Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Setting
2.2. Field Measurements
2.3. Data Processing
2.3.1. Optical Data
- PSD: 2D power spectral density [m4]
- W: Fourier transformed windowed surface, given by fft2(winSx,y) [m]
- A: area of the surface grid, given by MΔxNΔy [m2]
- kx: the wave number in the x direction [m−1],
- ky: the wave number in the y direction [m−1],
- fs: sampling frequency = =
- PSD: 2D radial averaged power spectral density [m4]
- Nr: total number of points, which lie upon a circle with radius K
- K: 2D wave vector length [m−1], given by
2.3.2. Acoustic Data
2.3.3. Acoustic Scatter Model
3. Results
3.1. Ship-Based Acoustic Survey and Ground Truthing
3.2. Lander Experiment
3.2.1. Seafloor Roughness
3.2.2. Acoustic Scatter
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lyons, B.P.; Thain, J.E.; Stentiford, G.D.; Hylland, K.; Davies, I.M.; Vethaak, A.D. Using biological effects tools to define Good Environmental Status under the European Union Marine Strategy Framework Directive. Mar. Pollut. Bull. 2010, 60, 1647–1651. [Google Scholar] [CrossRef] [PubMed]
- Report of the Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in ICES Areas VIII and IX (WGACEGG); ICES: Palma de Mallorca, Spain, 2007; p. 163.
- Bouwma, I.; Schleyer, C.; Primmer, E.; Winkler, K.J.; Berry, P.; Young, J.; Carmen, E.; Jana, Š.; Bezák, P.; Preda, E. Adoption of the ecosystem services concept in EU policies. Ecosyst. Serv. 2018, 29, 213–222. [Google Scholar] [CrossRef]
- Roadmap for Maritime Spatial Planning: Achieving Common Principles in the EU; European Commission: Brussels, Belgium, 2008; pp. 1–11.
- Jackson, D.R.; Richardson, M. High-Frequency Seafloor Acoustics; Springer Science & Business Media: Berlin, Germany, 2007; ISBN 9780387369457. [Google Scholar]
- Self, R.F.L.; A’Hearn, P.; Jumars, P.A.; Jackson, D.R.; Richardson, M.D.; Briggs, K.B. Effects of macrofauna on acoustic backscatter from the seabed: Field manipulations in West Sound, Orcas Island, Washington, U.S.A. J. Mar. Res. 2001, 59, 991–1020. [Google Scholar] [CrossRef]
- Schönke, M.; Feldens, P.; Wilken, D.; Papenmeier, S.; Heinrich, C.; von Deimling, J.S.; Held, P.; Krastel, S. Impact of Lanice conchilega on seafloor microtopography off the island of Sylt (German Bight, SE North Sea). Geo-Marine Lett. 2016, 37, 305–318. [Google Scholar] [CrossRef]
- Wever, T.; Jenkins, C. Physik biologisch besiedelter Meeresböden. J. Appl. Hydrogr. 2017, 106, 8–13. [Google Scholar]
- Briggs, K.B.; Williams, K.L.; Richardson, M.D.; Jackson, D.R. Effects of Changing Roughness on Acoustic Scattering: (1) Natural Changes. Proc. Inst. Acoust. 2001, 23, 343–390. [Google Scholar]
- Richardson, M.D.; Briggs, K.B.; Bentley, S.J.; Walter, D.J.; Orsi, T.H. The effects of biological and hydrodynamic processes on physical and acoustic properties of sediments off the Eel River, California. Mar. Geol. 2002, 182, 121–139. [Google Scholar] [CrossRef]
- Ballard, M.S.; Lee, K.M. The Acoustics of Marine Sediments. Acoust. Today 2017, 13, 11–18. [Google Scholar]
- Moore, K.D.; Jaffe, J.S. Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system. IEEE J. Ocean. Eng. 2002, 27, 525–545. [Google Scholar] [CrossRef]
