions (25.29 Mg·ha−1 [23]), but were closer
to those of other studies (15.02 Mg·ha−1 [46]; 19.93 Mg·ha−1 [47]; 13.93 Mg·ha−1 [40]). For P. nigra
in Mediterranean locations, Vayreda et al. [47] estimated a value of 32.70 Mg·ha−1, lower than that
obtained in Sierra de los Filabres (49.50 Mg·ha−1). In a maritime pine forest, we obtained a value
(43.49 Mg·ha−1) that was very similar to that reported by Vayreda et al. [47] (44.80 Mg·ha−1) but lower
than that calculated for other plantations (82.25 Mg·ha−1 [48]) and much lower than that reported by
Ruiz-Peinado et al. [49] (90 Mg·ha−1). Finally, for P. sylvestris in Mediterranean locations in Northern
Spain, Bravo et al. [50] and Vayreda et al. [47] estimated a Wt-S of 51.10 Mg·ha−1 and 48.70 Mg·ha−1,
respectively, higher than that obtained in Sierra de los Filabres (35.23 Mg·ha−1). These discrepancies
can be explained by the structural–silvicultural heterogeneity of the pine stands in relation to age and
density, as well as differences in environmental site conditions. The wide range of estimates of biomass
C stock might be negatively affected by the fact that they are typically derived from general allometric
equations [5]. We recognize that projection of dendrometric variables from traditional inventories is
challenging, even in homogenous canopies; thus, the outcomes are biased because these models do not
reflect all the variation in forest structure. If those restrictions are ignored when calculating biomass
stocks, final estimates will include unpredictable increases in error. These factors determine that Wt-S
values have great variation, even when compared locally [29].

Regarding the SOC stocks, SOC40-S ranged from 20.41 Mg·ha−1 for P. sylvestris to 37.32 Mg·ha−1

for P. halepensis. These values are lower than those found in other studies, which determined the average
SOC-S for a P. halepensis plantation (Northern Spain, 300 trees·ha−1, dbh = 17.5 cm, 40.72 Mg·ha−1 [51];
SOC-S ranged between 90 and 166 Mg·ha−1 [52,53]) and for P. sylvestris (102 Mg·ha−1 [1]) and P. pinaster
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(107 Mg·ha−1 [49]). These differences may be related to the shallow soil layers (0–40 cm) in our
study, which limit the SOC related to root density [54]. Additionally, the litter quantity and turnover
are very limited because more of the thinning residues, such as slashes, are left on-site without
crushing, thus reducing the soil C stocks [55]. Determining SOC stock in large forest areas can
be difficult because of the spatial variability in SOC stock and the different measurement errors
associated. To reduce these heterogeneities and uncertainties, the design of a SOC sampling strategy
was planned to ensure harmonized data collection and data processing [56]. However, the overall
design of SOC sampling was determined by time and budgetary availability. The overall average
on-site C stock (Wt plus SOC40-S) was 48.01 Mg·ha−1, ranging from 23.96 Mg·ha−1 for P. halepensis
to 58.09 Mg·ha−1 for P. nigra. Few studies have estimated the C stock for Pinus plantations [1,45,57],
but they obtained higher values (ranging from 302 Mg·ha−1 to 294 Mg·ha−1 for P. pinaster and P. sylvestris,
respectively, [49]). Navarro-Cerrillo et al. [40] obtained an average of total C stocks for P. halepensis
stands in Southeastern Spain of 89.42 Mg·ha−1, which is still higher than the values obtained in
this study. Again, these discrepancies can be explained by the differences in soil quality and the
structural–silvicultural heterogeneity, but also by the use of national allometric equations that may
have limitations for their application at a local scale [58].

Despite these differences, our results support the idea that Pinus plantations in degraded semi-arid
areas have an important role in the C cycle and on-site C sequestration [46]. The forest management,
along the 35-year management period, had an impact on the on-site C stock (Wt + SOC40-S), evidencing
that Pinus plantations are more efficient in terms of C sequestration than other agricultural land
uses [59,60].

4.2. The Use of ALS Data and a kNN Model for C Stock Estimation

Here, kNN algorithms were used to generate spatially explicit forest C-stock models using ALS
and inventory data [25,40,61]. We selected the RF model because it was proved to perform better
than multivariate linear regression and other nonparametric statistical methods in the prediction of
Wt-S [40,62].

In our study, all the species models were built with 12 ALS variables that were selected after
collinearity analysis and ranked high in RF. The ALS metrics most strongly related to the C stocks
in Pinus plantations were height metrics (Elev.P90, Elev.mode, Percentage.all.returns.above.mean,
Elev.kurtosis, Elev.MAD.median, Elev.minimum, Percentage.all.returns.above.mode, Elev.maximum,
Elev.P99), and other ALS-derived metrics concerning the horizontal distribution of the point cloud
(Return.1.count, Canopy.relief.ratio, Return.2.count). Metrics generated from ALS data are commonly
agreed to be highly correlated with C stocks, and many studies have successfully used height metrics
(higher percentiles, mean, and maximum height) as important predictors for their quantification in
Mediterranean pine species [23,40,63] and other conifers [14,64–66]. In our study, all the species models
used similar metrics, which demonstrates the consistency of the models. Maximum height metrics
(Elev.P90, Elev.P99, Elev.maximum) may be related to Ho measurements; metrics of average heights
(Elev.mode, Elev.MAD.median) to measures of basal area or diameters; and pulse density metrics
(Return.1.count, Return.2.count, Canopy.relief.ratio) to plot density or cover fraction.

