The Geochemistry of 1 ky Old Euxinic Sediments of the Western Black Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analytical Techniques
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EF | Enrichment Factor |
ENAA | Epithermal Neutron Activation Analysis |
INAA | Instrumental Neutron Activation Analysis |
NASC | North American Shale Composite |
PAAS | Post-archaean Australian Average Shale |
PC | Principal Component |
PCA | Principal Component Analysis |
PGAA | Prompt Gamma-ray Activation Analysis |
UCC | Upper Continental Crust |
XRD | X-ray Diffraction |
Appendix A
Element | c | u | UCC | NASC | Element | c | u | UCC | NASC | ||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO | 42.07 | 2.56 | 3.0% | 66.62 | 64.8 | Zr | 189 | 27 | 3.8% | 193 | 200 |
TiO | 0.64 | 0.07 | 6.2% | 0.64 | 0.7 | Mo | 42.5 | 5 | 3.3% | 1.1 | n |
AlO | 12.87 | 1.56 | 2.5% | 15.4 | 16.9 | Sn | 2.9 | 1.4 | 6.7% | 2.1 | n |
FeO | 5.11 | 0.5 | 3.8% | 5.04 | 5.66 | Sb | 2.7 | 1.4 | 8.7% | 0.4 | n |
MnO | 0.07 | 0.01 | 4.9% | 0.1 | 0.06 | I | 94 | 24 | 8.5% | 1.4 | n |
MgO | 2.2 | 0.59 | 5.2% | 2.48 | 2.86 | Cs | 5.5 | 0.7 | 6.3% | 4.9 | n |
CaO | 28.41 | 4.41 | 7.0% | 3.59 | 3.63 | Ba | 488 | 127 | 8.8% | 624 | 636 |
NaO | 4.24 | 0.66 | 7.5% | 3.27 | 1.14 | La | 29 | 4 | 8.5% | 31 | 31 |
KO | 2.56 | 0.42 | 4.5% | 2.8 | 3.97 | Ce | 63 | 8 | 8.3% | 63 | 67 |
Cl | 4030 | 620 | 3.5% | 370 | n | Nd | 22.7 | 6.6 | 7.5% | 27 | 27 |
Sc | 11 | 1.2 | 6.9% | 14 | 15 | Sm | 3.8 | 0.95 | 5.8% | 4.7 | 5.6 |
V | 110 | 19 | 8.8% | 97 | 130 | Eu | 0.8 | 0.3 | 8.8% | 1 | 1.2 |
Cr | 62 | 11.2 | 7.7% | 92 | 125 | Gd | 4.1 | 0.8 | 8.9% | 4 | 5.2 |
Co | 16 | 2 | 6.8% | 17.3 | 26 | Tb | 0.7 | 0.1 | 8.3% | 0.7 | 0.05 |
Ni | 53 | 8 | 8.9% | 47 | 58 | Yb | 1.8 | 0.2 | 8.2% | 2 | 3.1 |
Zn | 82 | 19 | 5.5% | 67 | n | Hf | 5.1 | 0.6 | 8.5% | 5.3 | 6.3 |
As | 11.1 | 2 | 7.9% | 4.8 | n | Ta | 0.7 | 0.1 | 7.6% | 0.9 | 1.1 |
Se | 5.2 | 3.3 | 6.9% | 0.09 | n | W | 5 | 3.1 | 7.3% | 1.9 | n |
Br | 87 | 20.8 | 8.9% | 1.6 | n | Th | 9.8 | 1.2 | 7.1% | 10.5 | 12.5 |
Rb | 84 | 11.1 | 8.2% | 84 | 125 | U | 9.9 | 1.2 | 8.3% | 2.7 | 2.7 |
Sr | 710 | 180 | 5.5% | 320 | 142 |
Depth (mm) | Clay | Carb | Qtz | Gl | Gyp | Depth (mm) | Clay | Carb | Qtz | Gl | Gyp |
---|---|---|---|---|---|---|---|---|---|---|---|
0–5 | 34 | 65 | - | - | - | 115–120 * | 35 | 60 | 3 | - | 1 |
5–10 | 49 | 50 | 1 | - | - | 120–125 | 44 | 55 | 1 | - | - |
10–15 | 43 | 55 | 1 | - | 1 | 125–130 | 60 | 40 | <1 | - | - |
