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Abstract: Pipelines are exposed to the severe threat of natural disasters, where the damage caused by
landslides are particularly bad. Hence, in the route arrangement and maintenance management of
pipeline projects, it is particularly important to evaluate the regional landslide hazards in advance.
However, most models are based on the subjective determination of evaluation factors and index
weights; this study establishes a quantitative hazard assessment model based on the location of
historical landslides and the Levenberg–Marquardt Back Propagation (LM-BP) Neural Network
model was applied to the pipeline area. We established an evaluation index system by analyzing
the spatial patterns of single assessment factors and the mechanism of landslides. Then, different
from previous studies, we built the standard sample matrix of the LM-BP neural network by using
interpolation theory to avoid the serious influence of human factors on the hazard assessment.
Finally, we used the standard sample matrix and the historical data to learn, train, test, and simulate
future results. Our results showed 33 slopes with low hazard (accounting for 10.48% of the total
number of slopes and corresponding to approximately 32.63 km2), 62 slopes with moderate hazard
(accounting for 19.68% of the total number of slopes and corresponding to approximately 65.53 km2),
112 slopes with high hazard (accounting for 35.56% of the total number of slopes and corresponding to
approximately 123.55 km2), and 108 slopes with extremely high hazard (accounting for 34.29% of the
total number of slopes and corresponding to approximately 150.65 km2). Local spatial autocorrelation
analysis indicated that there are significant “high–high” and “low–low” aggregation of landslide
hazards in the pipeline area. By comparing the model results with the past landslides, new landslides
and landslide potential points, its prediction capability and accuracy were confirmed. On the basis of
the results, our study has developed effective risk prevention and mitigation strategies in mountain
areas to promote pipeline safety.

Keywords: landslide; hazard assessment; Levenberg–Marquardt Back Propagation (LM-BP) neural
network; pipeline area
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1. Introduction

Landslides are regarded as one of the most dangerous natural disasters in the world, and they
are a serious threat to agricultural land, infrastructure, and human life [1,2]. Land slide disasters in
China cause great harm, and their wide distribution greatly impacts regional natural environments and
economic development [3,4]. A destructive landslide can lead to pipe bending, deformation, and even
fractures that can cause natural gas leakage, casualties, property losses, and environmental damage.
These events are a serious threat to pipeline safety and human health [5–7].

In recent years, the hazard assessment of landslides in pipeline areas has attracted wide attention
from domestic and foreign scholars in geology, petroleum, and other fields from many parts of the world.
With the dramatic change of ecological environments and aggravation of landslides in hilly regions, a
highly efficient and reliable system for landslide hazard assessment is needed [8]. Landslide hazard
assessments can be divided into a single assessment and a regional assessment, according to the size of
the evaluation area [9,10]. A single assessment can be defined by deterministic numerical models based
on the conservation equations [11,12]. We can use such models to identify the potential hazard based on
different scenarios. Due to the computational cost required to model the landslides, these models can be
implemented in a graphics processing unit (GPU) to speed up the simulations [13]. The qualitative [14],
quantitative [1], and semi-quantitative [15] methods can be taken in landslide hazard assessment.
Various quantitative models and techniques have been proposed for assessment and zonation, such as
the multivariate regression model [16], the information value model [17], discriminant analysis [18],
and artificial neural networks [19]. The landslide quantitative hazard assessment methods are usually
defined as two major categories: mathematical methods [20] and machine learning methods [21]. These
methods provide a good foundation for regional landslide hazard assessment in pipeline areas, but most
of them are based on subjectivity for the selection of evaluation factors and the weight of evaluation
indexes, which can affect the accuracy and objectivity of evaluation results [22].

Artificial neural networks have overcome these shortcomings and reduced the influence of
subjectivity. Among them, humans have widely used the back propagation (BP) neural network with
multi-layer feed. However, it contains some defects in the process of network training and learning,
such as it can easily fall into a local minimum, there is slow convergence, and it is not easy to guarantee
the generalization ability of the network model or determine the network structure quickly [23,24]. To
overcome these shortcomings of the traditional BP algorithm, a large number of improved BP algorithms
have been proposed, one of which is the Levenberg-Marquardt (LM) algorithm (Marquardt least
square). The algorithm has the advantage of the Gauss Newton and gradient descent algorithm with
both the global searching and local fast convergence characteristics. Thus, the local fast convergence is
the biggest advantage of the LM-BP neural network, which saves a lot of computing time in neural
networks with mass data [25,26]. With the increasing construction of oil and gas pipelines in China, it
is imperative to fully understand the hazard zoning of various oil and gas pipelines to ensure energy
security. For the landslide hazard assessment in pipeline areas, the LM-BP neural network method is
especially worth trying.

In this study, we built the standard sample matrix of the LM-BP neural network by using
interpolation theory based on historical landslide positions and the classification of landslide hazard
grades corresponding to different intervals. Ultimately, this quantitative assessment of regional landslide
hazards is completed by comprehensively utilizing geographic information systems, remote sensing
technology, and machine learning methods, and using the Guangyuan section of the Lan-Cheng-Chong
(LCC) products oil pipeline in China as a case study.

2. Study Area

The LCC oil pipeline, one of the ten priority projects for China to implement Western Development,
is the longest pipeline in China that primarily exports oil products. It begins in the Gansu province
and runs through two provinces (Shanxi province and Sichuan province) [27]. The study area is
located between 105◦23′–105◦49′ E and 32◦12′–32◦37′ N, straddling 19 townships from north to south.
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The area belongs to Guangyuan city of the Sichuan province in southwest China (Figure 1). Our study
area covers slope regions on both sides of the pipeline based on a buffer zone around the pipeline
with a radius of five kilometers. Pipelines in normal operation which are 82 kilometres within the
K558–K642 mileages may be affected by the slope areas. Guangyuan is a high incidence zone for
landslide disasters, some of which have occurred 300 times in the Chaotian and Lizhou districts [28].
Therefore, the safe operation of the LCC oil pipeline is seriously threatened by landslide disasters in
this area. The study area, located on the northern edge of Sichuan, is characterized by hilly topography,
crisscrossed networks of ravines, and steep slopes. The precipitation in the region is abundant, with
high flow rivers. A strong fluvial incision is attributed to a large topographic drop and turbulent flow
in the northern region, and this is a main factor in the development of geological disasters. In addition,
two large unstable faults make the study area geologically unstable, therefore making the area prone
to frequent disasters [29].
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3. Data Sources

Basic data acquisition and data processing work can have huge impact on the accuracy of regional
landslide hazard assessments. Digital elevation model (DEM) data (30 m) used in this paper were
downloaded from the Geospatial Data Cloud (available online: http://www.gscloud.cn/). The China
Meteorological Administration provided the precipitation data for individual years from 1990 to 2015
(http://data.cma.cn/). The data were collected from 18 meteorological stations within and around the
research region, and were interpolated at 30 × 30 m resolution using the kriging method. Remote
sensing images (multispectral, resolution 2 m) taken from the Gaofen-1 (GF-1) satellite in January 2016
were obtained from the remote sensing center in Sichuan. ENVI 5.3.1 was used for image processing
and included geometry correction, radiation correction, and noise removal.