- Richardson, M.D.; Briggs, K.B.; Bibee, L.D.; Jumars, P.A.; Sawyer, W.B.; Albert, D.B.; Bennett, R.H.; Berger, T.K.; Buckingham, M.J.; Chotiros, N.P.; et al. Overview of SAX99: Environmental considerations. IEEE J. Ocean. Eng. 2001, 26, 26–53. [Google Scholar] [CrossRef]
- Heinrich, C.; Feldens, P.; Schwarzer, K. Highly dynamic biological seabed alterations revealed by side scan sonar tracking of Lanice conchilega beds offshore the island of Sylt (German Bight). Geo-Marine Lett. 2017, 37, 289–303. [Google Scholar] [CrossRef]
- McGonigle, C.; Grabowski, J.H.; Brown, C.J.; Weber, T.C.; Quinn, R. Detection of deep water benthic macroalgae using image-based classification techniques on multibeam backscatter at Cashes Ledge, Gulf of Maine, USA. Estuar. Coast. Shelf Sci. 2011, 91, 87–101. [Google Scholar] [CrossRef]
- McGonigle, C.; Brown, C.; Quinn, R.; Grabowski, J. Evaluation of image-based multibeam sonar backscatter classification for benthic habitat discrimination and mapping at Stanton Banks, UK. Estuar. Coast. Shelf Sci. 2009, 81, 423–437. [Google Scholar] [CrossRef]
- Che Hasan, R.; Ierodiaconou, D.; Laurenson, L. Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuar. Coast. Shelf Sci. 2012, 97, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Le Bas, T.P.P.; Huvenne, V.A.I. Acquisition and processing of backscatter data for habitat mapping—Comparison of multibeam and sidescan systems. Appl. Acoust. 2009, 70, 1248–1257. [Google Scholar] [CrossRef]
- Feldens, P.; Schulze, I.; Papenmeier, S.; Schönke, M.; Schneider von Deimling, J. Improved Interpretation of Marine Sedimentary Environments Using Multi-Frequency Multibeam Backscatter Data. Geosciences 2018, 8, 214. [Google Scholar] [CrossRef]
- Roche, M.; Degrendele, K.; Vrignaud, C.; Loyer, S.; Le Bas, T.; Augustin, J.M.; Lurton, X. Control of the repeatability of high frequency multibeam echosounder backscatter by using natural reference areas. Mar. Geophys. Res. 2018, 39, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Lurton, X.; Lamarche, G.; Brown, C.; Lucieer, V.; Rice, G.; Schimel, A.; Weber, T. Backscatter Measurements by Seafloor—Mapping Sonars. In Guidelines and Recommendations; Lurton, X., Lamarche, G., Eds.; 2015; p. 200. Available online: http://geohab.org/wp-content/uploads/2013/02/BWSG-REPORT-MAY2015.pdf (accessed on 19 October 2019).
- Wendelboe, G. Backscattering from a sandy seabed measured by a calibrated multibeam echosounder in the 190–400 kHz frequency range. Mar. Geophys. Res. 2018, 39, 105–120. [Google Scholar] [CrossRef]
- Richardson, M.; Briggs, K.; Williams, K.; Tang, D.; Jackson, D.; Thorsos, E. The effects of seafloor roughness on acoustic scattering: Manipulative experiments. In Boundary Influences in High Frequency Shallow Water Acoustics; Pace, N., Blondel, P., Eds.; University of Bath: Bath, UK, 2005; Volume 298, pp. 109–116. [Google Scholar]
- Buscombe, D.; Grams, P.E.; Kaplinski, M.A. Characterizing riverbed sediment using high-frequency acoustics: 1. Spectral properties of scattering. J. Geophys. Res. F Earth Surf. 2014, 119, 2674–2691. [Google Scholar] [CrossRef]
- Huff, L. Acoustic Remote Sensing as a Tool for Habitat Mapping in Alaska Waters. Mar. Habitat Mapp. Technol. Alaska 2008, 10, 29–46. [Google Scholar]