Consistent results were obtained for model calibration, using all samples and leave-one-out
cross-validation for Wt-S and SOC40-S40. The best fit of the Wt-S model was obtained for P. pinaster
(R2 = 0.93, RMSN = 16.56 Mg·ha−1), and the worst was for P. sylvestris (R2 = 0.51, RMSN = 33.45 Mg·ha−1).
This is in accordance with other studies [62], including Montealegre et al. [23] and Navarro-Cerrillo
et al. [40], who modelled the volume in P. halepensis plantations using low-density ALS data (1–0.5
points m−2) (R2 = 0.89, RMSE = 11.01 m3

·ha−1) and Wt-S estimations for coniferous species (R2 = 0.46
to 0.97 [23,37,67,68]). For SOC-S, the model obtained for SOC10-S (R2 = 0.82, RMSE = 4.92 Mg·ha−1)
was better than that for SOC40-S (R2 = 0.76, RMSE = 12.92 Mg·ha−1) and similar to those found by
Navarro-Cerrillo et al. [40] in similar ecological conditions. The RMSE estimations were slightly higher
(with the exception of P. nigra, 93.12%) than those obtained in other studies (RMSE = 40%–44%, [69])
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of Wt-S at plot-level. Navarro-Cerrillo et al. [40] obtained Wt-S models for P. halepensis stands with
RMSE values ranging from 8.03 to 11.62 Mg·ha−1. The difference in RMSE between models may
indicate that the models were not very sensitive with regard to the differentiation of high Wt-S values,
which frequently resulted in the underestimation of large Wt-S areas. However, the observed Wt-S
values ranged from 19 to 49 Mg·ha−1, approximately, within the range of the prediction models (with
the exception of P. halepensis, for which the predicted Wt-S only reached 13 Mg·ha−1), indicating good
estimations of high Wt-S. Higher values of RMSE can be explained by the low precision in the plot’s
geolocation (sometimes lower than 10 m), so that the LiDAR point clouds do not correspond exactly
with the dendrometric values obtained through the field inventories. The prediction accuracy can
be improved if the accuracy of the LiDAR-derived information is equivalent to or comparable with
that of the field measurements (i.e., dbh and height). Regarding pulse density, Cabrera et al. [15]
demonstrated that, when using low-density ALS data (e.g., 0.5 points m−2), the correlation between
dendrometric variables and LiDAR regressors is not directly affected. Additionally, the stratification
derived from the high number of plots reduced the variances of the estimates of the forest variables and
may produce C-stock values that satisfy regional precision standards, being comparable to traditional
inventories [70].

4.3. C Stocks Maps of Pine Forests

Finally, we created a set of C-stock maps of the Pinus forests at a pixel scale (18 × 18 m), to
describe the spatial pattern of the C stocks. The mean value of the on-site C stocks (Wt-S + SOC40-S)
for the whole area was 48.01 Mg·ha−1, ranging from 23.96 Mg·ha−1 for P. halepensis to 58.09 Mg·ha−1,
for P. nigra. The raster statistics show a high standard deviation (17.08 Mg·ha−1) due to the presence
of adjacent pixels with high and low mean values. This can be explained by the high heterogeneity
of the Pinus plantations at Sierra de los Filabres and the low precision regarding the location of the
inventory plots, as explained above. Working with LiDAR data demands high precision of field-plot
coordinates, in order to be able to compare dendrometric data with ALS metrics derived from the
point cloud. To improve the response of the model and its adaptation to the reality on the ground,
the GRASS r.neighbors algorithm for QGIS was used [71]. The values of the on-site C stocks are lower
than in other Pinus plantations [1], but are in concordance with those found in other studies involving
field surveys and the same species. For example, Navarro-Cerrillo et al. [40] obtained an overall mean
value of on-site C stocks, based on LiDAR data of 89.42 Mg·ha−1 for P. halepensis, and Vayreda et al. [47]
estimated on-site Wt-S of 19.20 Mg·ha−1 for P. halepensis and 48.70 Mg·ha−1 for P. sylvestris.

4.4. C Stocks and Management Implications

The on-site C stocks of the Pinus sp. forests in the study area were, to a great extent, driven by
silvicultural management activities, particularly planting. Based on map information, the current
on-site C stock estimated for the total forested area was 1,289,604.38 Mg, including 833,891.02 Mg
in Wt-S and 455,713.36 Mg in SOC40-S (corresponding to 4,732,869.35 Mg CO2). The amount of C
potentially sequestered during the forest management period considered (1980–2014) shows a net
increase of more than 4.79 Mg·ha−1

·year−1 in the pine plantations. This value is higher than that
observed by Padilla et al. [59] for pine plantations (2.7 Mg·ha−1

·year−1), which is related to the fact that
these authors did not investigate the C stored in soils. Our contribution shows the great importance of
SOC-S to the C balance at local scales.