In addition, data relating to geology and landslide disaster (historical landslide sites) were sourced
from geological environment monitoring station in Sichuan province. The data obtained from this
station consisted of the location, time, casualties and property damage of landslide events across the
study area from 1990 to 2015. There are 106 landslides for model training around and within the study
area, more details are shown in Table A1. New landslide sites from 2016 to 2018 were obtained from
the resource and environmental data cloud platform (http://www.resdc.cn/), more details are shown
in Table A2. These landslide sites can be used to validate the veracity of our results. In addition,

http://www.gscloud.cn/
http://data.cma.cn/
http://www.resdc.cn/
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165 landslide potential points were obtained from the SICHUAN Geological Hazard Potential Points
Query System provided by the Sichuan Natural Resources Department.

4. Methods

4.1. Assessment Unit

As the assessment unit for this study, the slope unit is commonly the basic element of hazard
assessment for a regional landslide, and its division precision and scale are closely related to the results
of the evaluation [30]. Using DEM as the data source, hydrologic analysis in ArcGIS (v. 10.2) was used
to divide the slope (315 slope units). Based on GF-1 satellite remote sensing images, methods such as
boundary correction, fracture filling, and fragment combination were adopted to manually recognize
and correct the unreasonable slope unit. Details are shown in Figure 2.
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4.2. Assessment Factors

Based on previous research [4,31–34] and construction principles of the indicator framework
(e.g., regional differences, obvious primary and secondary indexes, clear evaluation scale, independence,
an availability), a system that included various internal and external factors was constructed. The factors
chosen for the eleven indexes were derived from landforms, land cover, geology, and precipitation.
For instance, the precipitation factor is an external factor that can induce an occurrence of a disaster,
and it consists of the variation coefficient of annual precipitation and annual mean rainfall (AAR).

4.2.1. Landform

The distribution of landform factors including elevation, height differences, the topographic profile
curvature (TPC), slope, and aspect are shown in Figure 3. Elevation affects vegetation coverage and the
intensity of human activities, as well as stress in the slope. Figure 3a shows that the study area is located
in a low middle mountain with a gully that creates a crisscross pattern, creating a strong fluvial incision
with great height differences, especially in the Pujia and Xibei townships. The altitude is relatively
high in these regions, ranging from 475 to 1328 m. The slope degree has a great influence on slope
stability [35,36], and there is an obvious change of slope in the study area. The maximum slopes occur in
the Xibei and Pujia townships, and the lower average slopes occur along both sides of the Jialing River
(Figure 3b). In addition, conditions of different slope aspects, like solar radiation intensity, affect the
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groundwater pore pressure profile and the physical and mechanical characteristics of the soil and rock
by changing vegetation cover, slope erosion, and evaporation. These characteristics ultimately affect
slope stability [37]. Most of the aspects in the area are southeast and southwest (Figure 3c). The relative
height difference of slopes is one of the internal conditions that can have a significant impact on the
development of landslides. Figure 3d shows that there are slopes with large relative height differences
in the north of the pipeline area, and slopes with small relative height differences in the central part.
It is important to note that landslides play a significant part in the history of geomorphic development,
and landslides, at their essence, are a geomorphologic process on a slope. A slope with topographic
profile curvature greater than 0.5 is classified as a convex slope, slopes with less than −0.5 are classified
as concave slopes, and the rest of the slopes are classified linear slopes [38]. The curvature distribution
of the slopes in the study area is complex (Figure 3e).
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4.2.2. Land Cover

The land cover in the landslide area consists of loose matter with high water content and seriously
degraded vegetation. The placement of vegetation and various planting methods have extremely
complicated effects on slope stability. Dense vegetation roots go deep into the soil and serve to anchor
and enhance the surface strength of the soil, but if vegetation is wedged into dense rock, this will
reduce slope strength. Obviously, the more developed the root system in the soil is, the stronger its
anchoring effect will be. In addition, a developed root system can effectively suppress and weaken slope
deformation, thereby reducing the probability of landslides. The normalized difference vegetation
index (NDVI) is an indicator of vegetation coverage, and the normalized difference water body index
(NDWI) can be used to reflect soil moisture. The NDVI and NDWI were both extracted from the GF-1
image, and the calculation expression is as follows:
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NDVI =
NIR−Red
NIR + Red

(1)

NDWI =
Green−NIR
Green + NIR

(2)

where NIR is the spectral reflectance in the near infrared; Red is the reflectance in the red band; and
Green is the reflectance in the green band. The NDVI value and NDWI value of the Xiasi, Baolun, and
Panlong townships were all relatively low (Figure 4a,b), which is due to the relatively large population
density and more intensive human engineering activities.
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4.2.3. Geology

Rock hardness, type, and interlayer structure are key internal conditions that can indicate whether
or not a landslide may occur [39–42]. The lithology of the study area was divided into four rock
groups (Table 1). The lithology that accounted for the largest area of each slope unit was obtained
by overlaying the layer of the slope unit with the stratigraphic lithology layer, and then the main
lithology of each slope unit was obtained and quantified (Figure 4c). Additionally, the presence of a
fault also has a certain influence on the stability of a slope. Faulted zones and rock and earth masses
within a certain range nearby will be destroyed in a geologic event, and this will reduce slope integrity.
Simultaneously, groundwater channels can also produce adverse effects, such as deformation and
destruction of a slope [43]. The three major faults in the area provide the geological conditions necessary
for an occurrence of landslides in nearby areas. Therefore, the distance from each slope unit to the
nearest fault was calculated using focal analysis between the point layer (slope unit geometric center)
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and the line layer (fault). The farthest distance from the fault to slope unit in the study area was found
to be approximately 12 km (Figure 4d).

