Gas Hydrate: Environmental and Climate Impacts
Abstract
:1. Introduction
2. An Overview of the Special Issue
2.1. Arctic
2.2. Brazil
2.3. Chile
2.4. Mediterranean Region
3. Key Message for Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kvenvolden, K.A. Gas hydrates—Geological perspective and global change. Rev. Geophys. 1993, 31, 173–187. [Google Scholar] [CrossRef]
- Milkov, A.; Sassen, R. Economic Geology of offshore gas hydrate accumulations and provinces. Mar. Pet. Geol. 2002, 19, 1–11. [Google Scholar] [CrossRef]
- Makagon, Y.F. Natural gas hydrate—A promising source of energy. J. Nat. Gas Sci. Eng. 2010, 2, 49–59. [Google Scholar] [CrossRef]
- Boswell, R.; Collett, T.S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011, 4, 1206–1215. [Google Scholar] [CrossRef]
- Henriet, J.-P.; Mienert, J. (Eds.) Gas Hydrates. Relevance to World Margin Stability and Climatic Change; Geological Society Special Publication No. 137; Geological Society of London: London, UK, 1998; 338p. [Google Scholar]
- Kvenvolden, K.A. Potential effects of gas hydrate on human welfare. Proc. Natl. Acad. Sci. USA 1999, 96, 3420–3426. [Google Scholar] [CrossRef] [Green Version]
- de Garidel-Thoron, T.; Beafort, L.; Bassinot, F.; Hensy, P. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode. Proc. Natl. Acad. Sci. USA 2004, 101, 9187–9192. [Google Scholar] [CrossRef] [Green Version]
- Waite, W.F.; Santamarina, J.C.; Cortes, D.D.; Dugan, B.; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; et al. Physical properties of hydrate-bearing sediments. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef]
- Dallimore, S.R.; Wright, J.F.; Nixon, F.M.; Kurihara, M.; Yamamoto, K.; Fujii, T.; Fujii, K.; Numasawa, M.; Yasuda, M.; Imasato, Y. Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA Mallik gas hydrate production research well. In Proceedings of the 6th International Conference on Gas Hydrates, Vancouver, BC, Canada, 6–10 July 2008; p. 10. [Google Scholar]
- Dallimore, S.R.; Wright, J.F.; Yamamoto, K. Appendix D: Update on Mallik. In Energy from Gas Hydrates: Assessing the Opportunities and Challenges for Canada; Council of Canadian Academies: Ottawa, ON, Canada, 2008; pp. 196–200. [Google Scholar]
- Gabitto, J.F.; Tsouris, C. Physical properties of gas hydrates: A review. J. Thermodyn. 2010, 2010, 271291. [Google Scholar] [CrossRef]
- Song, Y.; Yang, L.; Zhao, J.; Liu, W.; Yang, M.; Li, Y.; Liu, Y.; Li, Q. The status of natural gas hydrate research in China: A review. Renew. Sustain. Energy Rev. 2014, 31, 778–791. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kanno, T.; Wang, X.-X.; Tamaki, M.; Fujii, T.; Chee, S.-S.; Wang, X.-W.; Pimenov, V.; Shako, V. Thermal responses of a gas hydrate-bearing sediment to a depressurization operation. R. Soc. Chem. 2017, 7, 5554–5577. [Google Scholar] [CrossRef] [Green Version]
- Tinivella, U.; Accaino, F.; Della Vedova, B. Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula. Geo-Mar. Lett. 2008, 28, 97–106. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Accaino, F.; Loreto, M.F.; Fanucci, F. Thermal state and concentration of gas hydrate and free gas of Coyhaique, Chilean Margin (44 30′ S). Mar. Pet. Geol. 2010, 27, 1148–1156. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Accaino, F.; Loreto, M.F.; Fanucci, F.; Reichert, C. Analyses of bottom simulating reflections offshore Arauco and Coyhaique (Chile). Geo-Mar. Lett. 2010, 30, 271–281. [Google Scholar] [CrossRef]
- Villar-Muñoz, L.; Bento, J.P.; Klaeschen, D.; Tinivella, U.; Vargas-Cordero, I.; Behrmann, J.H. A first estimation of gas hydrates offshore Patagonia (Chile). Mar. Pet. Geol. 2018, 96, 232–239. [Google Scholar] [CrossRef]
- Song, S.; Tinivella, U.; Giustiniani, M.; Singhroha, S.; Bünz, S.; Cassiani, G. OBS data analysis to quantify gas hydrate and free gas in the South Shetland margin (Antarctica). Energies 2018, 11, 3290. [Google Scholar] [CrossRef]
- Coren, F.; Volpi, V.; Tinivella, U. Gas hydrate physical properties imaging by multi-attribute analysis—Blake Ridge BSR case history. Mar. Geol. 2001, 178, 197–210. [Google Scholar] [CrossRef]