- Tang, D. Fine-scale measurements of sediment roughness and subbottom variability. IEEE J. Ocean. Eng. 2004, 29, 929–939. [Google Scholar] [CrossRef]
- Chotiros, N.P.; Isakson, M.J. The evolution of sediment acoustic models. AIP Conf. Proc. 2012, 1495, 193–201. [Google Scholar]
- Jackson, D.R.; Briggs, K.B. High-frequency bottom backscattering: Roughness versus sediment volume scattering. J. Acoust. Soc. Am. 2005, 92, 962–977. [Google Scholar] [CrossRef]
- Ivakin, A.N. High frequency scattering from sandy sediments: Roughness vs. discrete inclusions. In Proceedings of the Boundary Influences in High Frequency Shallow Water Acoustics, Bath, UK, 5–9 September 2005. [Google Scholar]
- Ivakin, A.N. Scattering from discrete inclusions in marine sediments. In Proceedings of the Seventh European Conference on Underwater Acoustics, ECUA 2004, Delft, The Netherlands, 5–8 July 2004. [Google Scholar]
- Valerius, J.; Kösters, F.; Zeiler, M. Erfassung von Sandverteilungsmustern zur großräumigen Analyse der Sedimentdynamik auf dem Schelf der Deutschen Bucht. Die Küste 2015, 83, 39–63. [Google Scholar]
- Zeiler, M.; Schwarzer, K.; Ricklefs, K. Seabed morphology and sediment dynamics. Kuste 2008, 74, 31–44. [Google Scholar]
- Salzwedel, H.; Eike, R.; Dieter, G. Benthic macrofauna communities in the German Bight. In Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven; Salzwedel, H., Eike, R., Dieter, G., Eds.; Institute for Marine Research in Bremerhaven: Bremerhaven, Germany, 1985. [Google Scholar]
- Benthosuntersuchungen im Rahmen des Beweissicherungsverfahrens für den Ausbau des Hafenbecken IV in Büsum. Available online: https://epic.awi.de/id/eprint/44126/ (accessed on 22 October 2019).
- Panda, S.; Panzade, A.; Sarangi, M.; Chowdhury, S.K.R. Spectral Approach on Multiscale Roughness Characterization of Nominally Rough Surfaces. J. Tribol. 2017, 139, 1–10. [Google Scholar] [CrossRef]
- Sidick, E. Power spectral density specification and analysis of large optical surfaces. Model. Asp. Opt. Metrol. II 2009, 7390, 73900L. [Google Scholar]
- Briggs, K.B.; Lyons, A.P.; Pouliquen, E.; Mayer, L.A.; Richardson, M.D. Seafloor roughness, sediment grain size, and temporal stability. Nav. Res. LAB STENNIS Sp. Cent. MS SEAFLOOR Sci. Dir. 2005, 298, 9. [Google Scholar]
- Bjørnø, L. Applied Underwater Acoustics; Neighbors, T., Bradley, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-811240-3. [Google Scholar]
- Degraer, S.; Moerkerke, G.; Rabaut, M.; Van Hoey, G.; Du Four, I.; Vincx, M.; Henriet, J.P.; Van Lancker, V. Very-high resolution side-scan sonar mapping of biogenic reefs of the tube-worm Lanice conchilega. Remote Sens. Environ. 2008, 112, 3323–3328. [Google Scholar] [CrossRef]
- Peine, F.; Friedrichs, M.; Graf, G. Potential influence of tubicolous worms on the bottom roughness length z 0 in the south-western Baltic Sea. J. Exp. Mar. Bio. Ecol. 2009, 374, 1–11. [Google Scholar] [CrossRef]
- Jackson, D.R.; Richardson, M.D.; William, K.L.; Lyons, A.P.; Jones, C.D.; Briggs, K.B.; Tang, D. Acoustic observation of the time dependence of the roughness of sandy seafloors. IEEE J. Ocean. Eng. 2009, 34, 407–422. [Google Scholar] [CrossRef]