Table 1. Classification of rock groups.

Hazard Level * Rock Groups Quantization

I medium thick bedded sandstone, medium thick bedded conglomerate,
limestone, dolomite, silicalite, granite, diorite 1

II

argillaceous materials like shale, sandstone and conglomerate
interbedded with mudstone; argillaceous materials like carbonate,

silicalite interbedded with shale, and clay rock; siltstone, shale,
calcilutite, slate, phyllite, clay stone

2

III

Thin to thick bedded siltstone, thin to thick bedded shale, thin to thick
bedded calcilutite, thin to thick bedded tuff, thin to thick bedded killas,
thin to thick bedded phyllite, thin to thick bedded clay rock, thin to thick
bedded coal-bearing sandstone, thin to thick bedded conglomerate, thin

to thick bedded pyroclastic rock, thin to thick bedded coal-bearing
carbona, blastopsammite, blastoaleuritic siltstone, blasto-tuff

3

IV sand, gravelly soil, land pebble, sand pebble soil, gravel soil 4

Note: * Low, medium, high, extremely high hazard are implied by I, II, III, IV, respectively.

4.2.4. Precipitation

Numerous studies have indicated that precipitation, precipitation duration, and precipitation
intensity are primary dynamic factors that can cause landslides. It is easy to obtain an accurate AAR for
regional landslide hazard assessment (Figure 4e), however, it is not easy to obtain individual rainfall,
hourly precipitation, daily precipitation, and other data. Variation coefficient of precipitation (CVP)
reflects the inter-annual variation in precipitation and is the ratio of the standard deviation of annual
precipitation and AAR at a certain point (Figure 4f). CVP can be calculated using the following formula:

Cv =
δ
R

=
1
R

√√
1

n− 1

n∑
i=1

(Ri −R)2 (3)

where n is number of years; Ri is the precipitation during the ith year; and R is AAR.

4.2.5. Determination of Assessment Indicator

An initial indicator matrix consisting of the 315 rows and 11 columns was obtained by
superimposing the slope unit layer and the indicator layer to quantify 11 initial indexes of each
slope unit using ArcGIS 10.2. By considering the principle of relative independence among the indexes
before establishing the evaluation indicator system, the matrix was introduced into R 3.3.1 to analyze
the correlation of each indicator.

Figure 5 shows that the correlation coefficient between NDVI and NDWI is 0.99, and between
AAR and CVP it is 0.87, with both showing a significant correlation. Based on the information of the
correlation and standard deviation among the initial indexes, NDWI and CVP were deleted from the
initial evaluation system, and the rest of the nine indexes were selected as the assessment indexes for
landslide hazard in the study area (Table 2).
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Table 2. Factors selected for landslide hazard assessment.

Type Indexes

Landform

Slope
Aspect

Elevation
Height Difference

Topographic profile curvature (TPC)
Land cover NDVI

Geology Lithology
Distance from the fault

Precipitation Annual mean rainfall (AAR)

4.3. LM-BP Neural Network Mode

4.3.1. LM-BP Neural Network Theory

The BP neural network algorithm is widely applied in many fields because of its good generalization
ability, nonlinear approximation ability, and the ease of the model construction. The damped least square
method, also called the LM algorithm, was supplemented to optimize the BP neural network model to
assess the landslide hazard in this paper, which has an advantage of local fast convergence. The core of
the hazard assessment for regional landslide using this model is to predict the unknown area using a
trained neural network whose generalization ability largely determines the accuracy of the prediction.
The model has strong generalization ability, that is, the ability to predict unknown data. In this study,
the trainlm training function in MATLAB was used to implement the LM-BP neural network.

4.3.2. Indexes Distribution

One hundred and six landslide disasters have been recorded around and within the research area,
of which 83 were located outside the region. (Figure 1). The farthest distance of these landslides from
the pipeline has been less than 20 km. Because of the similarity of the geographical environment, the
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landslides not located in the study area also reflect the relationship between landslide and evaluation
indexes in the study area.

According to frequency distribution of historical landslide in each assessment index (Figure 6),
the landslide hazard grade corresponding to each intervals of assessment indexes was divided. There
were four levels of hazard grades in this research: low hazard (I), moderate hazard (II), high hazard
(III), and extremely high hazard (IV). Based on field investigations and previous research results, the
monotonous intervals of different hazard degrees in each index were given (Table 3). For example, on
slopes above 60 degrees only collapses occurred and rarely any landslides. In a slope at 60 degrees
to 90 degrees, the hazard degree decreased monotonously. In a slope at 0 degrees to 15 degrees, the
sliding force in the interval is very small, landslides seldom occurred, even under extreme conditions
such as extreme precipitation, geologic events, and human activities [44].
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Table 3. Grade of landslide hazard corresponding to each interval.

Indexes Interval Hazard Degree Monotonicity * Hazard Level

Elevation

[1000, Highest] ↓ I
[Lowest, 600) ↑ II

[800, 1000) ↓ III
[600, 700) ∪ [700, 800) ↑, ↓ IV

Slope

[60, 90) ↓ I
[0, 15) ↑ II

[30, 60) ↓ III
[15, 20) ∪ [20, 30) ↑, ↓ IV

Aspect

[0, 45) ∪ [270, 360) ↑, ↓ I
[225, 270) ∪ [45, 90) ↓, ↑ II

[90, 135) ∪ [180, 225) ↑, ↓ III
[135, 157.5) ∪ [157.5, 180) ↑, ↓ IV

Height
difference

[Lowest, 100) ↑ I
[900, Highest] ∪ [100, 200) ↓, ↑ II

[600, 900) ∪ [200, 300) ↓, ↑ III
[300, 450) ∪ [450, 600) ↑, ↓ IV
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Table 3. Cont.