- Loreto, M.F.; Tinivella, U.; Accaino, F.; Giustiniani, M. Offshore Antarctic Peninsula gas hydrate reservoir characterization by geophysical data analysis. Energies 2011, 4, 39–56. [Google Scholar] [CrossRef]
- Loreto, M.F.; Tinivella, U. Gas hydrate versus geological features: The South Shetland case study. Mar. Pet. Geol. 2012, 36, 164–171. [Google Scholar] [CrossRef]
- Tinivella, U.; Giustiniani, M. Numerical simulation of coupled waves in borehole drilling through a BSR. Mar. Pet. Geol. 2013, 44, 34–40. [Google Scholar] [CrossRef]
- Tinivella, U. A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll. Geofis. Teor. Appl. 1999, 40, 19–30. [Google Scholar]
- Tinivella, U. The seismic response to overpressure versus gas hydrate and free gas concentration. J. Seism. Explor. 2002, 11, 283–305. [Google Scholar]
- Chand, S.; Minshull, T.A.; Gei, D.; Carcione, J.M. Elastic velocity models for gas-hydrate-bearing sediments—A comparison. Geophys. J. Int. 2004, 159, 573–590. [Google Scholar] [CrossRef]
- Kumar, D.; Sen, M.K.; Bangs, N.L. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data. J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Villar-Muñoz, L.; Giustiniani, M. Gas hydrate and free gas estimation from seismic analysis offshore Chiloé island (Chile). Andean Geol. 2016, 43, 263–274. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Villar-Muñoz, L.; Bento, J.P. High Gas Hydrate and Free Gas Concentrations: An Explanation for Seeps Offshore South Mocha Island. Energies 2018, 11, 3062. [Google Scholar] [CrossRef]
- Makogon, Y. Hydrates of Hydrocarbon; Penn Well Publisher: Tulsa, OK, USA, 1997. [Google Scholar]
- Tinivella, U.; Giustiniani, M. Variations in BSR depth due to gas hydrate stability versus pore pressure. Glob. Planet. Chang. 2013, 100, 119–128. [Google Scholar] [CrossRef]
- Marin-Moreno, H.; Giustiniani, M.; Tinivella, U. The Potential Response of the Hydrate Reservoir in the South Shetland Margin, Antarctic Peninsula, to Ocean Warming over the 21st Century. Polar Res. 2015, 34, 27443. [Google Scholar] [CrossRef]
- Marín-Moreno, H.; Giustiniani, M.; Tinivella, U.; Piñero, E. The challenges of quantifying the carbon stored in Arctic marine gas hydrate. Mar. Pet. Geol. 2016, 71, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Giustiniani, M.; Tinivella, U.; Sauli, C.; Della Vedova, B. Distribution of the gas hydrate stability zone in the Ross Sea, Antarctica [Distribución de la zona de estabilidad de hidratos de metano en el mar de Ross, Antártica]. Andean Geol. 2018, 45, 78–86. [Google Scholar] [CrossRef]
- Chuvilin, E.; Ekimova, V.; Bukhanov, B.; Grebenkin, S.; Shakhova, N.; Semiletov, I. Role of Salt Migration in Destabilization of Intra Permafrost Hydrates in the Arctic Shelf: Experimental Modeling. Geosciences 2019, 9, 188. [Google Scholar] [CrossRef]
- Chuvilin, E.; Davletshina, D.; Ekimova, V.; Bukhanov, B.; Shakhova, N.; Semiletov, I. Role of Warming in Destabilization of Intrapermafrost Gas Hydrates in the Arctic Shelf: Experimental Modeling. Geosciences 2019, 9, 407. [Google Scholar] [CrossRef]
- Tinivella, U.; Giustiniani, M. Gas hydrate stability zone in shallow Arctic Ocean in presence of sub-sea permafrost. Rend. Lincei 2016, 27, 163–171. [Google Scholar] [CrossRef]
- Tinivella, U.; Giustiniani, M.; MarÃ-n-Moreno, H. A Quick-Look Method for Initial Evaluation of Gas Hydrate Stability below Subaqueous Permafrost. Geosciences 2019, 9, 329. [Google Scholar] [CrossRef]
- Ketzer, M.; Praeg, D.; Pivel, M.; Augustin, A.; Rodrigues, L.; Viana, A.; Cupertino, J. Gas Seeps at the Edge of the Gas Hydrate Stability Zone on Brazilia’s Continental Margin. Geosciences 2019, 9, 193. [Google Scholar] [CrossRef]
- Rodrigues, L.; Ketzer, J.; Oliveira, R.; dos Santos, V.; Augustin, A.; Cupertino, J.; Viana, A.; Leonel, B.; Dorle, W. Molecular and Isotopic Composition of Hydrate-Bound, Dissolved and Free Gases in the Amazon Deep-Sea Fan and Slope Sediments, Brazil. Geosciences 2019, 9, 73. [Google Scholar] [CrossRef]