15–20 | 39 | 90 | 1 | - | - | 130–135 * | 35 | 60 | <5 | - | - |
20–25 | 50 | 50 | - | - | - | 135–140 | 50 | ∼50 | <1 | - | - |
25–30 | 35 | 65 | - | - | - | 140–145 | 40 | 55 | 4 | - | 1 |
30–35 | 56 | 40 | <4 | - | - | 145–150 * | 47 | 50 | 1 | - | 1 |
35–40 | 48 | 50 | 2 | - | - | 150–160 | 38 | 60 | ∼2 | - | - |
40–45 | 32 | 60 | 8 | - | - | 160–170 | 48 | 50 | 1 | - | ∼1 |
45–50 | 58 | 40 | 1 | - | <1 | 170–180 | 47 | 50 | 2 | - | <1 |
50–55 | 58 | 40 | 1 | - | <1 | 180–190 | 45 | ∼50 | <5 | <1 | - |
55–60 | 58 | 40 | 1 | 1 | - | 190–200 | 35 | ∼60 | <5 | <1 | - |
60–65 | 25 | 70 | 4 | 0.5 | 0.5 | 200–210 | 49 | ∼50 | <1 | - | - |
65–70 | 48 | 50 | 2 | - | - | 210–220 | 49 | ∼50 | <1 | - | - |
70–75 | 45 | ∼55 | <0.5 | - | - | 220–230 | 60 | ∼40 | <0.5 | - | - |
75–80 | 17 | 80 | 2 | - | <0.5 | 230–240 | 70 | ∼30 | <1 | - | - |
80–85 | 23 | 75 | <1 | - | 1 | 240–250 | 60 | ∼40 | <1 | - | - |
85–90 | 23 | 75 | 0.5 | - | 1.5 | 250–300 | 20 | 75 | 5 | - | - |
90–95 | 16 | 80 | 3 | <1 | 300–350 | 50 | ∼50 | <1 | - | - | |
95–100 | 8 | 90 | 1 | 1 | - | 350–400 | ∼60 | ∼40 | - | - | - |
100–105 | 45 | 90 | 1 | - | - | 400–450 | 53 | 45 | 2 | - | - |
105–110 | 30 | 70 | <0.5 | - | - | 450–500 | 54 | 45 | 1 | - | - |
110–115 | 35 | 63 | ∼1 | - | 1 | - | - | - | - | - | - |
Element | PC1 | PC2 | Element | PC1 | PC2 | Element | PC1 | B |
---|---|---|---|---|---|---|---|---|
SiO | 0.231 | −0.442 | Ni | 0.104 | 0.005 | La | 0.538 | −0.452 |
TiO | 0.086 | −0.225 | Zn | 0.828 | 0.117 | Ce | −0.123 | −0.239 |
AlO | −0.118 | −0.589 | As | 0.706 | −0.214 | Nd | −0.383 | 0.243 |
FeO | −0.017 | −0.505 | Se | −0.561 | 0.155 | Sm | 0.328 | −0.616 |
MnO | −0.365 | −0.226 | Br | 0.579 | 0.022 | Eu | 0.461 | −0.315 |
MgO | 0.040 | −0.006 | Rb | 0.059 | −0.391 | Gd | 0.074 | −0.474 |
CaO | −0.275 | 0.551 | Sr | −0.448 | 0.881 | Tb | 0.31 | −0.479 |
NaO | 0.924 | 0.048 | Zr | 0.207 | −0.040 | Yb | 0.087 | −0.140 |
KO | 0.427 | −0.437 | Mo | 0.334 | −0.021 | Hf | 0.375 | −0.364 |
Cl | 0.999 | 0.036 | Sn | 0.464 | 0.304 | Ta | 0.207 | −0.419 |
Sc | 0.110 | −0.426 | Sb | 0.833 | 0.180 | W | 0.369 | 0.140 |
V | 0.019 | −0.070 | I | 0.247 | 0.427 | Th | 0.046 | −0.282 |
Cr | −0.321 | 0.186 | Cs | 0.075 | −0.563 | U | −0.27 | 0.511 |
Co | 0.171 | −0.222 | Ba | 0.345 | 0.356 |
References
- European Comision. The Black Sea: Facts and Figures, Environment and Enlargement. Available online: http://ec.europa.eu/environment/enlarg/blackseafactsfigures_en.htm (accessed on 18 August 2019).
