Marine Geohazards: A Bibliometric-Based Review
Abstract
:1. Introduction
2. Materials and Methods
- -
- Title of the Article;
- -
- Year of Publication;
- -
- Ocean;
- -
- Geographic Scale;
- -
- Depth Range;
- -
- Type of Continental Margin;
- -
- Number of Authors;
- -
- Nationality of the First Author;
- -
- Number of Institutions;
- -
- Type of Institution of the First Author;
- -
- Partnerships between Government, Academia, and Marine Industry;
- -
- Perspective;
- -
- Approach;
- -
- Analysis, Instruments, and Techniques;
- -
- Type of Marine Geohazard.
2.1. Time and Space
2.2. Institutional Arrangement
2.3. Research Characterization
2.4. Geohazards
3. Results
3.1. Time and Space
3.2. Institutional Arrangement
3.3. Research Characterization
3.4. Geohazards
3.4.1. Slope Failure
3.4.2. Fluids Seepage
3.4.3. Earthquake
3.4.4. Tsunami
3.4.5. Volcanism
3.4.6. Subsidence
3.4.7. Bedforms
3.4.8. Positive Reliefs
3.4.9. Negative Reliefs
3.4.10. Diapirs
3.4.11. Faulting
3.4.12. Erosion
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Canals, M.; Lastras, G.; Urgeles, R.; Casamor, J.L.; Mienert, J.; Cattaneo, A.; De Batist, M.; Haflidason, H.; Imbo, Y.; Laberg, J.S.; et al. Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data: Case studies from the COSTA project. Mar. Geol. 2004, 213, 9–72. [Google Scholar] [CrossRef]
- Orange, D.; Angell, M.; Pawlowski, B.; Meaux, D.; Gee, L.; Kleiner, A.; Anderson, B. Visualizing Seafloor, Seismic, Gravity and Magnetics Data in the Deepwater Gulf of Mexico Improves Understanding of Geohazards, Salt and Seeps. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2001. [Google Scholar] [CrossRef]
- Kvalstad, T.J. What is the Current "Best Practice" in Offshore Geohazard Investigations? A State-of-the-Art Review. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2007. [Google Scholar] [CrossRef]
- Wu, S.; Wang, D.; Völker, D. Deep-Sea Geohazards in the South China Sea. J. Ocean Univ. China 2018, 17, 1–7. [Google Scholar] [CrossRef]
- Ismail-Zadeh, A.T. Geohazard research, modeling, and assessment for disaster risk reduction. Russ. J. Earth Sci. 2016, 16, ES3002. [Google Scholar] [CrossRef]
- Milkov, A.V. Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar. Geol. 2000, 167, 29–42. [Google Scholar] [CrossRef]
- Hovland, M.; Gardner, J.V.; Judd, A.G. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids 2002, 2, 127–136. [Google Scholar] [CrossRef]
- Bastia, R.; Radhakrishna, M.; Nayak, S. Identification and characterization of marine geohazards in the deep water eastern offshore of India: Constraints from multibeam bathymetry, side scan sonar and 3D high-resolution seismic data. Nat. Hazards 2011, 57, 107–120. [Google Scholar] [CrossRef]
- Ostanin, I.; Anka, Z.; Di Primio, R.; Bernal, A. Hydrocarbon leakage above the Snøhvit gas field, Hammerfest Basin SW Barents Sea. First Break 2012, 30, 55–60. [Google Scholar] [CrossRef]
- Ceramicola, S.; Praeg, D.; Cova, A.; Accettella, D.; Zecchin, M. Seafloor distribution and last glacial to postglacial activity of mud volcanoes on the Calabrian accretionary prism, Ionian Sea. Geo-Mar. Lett. 2014, 34, 111–129. [Google Scholar] [CrossRef]
- Vanneste, M.; Sultan, N.; Garziglia, S.; Forsberg, C.F.; L’Heureux, J.-S. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations. Mar. Geol. 2014, 352, 183–214. [Google Scholar] [CrossRef]
- Benjamin, U.; Huuse, M.; Hodgetts, D. Canyon-confined pockmarks on the western Niger Delta slope. J. Afr. Earth Sci. 2015, 107, 15–27. [Google Scholar] [CrossRef]