Indexes Interval Hazard Degree Monotonicity * Hazard Level

TPC

[Lowest, −0.025) ↑ I
[0.025, Highest] ↓ II

[−0.025, −0.01) ∪ [0.01, 0.025) ↑, ↓ III
[−0.01, 0) ∪ [0, 0.01) ↑, ↓ IV

NDVI

[−1,0) ↑ I
[0, 0.6) ∪ [0.9, 1] ↑, ↓ II

[0.6, 0.7) ∪ [0.8, 0.9) ↑, ↓ III
[0.7, 0.75) ∪ [0.75, 0.8) ↑, ↓ IV

AAR

[1100, Highest) ↓ I
[Lowest, 960) ↑ II

[990, 1100) ↓ III
[960, 975) ∪ [975, 990) ↑, ↓ IV

Distance from
the fault

[20, Highest] ↓ I
[15, 20) ↓ II
[5, 15) ↓ III
[0, 5) ↓ IV

Note: * Monotonically decreasing in the interval is implied by ↓; monotonically increasing in the interval is implied
by ↑.

4.3.3. Standard Sample

According to the function relationship between the landslide probabilities and assessment indexes,
standard training samples and standard test samples were established by comprehensively considering
a certain mathematical method and the classification standard of the evaluation indicator for predicting
landslide hazard degree. Four steps (construction of an empty matrix, building an input vector, building
an output vector, and their combination) were needed for sample construction, including the construction
of a training sample and a test sample whose construction methods were alike, but the sample sizes
were different. The output vectors were constructed using interpolation in each interval based on the
order of hazard degree from high to low and were calculated by interpolating equidistantly from 0 to 1.
Table 4 lists a portion of the standard sample matrix for training the LM-BP neural network.

Table 4. Some standard sample matrix.

Sample
Type ID

Input Output
Aspect Slope Elevation NDVI AAR Height Difference TPC Distance Lithology

Training
sample

1 0.2 89.9 438 −1 908.1 33 −0.582 25 1 0
200 359.5 60 499 1 924.9 200 0.628 18.77 1 0.25
400 269.3 15 1002 0.5 949.8 902 −0.142 12.52 2 0.5
600 224.4 30.2 802 0.3 999.9 600 0 6.26 3 0.75
800 135.1 30 798 0 1023.2 599 0 0 4 1

Test
sample

1 27.2 72.3 458 0.8 911.6 59 −0.544 25 1 0
5 38.6 62.1 497 0.86 919.1 152 −0.03 19.74 1 0.22
10 74.7 11.9 1382 0.53 949.9 1146 0.148 13.16 2 0.48
15 115.6 57.5 933 0.32 994.2 835 −0.015 6.58 3 0.74
20 178.3 29.6 795 0.04 1022.7 446 0.001 0 4 1

4.3.4. Model Establishment

The LM-BP neural network model was completed on the MATLAB 2014 platform, and the main
establishment steps were as follows:

The first step was to standardize each column vector of the sample matrix using the mapminmax
function of MATLAB. The principle of operation was to adopt the extremum difference method to be
normalized with the following formula:

x′ =
x− xmin

xmax − xmin
(4)



Geosciences 2019, 9, 449 11 of 23

The second step was to establish a LM-BP neural network with three layers of structure: an input
layer, a hider layer, and an output layer. The number of nodes in the input layer was 9, the output layer
was set to 1, and the hider layer was finally determined to be 10 by referring to the corresponding
formula and repeatedly testing. Additionally, the deliver function of the hider layer and the output
layer were Tansig and purelin, respectively.

The third step was to train the LM-BP neural network, whose accuracy could be analyzed using
the root mean square error (RMSE). The training function, trainlm, used the following parameters:

net.trainParam.show = 60;
net.trainParam.lr = 0.5;
net.trainParam.epochs = 1000;
net.trainParam.goal = 1 × 10−8;

Step four was to test the LM-BP neural network. Twenty sets of test sample data were selected
after training to accurately determine its generalization ability (Table 4).

The fifth step consisted of the following procedure. When data were input for simulation to
the LM-BP neural network, which was qualified after training and preserved, the predicted value
would be output automatically. The data that needed to be simulated in this research was the matrix
composed of nine evaluation indexes of 315 slope units in the study area. After normalizing the data,
the matrix was input into the neural network model and a simulation was run.

4.4. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is an analytical method to study whether the attribute values of
spatial units are related to the attribute values of their neighbors, and it is a measure of the degree of
aggregation of the observations in spatial unit [45]. It can be divided into global indicators of spatial
association (GISA) and local indicators of spatial association (LISA) [46]. GISA is used to detect the
degree of association and significance of attribute values in the research area. LISA is used to mine the
heterogeneity of local spatial data and find out whether there are different spatial aggregation modes
in the study area.

5. Results and Discussion

5.1. Hazard Results

The LM-BP neural network in this study was trained according to a series of steps of the model
establishment, and it stopped after 182 iterations, reaching the goal precision, and RMSE value of
9.93e-09. The training result and convergence curve of the neural network are shown in Figure 7.
To verify the generalization ability of the model, the input portion of the test matrix was entered for
simulation. By comparing the simulation output with the output portion of the test matrix, the error
was obtained and the network could be judged for accuracy (Table 5). The absolute error values of the
20 sets of test data were all less than 0.02, meeting the requirements for hazard assessment of regional
landslides. The LM-BP neural network showed good generalization ability, and therefore it can be used
to simulate the landslide hazards for each evaluation unit in the study area. Finally, the normalized
data matrix was input into the network to simulate the landslide hazard degree of the 315 slope units.
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Table 5. Test error of the model.