- Murray, J.W.; Jannasch, H.W.; Honjo, S.; Anderson, R.F.; Reeburgh, W.S.; Top, Z.; Friederich, G.E.; Codispoti, L.A.; Izdar, E. Unexpected changes in the oxic/anoxic interface in the Black Sea. Nature 1989, 338, 411–413. [Google Scholar] [CrossRef]
- Özsoy, E.; Unluata, U. Oceanography of the Black Sea: A review of some recent results. Earth Sci. Rev. 1997, 42, 231–272. [Google Scholar] [CrossRef]
- Vespremeanu, E.; Golumbeanu, M. Catchment Area of the Black Sea. In The Black Sea: Physical, Environmental and Historical Perspectives; Vespremeanu, E., Golumbeanu, M., Eds.; Springer Geography: Cham, Switzerland, 2018; pp. 15–25. [Google Scholar]
- Panin, N.; Jipa, D.C.; Gomoiu, M.-T.; Secrieru, D. Importance of Sedimentary Processes in Environmental Changes: Lower River Danube–Danube Delta–Western Black Sea System. In Environmental Degradation of the Black Sea: Challenges and Remedies; Besiktepe, S.T., Ünlüata, Ü., Içel, E., Bologa, A.S., Eds.; Kluwer: Dordrecht, The Netherlands, 1999; pp. 23–41. [Google Scholar]
- Panian, N.; Jipa, D. Danube River sediments input and interaction with the Northwest Black Sea. Estuar. Coast. Shelf Sci. 2002, 54, 551–562. [Google Scholar] [CrossRef]
- Crusius, J.; Calvert, S.; Pedersen, T.; Sage, D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 1996, 145, 65–78. [Google Scholar] [CrossRef]
- Crusius, J.; Thomson, J. Mobility of authigenic rhenium, silver, and selenium during postdepositional oxidation in marine sediments. Geochim. Cosmochim. Acta 2003, 67, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Morford, J.L.; Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 1999, 63, 1735–1750. [Google Scholar] [CrossRef]
- Lyons, T.W.; Severmann, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmochim. Acta 2006, 70, 5698–5722. [Google Scholar] [CrossRef]
- Boothman, W.S.; Coiro, L.L. Laboratory determination of molybdenum accumulation rates as a measure of hypoxic conditions. Estuaries Coasts 2009, 32, 642–653. [Google Scholar] [CrossRef]
- Baturin, G.N. Geochemistry of Sapropel in the Black Sea. Geochem. Int. 2011, 49, 531–535. [Google Scholar] [CrossRef]
- Eckert, S.; Brumsack, H.-J.; Severmann, S.; Schnetger, B.; März, C.; Frröllje, H. Establishment of euxinic conditions in the Holocene Black Sea. Geology 2013, 41, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Piper, D.Z. Rare earth elements in the sedimentary cycle: A summary. Chem. Geol. 1974, 14, 285–304. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, K.; Hanson, G.L. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In Processes Controlling the Composition of Clastic Sediments; Johnsson, M.J., Basu, A., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 1993; Volume 284, pp. 21–40. [Google Scholar]
- Floyd, P.A.; Winchester, J.A.; Park, R.G. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Res. 1989, 45, 203–214. [Google Scholar] [CrossRef]
- Owens, P.N.; Blake, W.H.; Gaspar, L.; Gateuille, D. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth Sci. Rev. 2016, 162, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Florea, N.; Cristache, C.; Oaie, G.; Duliu, O.G. Concordant 137Cs and 210Pb ages of Black Sea anoxic unconsolidated sediments. Geochronometria 2011, 38, 101–106. [Google Scholar] [CrossRef]
- Oaie, G.; Florescu, S. Mare Nigrum—The First Romanian Multidisciplinary Research Vessel in Romania. GeoEcoMarina 2003–2004, 9–10. Available online: http://www.geoecomar.ro/website/publicatii/Nr.9-10-2004/22.pdf (accessed on 16 May 2019).