- Shmatkova, A.A.; Shmatkov, A.A.; Gainanov, V.G.; Buenz, S. Identification of Geohazards Based on the Data of Marine High-Resolution 3D Seismic Observations in the Norwegian Sea. Moscow Univer. Geol. Bull. 2015, 70, 53–61. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Cattaneo, A.; Urgeles, R. Seafloor mapping for geohazard assessment: state of the art. Mar. Geophys. Res. 2011, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Zhu, C.; Liu, L.; Wang, D. Marine Geohazards: Review and Future Perspective. Acta Geol. Sin. 2016, 90, 1455–1470. [Google Scholar] [CrossRef]
- Nadim, F.; Kvalstad, T.J. Risk assessment and management for offshore geohazards. In Proceedings of the ISGSR 2007, First International Symposium on Geotechnical Safety & Risk, Shanghai, China, 18–19 October 2007. [Google Scholar]
- Bruschi, R.; Bughi, S.; Spinazzè, M.; Torselletti, E.; Vitali, E. Impact of debris flows and turbidity currents on seafloor structures. Norw. J. Geol. 2006, 86, 317–337. [Google Scholar]
- Marsset, B.; Thomas, Y.; Sultan, N.; Gaillot, A.; Stephan, Y. A multi-disciplinary approach to marine shallow geohazard assessment. Near Surf. Geophys. 2012, 10, 279–288. [Google Scholar] [CrossRef]
- L’Heureux, J.S.; Hansen, L.; Longva, O.; Emdal, A.; Grande, L.O. A multidisciplinary study of submarine landslides at the Nidelva fjord delta, Central Norway—Implications for the assessment of geohazards. Norw. J. Geol. 2010, 90, 1–20. [Google Scholar]
- Sheshpari, M.; Khalilzad, S. New Frontiers in the Offshore Geotechnics and Foundation Design. EJGE 2016, 21, 1–59. [Google Scholar]
- Wegner, S.A.; Campbell, K.J. Drilling hazard assessment for hydrate bearing sediments including drilling through the bottom-simulating reflectors. Mar. Pet. Geol. 2014, 58, 382–405. [Google Scholar] [CrossRef]
- Aldred, W.; Plumb, D.; Bradford, I.; Cook, J.; Gholkar, V.; Cousins, L.; Minton, R.; Fuller, J.; Goraya, S.; Tucker, D. Managing drilling risk. Oilfield Rev. 1999, 11, 2–19. [Google Scholar]
- Merigó, J.M.; Blanco-Mesa, F.; Gil-Lafuente, A.M.; Yager, R.R. Thirty years of the International Journal of Intelligent Systems: A bibliometric review. Int. J. Intell. Syst. 2016, 32, 1–34. [Google Scholar] [CrossRef]
- Broadus, R.N. Toward a definition of ‘bibliometrics’. Scientometrics 1987, 12, 373–379. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Muñoz, F.; Sanz-Fuentenebro, J.; Rubio, G.; García-García, P.; Álamo, C. Quo Vadis Clozapine? A bibliometric study of 45 years of research in international context. Int. J. Mol. Sci. 2015, 16, 23012–23034. [Google Scholar] [CrossRef] [PubMed]
- Koo, M. A bibliometric analysis of two decades of aromatherapy research. BMC Res. Notes 2017, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, C.; Ferreira, J.J.; Marques, C. University-industry cooperation: A systematic literature review and research agenda. Sci. Public Policy 2018, 45, 1–11. [Google Scholar] [CrossRef]
- Belter, C.W.; Seidel, D.J. A bibliometric analysis of climate engineering research. WIREs Clim. Chang. 2013, 4, 417–427. [Google Scholar] [CrossRef]
- Liquete, C.; Piroddi, C.; Drakou, E.G.; Gurney, L.; Katsanevakis, S.; Charef, A.; Egoh, B. Current Status and Future Prospects for the Assessment of Marine and Coastal Ecosystem Services: A Systematic Review. PLoS ONE 2013, 8, e67737. [Google Scholar] [CrossRef]
- Wu, S.; Chen, X.; Zhan, F.B.; Hong, S. Global research trends in landslides during 1991-2014: A bibliometric analysis. Landslides 2015, 12, 1215–1226. [Google Scholar] [CrossRef]
- Zhuang, Y.; Du, C.; Zhang, L.; Du, Y.; Li, S. Research trends and hotspots in soil erosion from 1932 to 2013: A literature review. Scientometrics 2015, 105, 743–758. [Google Scholar] [CrossRef]