Number Expected Value Network Output Error Relative Error (%)

1 0 0.0006 0.0006 -
2 0.06 0.0548 −0.0052 8.67
3 0.11 0.1113 0.0013 1.18
4 0.16 0.1699 0.0099 6.19
5 0.22 0.2302 0.0102 4.64
6 0.27 0.2614 −0.0086 3.19
7 0.32 0.315 −0.005 1.56
8 0.37 0.3697 −0.0003 0.08
9 0.43 0.4266 −0.0034 0.79
10 0.48 0.4899 0.0099 2.06
11 0.53 0.5153 −0.0147 2.77
12 0.58 0.5765 −0.0035 0.06
13 0.64 0.6405 0.0005 0.08
14 0.69 0.701 0.011 1.59
15 0.74 0.7523 0.0123 1.66
16 0.79 0.8094 0.0194 2.46
17 0.85 0.8616 0.0116 1.36
18 0.9 0.9155 0.0155 1.72
19 0.95 0.9675 0.0175 1.84
20 1 1.0173 0.0173 1.73

The landslide hazard grade was divided into four levels by the equal interval method: low hazard
(I), moderate hazard (II), high hazard (III), extremely high hazard (IV) (Figure 8 and Table 6). According
to statistics, the area and number of slope units in areas III and areas IV accounted for 69.85% and
73.64%, respectively. The threat degree of landslide disaster is more serious in the study area. About
90% of the slopes have the potential for landslides. The dangerous section is located north and south of
the pipeline, with the local topographical relief ranging from 475 to 1328 m above sea level. The relative
height difference here is more than 600 m, and the slope is between 15.3◦ and 37.4◦. Slope degrees had
a huge impact on slope stability as result of obvious changes [36]. Moreover, most of the exposed rock
(shale) belongs to an easy slip rock group in the area. The type of rock and the interlayer structure are
important internal indexes causing landslides [41]. Sufficient conditions undoubtedly contribute to the
development of landslides, such as a close distance (the distance between the pipeline and fault is
approximately 2 km), poor vegetation cover (NDVI is approximately 0.75), and abundant precipitation
(AAR is approximately 970 mm). The integrity of the slope is reduced by faults and nearby rock masses
that has been destroyed during geological events, and slope deformation and damage also caused



Geosciences 2019, 9, 449 13 of 23

by faults and important groundwater channels [47]. The slope conditions have adverse effects on
groundwater pore pressure profile and the physical and mechanical properties of the soil and rock in
vegetation cover and slope erosion as well as evaporation. Finally, these characteristics impair slope
stability [37]. The extremely high hazard region is dominated by large or giant landslides that will
be obviously deformed in the near future (within 2 years) or are being deformed now, with clearly
visible cracks. Additionally, the pipeline is located within the interior of a potential landslide, therefore,
this will affect pipeline safety and there is an urgent need to implement the prevention project in the
short term. Medium and small landslides are the main types of landslides that have occurred in the
high hazard region, and these are in the process of deformation or have been obviously deformed in
recent years (within 2 years). These will cause upheavals, even shearing out in the frontal part of a
landslide. In the event of a landslide, the safety of the pipeline that is within the range of the landslide
will be affected. The region needs to be monitored carefully to mitigate the hazard. Using further
comprehensive analysis of the different hazard grade regions, the hazard grade description table for
landslides in the pipeline area was obtained. This describes the landslide hazard classification in terms
of landslide hazard control measures (Table 7).
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Table 6. Number and area of slopes of each hazard grade.

Landslide Hazard Level Number of Slope Percentage Area (km2) Percentage

I 33 10.48% 32.63 8.76%
II 62 19.68% 65.53 17.60%
III 112 35.56% 123.55 33.18%
IV 108 34.29% 150.65 40.46%

Total 315 100% 372.36 100%

The hazard results are classified into four levels according to the equal interval method: low
hazard (3, 13.0%), moderate hazard (5, 21.7%), high hazard (7, 30.4%), extremely high hazard (8, 34.8%)
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(Figure 8). In order to identify the aggregation type of landslide hazards in the pipeline area, local
spatial autocorrelation analysis of 315 slope hazard indices was performed using ArcGIS 10.5 (ESRI,
Inc., Redlands, CA, USA). There are two spatial correlation characteristics of landslide hazards in the
pipeline area, namely “high–high (H–H)” and “low–low (L–L)” aggregation, all of which passed the
0.05 significance level test (Figure 9). The “H–H” means the slope with a high hazard index is adjacent
to the slope unit with a high hazard index. The “H–H” spatial agglomeration areas mainly occur in the
southern and northern regions of the pipeline area, such as Dongxihe, Yangmu, Pujia, Xibei, Xiasi,
and Yangjiayan Townships. On the contrary, the “L–L” means the slope with a low hazard index is
adjacent to the slope unit with a low hazard index. The “L–L” spatial agglomeration areas mainly
occur in the middle of the pipeline area, such as Panlong, Baolun towns (Figure 9).

Table 7. Circumstances and measures of each landslide hazard grade.

Landslide Hazard Level Hazard Situation of Landslides Control Measures

I
Basic stable; landslide hazard will not occur unless

there are strong earthquakes, long continuous rainfall
or heavy rainstorms.

Inspections

II

Potentially unstable; there is a trend of small
landslides based on analysis of the geological

structure and landform, and there is no sign of
deformation at present.

A key inspection or simple
monitoring

III

Unstable; there are medium and small landslides in
the process of deformation, or there will obviously be
deformation in the near future, such as clearly visible

cracks, subsidence, and tympanites even shearing
out in the frontal part of landslide.

Key monitoring or
hazard mitigating

IV
Extremely unstable; there are large or giant

landslides deforming, or being obviously deformed
with clearly visible cracks in the near future.

An Implementation of
prevention and control

engineering in the short termGeosciences 2019, 9, x FOR PEER REVIEW 5 of 26 
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5.2. Validation and Comparison

We compared the final hazard assessment results with the historical landslide data in the pipeline
area (Figure 8). The statistical results demonstrate the distribution of hazard is consistent with that of
historical landslide (Table 8). The total percentage of landslides distributed in the moderate hazard, high
hazard, and extremely hazard areas is 88.0%. Only three historical landslides occurred in low hazard
areas. The landslide densities for I level is extremely low (only 0.0919 landslides/km2). The landslide
density increases gradually from the low hazard areas (I) to the extremely hazard areas (IV). The landslide
densities for these three levels (II, III, IV) are 0.0610, 0.0728, and 0.0597 landslides/km2, respectively.

Table 8. The prediction ability analysis of the model.