- Duliu, O.G. Major and Trace Elements in Black Sea Euxinic Sediments. Mendeley Data 2019, v1. Available online: http://dx.doi.org/10.17632/d5f8c9gtv7.1 (accessed on 4 September 2019).
- Hussein, E.M.A. Handbook on Radiation Probing, Gauging, Imaging and Analysis; Kluwer: New York, NY, USA, 2004. [Google Scholar]
- Frontasyeva, M.V. Neutron activation analysis in the life sciences. Phys. Part. Nucl. 2011, 42, 332–378. [Google Scholar] [CrossRef]
- Alfassi, B. Epithermal neutron activation analysis. J. Radioanal. Nucl. Chem. 1985, 90, 151–165. [Google Scholar] [CrossRef]
- Molnár, G.L. (Ed.) Handbook of Prompt Gamma Activation Analysis with Neutron Beams; Springer, Kluwer Acadernic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Cristache, C.; Gméling, K.; Culicov, O.; Frontasyeva, M.V.; Toma, M.; Duliu, O.G. An ENAA and PGAA comparative study of anoxic Black Sea sediments. J. Radioanal. Nucl. Chem. 2009, 279, 7–12. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Duliu, O.G.; Culicov, O.-A.; Frontasyeva, M.V.; Sturza, R. Major and trace elements distribution in Moldavian soils. Rom. Rep. Phys. 2018, 70, 701. [Google Scholar]
- Crystallography Open Database. 2019. Available online: http://www.crystallography.net/ (accessed on 1 February 2019).
- Calvert, S.E.; Pedersen, T.F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Ross, D.A.; Degens, E.T. Recent Sediments of the Black Sea. In The Black Sea—Geology, Chemistry and Biology; Degens, E.T., Ross, D.A., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1974; Volume 20, pp. 183–199. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK; London, UK, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Calvert, S.E.; Karlin, R.E. Organic carbon accumulation in the Holocene sapropel of the Black Sea. Geology 1988, 26, 107–110. [Google Scholar] [CrossRef]
- Gromet, L.P.; Haskin, L.A.; Korotev, R.L.; Dymek, R.F. The “North American shale composite”: Its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Little, S.H.; Vance, D.; Lyons, T.W.; McManus, J. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings. Am. J. Sci. 2015, 315, 77–119. [Google Scholar] [CrossRef]
- Scholz, F.; Severmann, S.; McManus, J.; Hensen, C. Beyond the Black Sea paradigm: The sedimentary fingerprint of an open-marine iron shuttle. Geochim. Cosmochim. Acta 2014, 127, 368–380. [Google Scholar] [CrossRef]
- Anderson, T.F.; Raiswell, R. Sources and mechanisms for the enrichment of highly reactive iron in euxinic Black Sea sediments. Am. J. Sci. 2004, 304, 203–233. [Google Scholar] [CrossRef] [Green Version]
- Taylor., S.; McLennan, S.M.; Taylor., S.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1991. [Google Scholar]