- Wang, L.; Davies, G.; Bellettini, A.; Pinto, M. Multipath Effect on DPCA Micronavigation of a Synthetic Aperture Sonar. In Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance; Pace, N.G., Jensen, F.B., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 465–472. [Google Scholar]
- Williams, K.L.; Jackson, D.R.; Thorsos, E.I.; Tang, D.; Briggs, K.B. Acoustic backscattering experiments in a well characterized sand sediment: Data/model comparisons using sediment fluid and Biot models. IEEE J. Ocean. Eng. 2002, 27, 376–387. [Google Scholar] [CrossRef]
- Lyons, A.P.; Fox, W.L.J.; Hasiotis, T.; Pouliquen, E. Characterization of the two-dimensional surface roughness of a wave-rippled sea floor using digital photography. IEEE J. Ocean. Eng. 2002, 27, 515–524. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G.; Roche, M.; Lurton, X.; Degrendele, K.; Terseleer, N.; Van Lancker, V. Seafloor change detection using multibeam echosounder backscatter: Case study on the Belgian part of the North Sea. Mar. Geophys. Res. 2018, 39, 229–247. [Google Scholar] [CrossRef]
- Montereale-Gavazzi, G.; Roche, M.; Degrendele, K.; Lurton, X.; Terseleer, N.; Baeye, M.; Francken, F.; Van Lancker, V. Insights into the Short-Term Tidal Variability of Multibeam Backscatter from Field Experiments on Different Seafloor Types. Geosciences 2019, 9, 34. [Google Scholar] [CrossRef]
- Briggs, K.B.; Tang, D.; Williams, K.L. Characterization of interface roughness of rippled sand off fort Walton Beach, Florida. IEEE J. Ocean. Eng. 2002, 27, 505–514. [Google Scholar] [CrossRef]
BSlander | BSmodel | RMS D Roughness | RMSD1 Roughness | RMSD2 Roughness | Spectral Slope | Spectral Intercept K = 1 m−1 | Spectral Intercept K = 100 m−1 | BC | |
---|---|---|---|---|---|---|---|---|---|
BSship | 0.03 | −0.30 | −0.25 | −0.25 | −0.08 | −0.28 | −0.16 | −0.19 | −0.32 |
BSlander | 1 | 0.27 | 0.18 | 0.18 | 0.32 | 0.17 | 0.06 | 0.46 | 0.57 |
BSmodel | 1 | −0.26 | −0.25 | 0.21 | 0.96 | −0.71 | 0.88 | 0.8 | |
RMSD roughness | 1 | 1 | 0.56 | −0.4 | 0.59 | −0.02 | 0.04 | ||
RMSD1 roughness | 1 | 0.55 | −0.38 | 0.57 | −0.02 | 0.04 | |||
RMSD2 roughness | 1 | −0.06 | 0.48 | 0.56 | 0.56 | ||||
spectral slope | 1 | −0.86 | 0.74 | 0.64 | |||||
spectral intercept K = 1 m−1 | 1 | −0.39 | −0.33 | ||||||
spectral intercept K = 100 m−1 | 1 | 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schönke, M.; Wiesenberg, L.; Schulze, I.; Wilken, D.; Darr, A.; Papenmeier, S.; Feldens, P. Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences 2019, 9, 454. https://doi.org/10.3390/geosciences9100454
Schönke M, Wiesenberg L, Schulze I, Wilken D, Darr A, Papenmeier S, Feldens P. Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences. 2019; 9(10):454. https://doi.org/10.3390/geosciences9100454
Chicago/Turabian StyleSchönke, Mischa, Lars Wiesenberg, Inken Schulze, Dennis Wilken, Alexander Darr, Svenja Papenmeier, and Peter Feldens. 2019. "Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter" Geosciences 9, no. 10: 454. https://doi.org/10.3390/geosciences9100454
APA StyleSchönke, M., Wiesenberg, L., Schulze, I., Wilken, D., Darr, A., Papenmeier, S., & Feldens, P. (2019). Impact of Sparse Benthic Life on Seafloor Roughness and High-Frequency Acoustic Scatter. Geosciences, 9(10), 454. https://doi.org/10.3390/geosciences9100454