Hazard
Level

Number of
Landslides

Proportion
(%)

Area of Each Grade
(km2)

Landslide Density
(/km2)

I 3 12.0 32.63 0.0919
II 4 16.0 65.53 0.0610
III 9 36.0 123.55 0.0728
IV 9 36.0 150.65 0.0597

Secondly, we performed another calculation to verify the validity of the model prediction for future
landslide hazard distribution based on the past landslides. Due to the study area being relatively small,
there are few new landslides in recent years. We extended our assessment area to the entire training area
to verify the accuracy of hazard assessment results. We collected the latest landslide data (occurring
in 2015 to 2018). The statistical results show the distribution of new landslides is consistent with the
hazard analysis (Figure 10a and Table 9). New landslides, of which 94.74 % are distributed in the high
hazard and extremely high hazard areas, while only 5.26 % are in the low hazard and moderate hazard
areas. The density of the new landslides occur in the high hazard and extremely high hazard areas is
significantly higher than that of low hazard and moderate hazard areas. Furthermore, we also showed
the distribution characteristics of landslide potential points to verify the hazard evaluation accuracy
(Figure 10b). In addition, we also showed the distribution characteristics of the landslide potential points
to verify the accuracy of the disaster assessment (Statistics in 2019; Figure 10c). The statistical results
showed that the distribution of landslide potential points is consistent with that of the hazard level
(Figure 10c). One hundred and ten (accounting for 66.67%) and 39 (accounting for 23.64%) landslide
potential points are located the extremely high hazard and high hazard areas, respectively. But only
16 landslide potential points (accounting for 9.7%) are located in low hazard and moderate hazard
areas (Figure 10d). All these showed that the prediction for future landslides based on past landslides
is effective.

Table 9. The landslides statistical results according to landslide susceptibility level.

Landslide
Hazard Level

Number of
Landslides

Percentage
(%)

Area
(km2)

Landslide Density
(/km2)

I 0 0 49.22 0
II 2 5.26 293.22 0.0084
III 1 2.63 394.86 0.0025
IV 35 92.11 822.17 0.0426
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5.3. Discussion

Regional landslide hazard assessment usually involves many geological and ecological
environmental indicators. To truly reflect the disaster-pregnant environment and apply these data
to hazard analysis, the assessment indicators need reasonable comparison and selection based on
the geological and ecological environment of the study area. In general, seismicity parameters are
another important factor for triggering a landslide because strong earthquakes can cause widespread
landslides [48]. However, our study area is too small to possess a significantly different seismic effect
during an earthquake. Additionally, the seismic energy in the small region during an earthquake can be
considered uniform and its difference is negligible. Research on the Wenchuan earthquake revealed
that the rockfalls and landslides triggered by the earthquake mainly occurred in a long and narrow area
along the earthquake fault [49]. Therefore, the distance to the faults can be used to indicate the influence
of tectonic movements (e.g., earthquakes) on landslides in the study area [50,51]. It is highly possible
that high-intensity, long-duration rainfall triggers rapidly moving landslides, causing casualties and
property losses [52]. Rainfall may vary even within a few kilometers over mountainous areas in summer,
and short-term rainfall strongly influenced the landslide occurrence. In this study, 10 min rainfall and
one hour rainfall in the study area were obtained by analyzing meteorological station data and rainfall
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grid data of the national mountain torrent project (Figure 11). The maximum difference of 10 min
rainfall and one hour rainfall in the study area are only 1 and 1.5 mm, and there is no obvious difference
among different regions (Figure 11). The future research requires precise short-term meteorological data.
Vegetation coverage and plant communities are strongly related to steep and unstable slopes. The widely
held view is that the vegetation coverage can protect slopes by reducing erosion, strengthening soil,
and inhibiting landslides, which increase general slope stability [53]. However, a positive correlation
between NDVI and landslide occurrence was investigated in some areas, and higher vegetation coverage
is liable to lead to landslides occurrence [51,54]. For our study area, vegetation change in the whole area
is basically consistent in the time scale, with high coverage in spring and summer and low coverage
in autumn and winter. Our research focuses on the difference of each slope unit in the region, so the
dynamic change of vegetation cover is of little value for a small region such as our study area.
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Most landslides caused by complex interactions between geological, tectonic, topographical, and
meteorological factors may have nothing to do with major triggering events such as violent earthquakes
or heavy rainstorms [55,56]. Thus, the systematic understanding of regional landslide processes
requires a comprehensive assessment of landslide events in the form of past and future landslide
inventories and must be combined with regional environmental features so as to lay a foundation
for objective spatial difference analyses of landslide hazard and risk [57,58]. In recent years, various
machine learning methods have been applied to landslide hazard zonation, such as random forest,
artificial neural networks, and support vector machines, in which the random forest model usually
has higher accuracy [59,60]. However, all of these models are promising methods for landslide hazard
assessment [60]. Although our study has not yet attempted to optimize machine learning algorithms,
the interpolation theory was used to build the standard sample matrix avoiding the serious influence of
human factors on the hazard assessment. This method is not only applicable to pipeline areas, and the
next study is to apply the landslide hazard assessment method to different kinds of area such as highway
areas and railway areas, according to local needs and available data. In the future, we can also use
LM-BP to carry out landslide hazard assessments in other areas, but we need to find the best evaluation
factors and evaluation units suitable for the study area according to different research purposes and
different regional characteristics. This study is to evaluate the landslide hazard in a pipeline area. The 5
km buffer zone around the pipeline is used as the study area, and the slope unit is the basic evaluation
unit. The implementation of the landslide hazard assessment of this study is aimed at pipeline areas,
and its purpose is to provide management measures that are conducive to pipeline operation.
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6. Conclusions

The Geographic Information System and remote sensing technology were used as tools for the
timeliness and quantification of landslide hazards in a pipeline area (the Guangyuan section of the
LCC long-distance pipeline). Interpolation theory was used to develop the standard sample matrix
of the LM-BP neural network and establish a hazard assessment model for regional landslides. This
method overcomes the problem of the traditional methods (expert scoring method, index method,
and others) that are severely influenced by human factors. In addition, the hazard assessment for 315
slopes in the study area was completed, and the hazard grade of each slope unit was divided. There
are 33, 62, 112, and 108 slopes in the low, moderate, high, and extremely high hazard conditions in the
area, respectively. The result shows that 34.29% of the landslides are in the extremely high hazard
(IV) zone, 35.56% of the landslides are in the high hazard (III) zone, 19.68% of the landslides are in the
moderate hazard (II) zone, and 10.48% of the landslides are in the low hazard (II) zone. The area of
each hazard grade (from low to high) slope account for 8.76%, 17.6%, 33.18%, and 40.46% of the total
area, respectively. In summary, the south and north of the pipeline area is in danger. Nearly 70% of the
slopes are in high or extremely high hazard areas with a high landslide possibility. The spatial patterns
of hazard showed that high-hazard zones were primarily distributed in the Dongxihe, Yangmu, Pujia,
Xibei, and Xiasi townships. The local spatial autocorrelation results showed that the H–H spatial
agglomeration areas mainly occur in the Dongxihe, Pujia, Xibei, and Xiasi townships, and the L–L
spatial agglomeration areas mainly occur in the Baolun and Panlong townships. The pipeline could
suffer significant damage due to the action of a landslide. This regional landslide hazard assessment
has laid a foundation for further research on pipeline safety and management.
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Appendix A

Table A1. Details of historical landslide catalog (1990–2015).