- Duliu, O.G.; Cristache, C.; Oaie, G.; Culicov, O.A.; Frontasyeva, M.V.; Toma, M. ENAA Studies of pollution in anoxic Black Sea sediments. Mar. Pollut. Bull. 2009, 58, 827–831. [Google Scholar] [CrossRef]
- McNeal, J.M.; Feder, G.L.; Wiber, W.G.; Deverel, S.J. Environmental concern related to selenium in western United States. In Proceedings of the U.S. Geological Survey Workshop on Environmental Geochemistry; Doe, B.R., Ed.; USGS: Denver, CO, USA, 1990. [Google Scholar]
- Velinsky, D.J.; Cutter, G.A. Geochemistry of selenium in a coastal salt marsh. Geochim. Cosmochim. Acta 1991, 55, 179–191. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- McLennan, S.M. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In Review in Mineralogy; Lipin, B.R., McKay, G.A., Eds.; Mineralogical Society of America: Washington, DC, USA, 1989; Volume 21, pp. 147–167. [Google Scholar]
- Tugulan, L.; Duliu, O.G.; Bojar, A.-V.; Dumitras, D.; Zinicovscaia, I.; Culicov, O.A.; Frontasyeva, M.V. On the geochemistry of the Late Quaternary loess deposits of Dobrogea (Romania). Quat. Int. 2016, 399, 100–110. [Google Scholar] [CrossRef]
SiO | TiO | AlO | FeO | MnO | MgO | CaO | NaO | KO | |
---|---|---|---|---|---|---|---|---|---|
TiO | 0.816 | ||||||||
AlO | 0.429 | 0.346 | |||||||
FeO | 0.572 | 0.503 | 0.799 | ||||||
MnO | −0.133 | −0.093 | 0.555 | 0.378 | |||||
MgO | −0.142 | −0.093 | −0.368 | −0.264 | −0.231 | ||||
CaO | −0.839 | −0.638 | −0.636 | −0.783 | −0.027 | −0.045 | |||
NaO | 0.212 | 0.167 | 0.125 | 0.206 | −0.283 | 0.022 | −0.429 | ||
KO | 0.520 | 0.363 | 0.311 | 0.511 | −0.078 | −0.046 | −0.704 | 0.564 | |
Cl | 0.211 | 0.149 | −0.026 | 0.186 | −0.149 | 0.036 | −0.438 | 0.889 | 0.432 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duliu, O.G.; Cristache, C.I.; Bojar, A.-V.; Oaie, G.; Culicov, O.-A.; Frontasyeva, M.V.; Constantinescu, E. The Geochemistry of 1 ky Old Euxinic Sediments of the Western Black Sea. Geosciences 2019, 9, 455. https://doi.org/10.3390/geosciences9110455
Duliu OG, Cristache CI, Bojar A-V, Oaie G, Culicov O-A, Frontasyeva MV, Constantinescu E. The Geochemistry of 1 ky Old Euxinic Sediments of the Western Black Sea. Geosciences. 2019; 9(11):455. https://doi.org/10.3390/geosciences9110455
Chicago/Turabian StyleDuliu, Octavian G., Carmen I. Cristache, Ana-Voica Bojar, Gheorghe Oaie, Otilia-Ana Culicov, Marina V. Frontasyeva, and Emil Constantinescu. 2019. "The Geochemistry of 1 ky Old Euxinic Sediments of the Western Black Sea" Geosciences 9, no. 11: 455. https://doi.org/10.3390/geosciences9110455
APA StyleDuliu, O. G., Cristache, C. I., Bojar, A. -V., Oaie, G., Culicov, O. -A., Frontasyeva, M. V., & Constantinescu, E. (2019). The Geochemistry of 1 ky Old Euxinic Sediments of the Western Black Sea. Geosciences, 9(11), 455. https://doi.org/10.3390/geosciences9110455