Maps of C stocks make it possible to quickly observe the spatial distribution of areas with the
greatest and lowest on-site C stocks for consideration of C-management in forest resource management
planning. Areas with lower C sequestration should be reviewed in terms of density, spatial distribution,
etc., to propose appropriate silvicultural treatments, based on the characteristics of different forest
stands with higher fixation values. Our results underline the opportunities to adapt to climate
change through forest management, as identified by others (e.g., [45,72]). In previous works, it was
demonstrated that, under a nonintervention scenario, C sequestration is lower than with intervention,
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particularly if the harvested biomass is included [40]. A possible increment in the net annual C
sequestration could be achieved by thinning operations, so that silviculture makes a substantial
contribution to C sequestration [1,45].

In this sense, a silvicultural strategy for planted Pinus forests in semi-arid areas is a substantial
contribution to help offset atmospheric CO2 emissions [40]. In our area, the number of mature planted
pine stands has increased notably in recent decades, and they are often managed for protection and
conservation purposes. In the near future, on-site C sequestration in long-lived pools, as well as
continued exports of C for potential off-site offsets, such as bioenergy, should be a priority for forest
managers. One way to estimate the economic value underlying C sequestration is based on the CO2

stock exchange [73]. One Mg of CO2 is quoted at 24.56 € in the European Union Emission Trading
(averaged monthly value for the year 2019). The economic value of C sequestration in the area under
study would, therefore, be 31,672,683.57 €, with an increment of 3,315,515.75 € year−1 in the current
scenario, which outlines the important role of these pine plantations as a CO2 sink. This quantity can
also make a tremendous contribution to ecosystem preservation and forests conservation if given back
to the local municipalities as payment for environmental services as subsidies and incentives [74].
Additionally, C-oriented silviculture offers other benefits—such as improving biodiversity and resilience
against disturbances (fire, pests and diseases, and droughts)—that could also provide climate change
mitigation and ensure the maintenance of ecosystem services related to planted forests [44,75].

Moreover, we provide data-supported and validated mapping of the Pinus C stock distribution
using low-resolution ALS (pulse density 0.5–1 points m−2) and existing field measurements,
as demonstrated in previous studies [40,76]. The ALS information will be received without cost
in more countries in the close future [77], improving and generalizing the use of ALS-derived C-stock
mapping. These more reliable spatially explicit estimations of on-site C stocks in pine plantations assist
forest management and the planning of land management activities at the local level.

5. Conclusions

This study demonstrates that the combined use of growth models (used to update old inventory
data) and low-density ALS data was able to characterize on-site Wt-S and SOC-S in a large mountainous
area of planted Pinus forests in Southern Spain, as well as having a lower cost than traditional forest
inventories. Low-density PNOA-ALS data are undoubtedly an indispensable tool for the improvement
and development of forestry technology, especially in the case of the estimation and measurement
of structural and dendrometric variables in large areas. For the prediction of C stocks, the kNN
algorithm is a faster and easier alternative than methods based on traditional forest inventories. The RF
model produced a good estimation of both Wt-S and SOC40-S. The effectiveness of this methodology
points out the value of ALS as a complementary and economically justified tool to valuable field
measurements. Finally, on-site C-stock cartography can help forest managers to make decisions in
terms of orienting forest silviculture toward C sequestration and the calculation of payments for
environmental services, and thus climate change mitigation, as well as in the evaluation of C credits
in an emission-offset scenario. The C credits derived from C-oriented silviculture could be valued
within the Voluntary Market, with the aid of commercial and not-for-profit organizations and nearby
administrations; this would allow them to offset, absolutely or in part, the emissions for which they
may be responsible. Improvements upon this study are expected to result from the possession of
more accurate field references (e.g., plot locations), optimization of the cross-validation process and
advancement in low-density PNOA-ALS data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/9/10/442/s1.
Figure S1. Study area in Sierra de los Filabres (Almería province, Andalusia. South-eastern Spain) showing the
distribution of field plots corresponding to performed forests inventories within Filabres public forests, Table S1.
Height and diameter equations used for inventory data update [29]. Diameter at breast height (Di, cm), number of
stems (N, trees·ha−1), height (Hi, m), Site Index (IS) competition index (ICi) tree age (Ei), biomass fractions (stem
Ws, thick branches Wtkb, medium branches Wmb, thin branches Wtnb, roots Wr, thick-medium branches Wtkmb),
Table S2. Selected LiDAR metrics parameters to run statistical analyses [35], Table S3. Root mean square error
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(RMSE) and bias of bivariate relationships between observed and predicted C stock in live-biomass (MgC·ha−1)
and Soil Carbon stock (SOCdepth, MgC·ha−1) k-NN model with RF distance calculation.
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