FID Name Location X Y

1 Xuetangtou landslide Zhujia village 105.9091 32.6219
2 Tangjiawan landslide Jiefang village 105.7713 32.6903
3 Xingziwan landslide Shimen village 105.7850 32.6972
4 Longdongwan landslide Zhongba village 105.7395 32.6720
5 Dadihe landslide Jinhua village 105.6923 32.6581
6 Fanjiahe landslide Jinhua village 105.6982 32.6547
7 Panganxingchu landslide Huashi village 105.6976 32.6710
8 Guojialianglandslide Qinling village 105.8590 32.5694
9 Liujiawanlandslide Qinling village 105.8712 32.5757
10 Liangshanglandslide Sanwan village 105.7318 32.5753
11 Lingshanpolandslide Sanwan village 105.7379 32.5672
12 Hejiagoulandslide Baihu village 105.8398 32.5744
13 Wangjiapinglandslide Baihu village 105.8474 32.5750
14 Gongluyanxianlandslide Baihu village 105.8404 32.5695
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Table A1. Cont.

FID Name Location X Y

15 Hanpayanlandslide Tangjia village 105.8670 32.5883
16 Qizulandslide Nanhua village 105.8546 32.5792
17 Yizulandslide Sanwan village 105.8670 32.5883
18 Qinlingcun landslide Qinling village 105.8924 32.5506
19 Luojiawan landslide Jinzuo village 105.8731 32.5690
20 Bailintou landslide Tangjia village 105.9169 32.5964
21 Fengcaoyan landslide Shangba village 105.7230 32.5250
22 Huangjiagou landslide Guankou village 105.7550 32.5171
23 Xujialiangshang landslide Shiya village 105.7662 32.5382
24 Guoduzi landslide Jinding village 105.7331 32.6093
25 Huoshipocun landslide Huoshipo village 105.7884 32.6376
26 Yangmuzhenwuxingcun landslide Wuxing village 105.7600 32.5602
27 Zhangbimufanghou landslide Wuxing village 105.7601 32.5598
28 Goujiayan landslide Jinbi village 105.8148 32.6023
29 Yangtangwan landslide Yuanxi village 105.7621 32.5913
30 Yagentou landslide Baiyun village 105.7049 32.6040
31 Dawangshan landslide Ezhang village 105.5110 32.3445
32 Miaoziping landslide Guanyin village 105.4748 32.3927
33 Luchanghe landslide Guanyin village 105.4788 32.3920
34 Tianwan landslide Weizi village 105.4943 32.3873
35 Huangtuliang landslide Weizi village 105.4927 32.4004
36 Tielugoukufang landslide Xujia village 105.5114 32.3957
37 Erdaowan landslide Xujia village 105.5377 32.3906
38 Dachitang landslide Xujia village 105.5328 32.3966
39 Lijiagou landslide Yongjiu village 105.5098 32.3879
40 Wangjialiang landslide Yongjiu village 105.5043 32.3799
41 Luojiahe landslide Yongjiu village 105.5044 32.3664
42 Shizuozi landslide Anquan village 105.6546 32.3859
43 Mamaliang landslide Hongxing village 105.6326 32.3921
44 Liujiahe landslide Anquan village 105.6617 32.3722
45 Zuomushugou landslide Cangxi village 105.5865 32.4399
46 Wangjiahe landslide Fanjia village 105.5822 32.4276
47 Yanglaoyewan landslide Hongxing village 105.6514 32.3616
48 Choubaoshang landslide Laolin village 105.6199 32.3956
49 Longquanshuiku landslide Longquan village 105.5991 32.3855
50 Hejialiang landslide Longquan village 105.5804 32.3800
51 Zhangjiagou landslide Shiqiao village 105.5840 32.3637
52 Zhangjiadibuwendingxiepo Songjia village 105.6495 32.4332
53 Huachangli landslide Songjia village 105.6375 32.4461
54 Cushizhan landslide Songjia village 105.6400 32.4607
55 Dacaodi landslide Fengjia village 105.5464 32.3278
56 Leijialiang landslide Leijia village 105.5292 32.3614
57 Zhangshuyan landslide Leijia village 105.5329 32.3512
58 Lijiagai landslide Zhanggong village 105.5426 32.3569
59 Mengjiashan landslide Lianhua village 105.8949 32.3844
60 Renjiahe landslide Daguang village 105.9443 32.4679
61 Hetaofuyanbei landslide Shuigui village 105.8754 32.4658
62 Qiaogoutou landslide Shuigui village 105.8846 32.4524
63 Luojiagou landslide Shuigui village 105.8720 32.4562
64 Lijiagou landslide Wanyuan village 105.8497 32.4088
65 Pengjiadagouhuibiliang landslide Wanyuan village 105.8615 32.4015
66 Yanjiawan landslide Qianfo village 105.8376 32.4622
67 Dishanshang landslide Datang village 105.8527 32.5282
68 Sandaoguai landslide Qianfo village 105.8402 32.4682
69 Zuoyagou landslide Xiaotang village 105.8600 32.5070
70 Fangjiazuo landslide Xuedi village 105.9605 32.5275
71 Wangjiashan landslide Xuedi village 105.9561 32.5355
72 Zhengjiagouanzhidian landslide Zhengjiagou village 105.8134 32.4890
73 Lizhouzhongzhuan landslide Nvhuanglujuweihuizu village 105.8049 32.4558
74 Zhengjiagou landslide Zhengjiagou village 105.8071 32.5083
75 Feimaohou landslide Tongxin village 105.7648 32.4443
76 Guangcaotou landslide Xuegong village 105.7381 32.4796
77 Fanjiaping landslide Jingu village 105.6991 32.4003
78 Houjiahe landslide Shengli village 105.8395 32.3948
79 Lijialiang landslide Shengli village 105.8402 32.4024
80 Liujiaping landslide Taoyuan village 105.9031 32.3305
81 Zhoujiapo landslide Zhoujia village 105.8231 32.4182
82 Qingyanzi landslide Jingsai village 105.7246 32.3844
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FID Name Location X Y