- Gamboa, L.; Ferraz, A.; Baptista, R.; Neto, E. Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins. Geosciences 2019, 9, 252. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Accaino, F.; Fanucci, F.; Loreto, M.F.; Lascano, M.E.; Reichert, C. Basal and frontal accretion processes versus BSR characteristics along the Chilean margin. J. Geol. Res. 2011, 2011, 846101. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Villar-Muñoz, L. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores). Energies 2017, 10, 2154. [Google Scholar] [CrossRef]
- Villar-Munoz, L.; Vargas-Cordero, I.; Bento, J.; Tinivella, U.; Fernandoy, F.; Giustiniani, M.; Behrmann, J.; Calderon-Diaz, S. Gas Hydrate Estimate in an Area of Deformation and High Heat Flow at the Chile Triple Junction. Geosciences 2019, 9, 28. [Google Scholar] [CrossRef]
- Alessandrini, G.; Tinivella, U.; Giustiniani, M.; de la Cruz Vargas-Cordero, I.; Castellaro, S. Potential Instability of Gas Hydrates along the Chilean Margin Due to Ocean Warming. Geosciences 2019, 9, 234. [Google Scholar] [CrossRef]
- Merey, S.; Longinos, S.N. Does the Mediterranean Sea have potential for producing gas hydrates? J. Nat. Gas Sci. Eng. 2018, 55, 113–134. [Google Scholar] [CrossRef]
- Minshull, T.A.; Marín-Moreno, H.; Betlem, P.; Bialas, J.; Bünz, S.; Burwicz, E.; Cameselle, A.L.; Cifci, G.; Giustiniani, M.; Hillman, J.I.T.; et al. Hydrate occurrence in Europe: A review of available evidence. Mar. Pet. Geol. 2020, 111, 735–764. [Google Scholar] [CrossRef]
- Zitter, T.A.C.; Huguen, C.; Woodside, J.M. Geology of mud volcanoes in the eastern Mediterranean from combined sidescan sonar and submersible surveys. Deep-Sea Res. Part I. Oceanogr. Res. 2005, 52, 457–475. [Google Scholar] [CrossRef]
- Mascle, J.; Mary, F.; Praeg, D.; Brosolo, L.; Camera, L.; Ceramicola, S.; Dupre, S. Distribution and geological control of mud volcanoes and other fluid/free gas seepage features in the Mediterranean Sea and nearby Gulf of Cadiz. Geo Mar. Lett. 2014, 34, 89–110. [Google Scholar] [CrossRef]
- Tayber, Z.; Meilijson, A.; Ben-Avraham, Z.; Makovsky, Y. Methane Hydrate Stability and Potential Resource in the Levant Basin, Southeastern Mediterranean Sea. Geosciences 2019, 9, 306. [Google Scholar] [CrossRef]
- Accaino, F.; Bratus, A.; Conti, S.; Fontana, D.; Tinivella, U. Fluid seepage in mud volcanoes of the northern Apennines: An integrated geophysical and geological study. J. Appl. Geophys. 2007, 63, 90–101. [Google Scholar] [CrossRef]
- Dela Pierre, F.; Martire, L.; Natalicchio, M.; Clari, P.; Petrea, C. Authigenic carbonates in Upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy): Vestiges of an ancient gas hydrate stability zone? GSA Bull. 2010, 122, 994–1010. [Google Scholar] [CrossRef] [Green Version]
- Conti, S.; Fontana, D.; Lucente, C.C.; Pini, G.A. Relationships between seep-carbonates, mud volcanism and basin geometry in the Late Miocene of the northern Apennines of Italy: The Montardone mélange. Int. J. Earth Sci. 2014, 103, 281–295. [Google Scholar] [CrossRef]
- Argentino, C.; Conti, S.; Fioroni, C.; Fontana, D. Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy). Geosciences 2019, 9, 134. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinivella, U.; Giustiniani, M.; Vargas Cordero, I.d.l.C.; Vasilev, A. Gas Hydrate: Environmental and Climate Impacts. Geosciences 2019, 9, 443. https://doi.org/10.3390/geosciences9100443
Tinivella U, Giustiniani M, Vargas Cordero IdlC, Vasilev A. Gas Hydrate: Environmental and Climate Impacts. Geosciences. 2019; 9(10):443. https://doi.org/10.3390/geosciences9100443
Chicago/Turabian StyleTinivella, Umberta, Michela Giustiniani, Ivan de la Cruz Vargas Cordero, and Atanas Vasilev. 2019. "Gas Hydrate: Environmental and Climate Impacts" Geosciences 9, no. 10: 443. https://doi.org/10.3390/geosciences9100443
APA StyleTinivella, U., Giustiniani, M., Vargas Cordero, I. d. l. C., & Vasilev, A. (2019). Gas Hydrate: Environmental and Climate Impacts. Geosciences, 9(10), 443. https://doi.org/10.3390/geosciences9100443