83 Lijiazui landslide Taiyang village 105.7242 32.4242
84 Xulongkou landslide Dongsheng village 105.7346 32.4496
85 Zhoujiawan landslide Gonghe village 105.7304 32.3778
86 Majiawan landslide Nanshan village 105.7410 32.3674
87 Zhangjiayan landslide Nanshan village 105.7592 32.3733
88 Chengjiayan landslide Nanshan village 105.7543 32.3686
89 Ningjiazui landslide Rongli village 105.7384 32.3927
90 Lijiagou landslide Shengou village 105.6867 32.4067
91 Gaojialing landslide Xinnong village 105.7219 32.3970
92 Maanqiao landslide Baozhu village 105.6093 32.5111
93 Longjiagouxiepo Yangpan village 105.6879 32.5077
94 Qinjialiang landslide Baiyan village 105.5882 32.4705
95 Shizishupo landslide Jingtian village 105.6260 32.4857
96 Zhoujiapo landslide Liangshui village 105.6204 32.4776
97 Yanwanli landslide Makou village 105.6204 32.4570
98 Yangjiagou landslide Wujiahao village 105.8171 32.4642
99 Xiaopingzi landslide Shilong village 105.6667 32.4012

100 Jiuhuayan landslide Jiuhua village 105.8947 32.4231
101 Fanghoupo landslide Paoshi village 105.9114 32.4368
102 Yuanpaoling landslide Paoshi village 105.9194 32.4364
103 Huajiazuo landslide Yangliu village 105.7792 32.4530
104 Zhangjiashan landslide Yangliu village 105.7750 32.4666
105 Zuojialiang landslide Zuojialiang village 105.7557 32.4086
106 Xingguanglu landslide Xingguanglujuweihuizu village 105.7697 32.4081

Table A2. Details of new landslide catalog (2016–2018).

FID Name Number Location X Y A B C *

1 Huachangli landslide LZQ10067 Songjia village 105.5867 32.3625 0 0.1 –
2 Shagouzi landslide YB-0099 Tianxiong village 105.6906 32.3400 14 8 –
3 Choujiagou landslide YB-0100 Shipan village 105.7036 32.3675 6 4 –
4 Zhouxingwenfanghou landslide YB-0144 Xinfan village 105.6183 32.3239 4 4 –
5 Huoshipo landslide C01 Huoshipo village 105.7708 32.6324 16 15 –
6 Dawuliang landslide C06 Shanya village 105.7972 32.5303 81 80 –
7 Shanzuocun landslide C14 Shanya village 105.7950 32.5194 14 35 Large
8 Yujiaping landslide C32 Shika village 105.8536 32.5547 76 60 Medium
9 Dajiashan landslide C90 Chaotian village 105.8553 32.6353 11 10.5 –

10 Shuimohe landslide C126 Yuanxi village 105.8156 32.5367 0 0 –
11 Dabaishu landslide H0002 Ma village 105.4733 32.3806 15 0 –
12 Chaeryan landslide H0122 Ma village 105.4783 32.3764 64 0 Medium
13 Dajiatou landslide H0139 Guanyin village 105.4697 32.3725 4 0 –
14 Dazuo landslide H0228 Huaguang village 105.4492 32.3636 22 0 –
15 Hengdaliang landslide H0231 Huoshi village 105.4536 32.3361 22 0 –
16 Fanshurong landslide H0244 Jianfeng village 105.3881 32.2758 48 0 Medium
17 Fanwuyuan landslide H0245 Jianfeng village 105.3928 32.2778 4 0 –
18 Weihaishe landslide H0246 Jianfeng village 105.3842 32.2736 16 0 –
19 Nanzuozi landslide JG-0004 Maoer village 105.3958 32.2561 40 120 –
20 Dapingshan landslide JG-0012 Maoer village 105.4297 32.2686 2 6 Minor
21 Tiaotiaoshi landslide JG-0017 Sanfang village 105.4731 32.3181 6 22 –
22 Longjiangkou landslide JG-0020 Weigan village 105.4433 32.2958 2 3 –
23 Xiasicun landslide JG-0028 Xiasi village 105.4656 32.2947 1 30 –
24 Dacangcun landslide JG-0029 Dacang village 105.5108 32.2553 14 30 –
25 Shibanxiaofenlin landslide JG-0030 Guaizao village 105.5311 32.3050 1 5 –
26 Lijiaba landslide JG-0031 Yaogou village 105.5136 32.3050 4 5 –
27 Wutaicun landslide JG-0032 Wutai village 105.4553 32.2483 17 12 –
28 Laoyaogou landslide JG-0033 Yaogou village 105.5108 32.3078 13 12 –
29 Daijiabaozuomian landslide JG-0039 Youyu village 105.4586 32.2678 16 50 –
30 Heishitoubang landslide JG-0040 Youyu village 105.4731 32.2806 11 15 –
31 Shiwengcunyizu landslide JG-0041 Shiweng village 105.4511 32.2608 10 8 –
32 Datiangai landslide JG-0045 Yaogou village 105.5125 32.3083 8 7 –
33 Dashuliangxia landslide JG-0306 Youyu village 105.4586 32.2681 13 10 –
34 Liangjiaping landslide JG-0307 Shangsi village 105.4619 32.3136 6 3 –
35 Shitianzun landslide JG-0310 Xiaochang village 105.4406 32.2394 3 2 minor
36 Shiguangpo landslide JG-0343 Yaogou village 105.5083 32.3189 10 6 minor
37 Nongjiakan landslide JG-0344 Youyu village 105.4614 32.2697 12 20 –
38 Dengzhuba landslide JG-0357 Guaizao village 105.5278 32.3028 9 6 minor

* A, B, and C indicate number of people under threat, value of property under threat (10 thousand yuan), and
disaster grade respectively.
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