- IHO. Limits of Oceans and Seas (Special Publication Nº 23), 3rd ed.; Imp. Monégasque: Monte Carlo, Monaco, 1953. [Google Scholar]
- Chiocci, F.L.; Ridente, D. Regional-scale seafloor mapping and geohazard assessment. The experience from the Italian project MaGIC (Marine Geohazards along the Italian Coasts). Mar. Geophys. Res. 2011, 32, 13–23. [Google Scholar] [CrossRef]
- Favali, P.; Chierici, F.; Marinaro, G.; Giovanetti, G.; Azzarone, A.; Beranzoli, L.; De Santis, A.; Embriaco, D.; Monna, S.; Bue, N.L.; et al. NEMO-SN1 Abyssal Cabled Observatory in the Western Ionian Sea. IEEE J. Ocean. Eng. 2013, 38, 358–374. [Google Scholar] [CrossRef]
- Loreto, M.F.; Pagnoni, G.; Pettenati, F.; Armigliato, A.; Tinti, S.; Sandron, D.; Brutto, F.; Muto, F.; Facchin, L.; Zgur, F. Reconstructed seismic and tsunami scenarios of the 1905 Calabria earthquake (SE Tyrrhenian sea) as a tool for geohazard assessment. Eng. Geol. 2017, 224, 1–14. [Google Scholar] [CrossRef]
- Casalbore, D.; Chiocci, F.L.; Scarascia Mugnozza, G.; Tommasi, P.; Sposato, A. Flash-flood hyperpycnal flows generating shallow-water landslides at Fiumara mouths in Western Messina Strait (Italy). Mar. Geophys. Res. 2011, 32, 257–271. [Google Scholar] [CrossRef]
- Ceramicola, S.; Senatore, M.R.; Coste, M.; Meo, A.; Boscaino, M.; Cova, A. Seabed mapping for geohazard in the Gulf of Taranto, Ionian Sea (Southern Italy). Rend. Online Soc. Geol. Ital. 2012, 21, 951–952. [Google Scholar]
- Ceramicola, S.; Praeg, D.; Coste, M.; Forlin, E.; Cova, A.; Colizza, E.; Critelli, S. Submarine Mass-Movements Along the Slopes of the Active Ionian Continental Margins and Their Consequences for Marine Geohazards (Mediterranean Sea). In Submarine Mass Movements and Their Consequences, Advances in Natural and Technological Hazards Research; Krastel, S., Behrmann, J., Völker, D., Stipp, M., Berndt, C., Urgeles, R., Chaytor, J., Huhn, K., Strasser, M., Harbitz, C.B., Eds.; Springer: Cham, Switzerland, 2014; pp. 295–306. [Google Scholar] [CrossRef]
- Iorio, M.; Angelino, A.; Budillon, F.; Insinga, D.; Meo, A.; Senatore, M.R. Reliable High Resolution Physical Properties Correlation in sediments as a Powerful Tool for Geological Exploitation and Natural Hazard Issues. In Proceedings of the IMEKO TC19 International Conference on Metrology for the Sea, Naples, Italy, 11–13 October 2017; pp. 167–172. [Google Scholar]
- Meo, A.; Falco, M.; Chiocci, F.L.; Senatore, M.R. Kinematics and the tsunamigenic potential of Taranto Landslide (northeastern Ionian Sea): Morphological analysis and modelling. In Landslides and Engineered Slopes. Experience, Theory and Practice; Balkema Press: Rotterdam, Holland, 2016; pp. 1409–1416. [Google Scholar]
- Hill, G.W.; McGregor, B.A. Small-scale mapping of the exclusive economic zone using wide-swath side-scan sonar. Mar. Geod. 1988, 12, 41–53. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Gas hydrates—Geological perspective and global change. Rev. Geophys. 1993, 31, 173–187. [Google Scholar] [CrossRef]
- Campbell, K.J. Deepwater geohazards: How significant are they? Lead. Edge 1999, 18, 514–519. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Gas Hydrate and Humans. Ann. N. Y. Acad. Sci. 2000, 912, 17–22. [Google Scholar] [CrossRef]
- Milkov, A.V.; Sassen, R. Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope. Mar. Pet. Geol. 2000, 17, 981–991. [Google Scholar] [CrossRef]
- Long, D. The Western Frontiers Association—Evaluating seabed conditions west of the UK. Cont. Shelf Res. 2001, 21, 811–824. [Google Scholar] [CrossRef]
- Katsanevakis, S.; Stelzenmüller, V.; South, A.; Sørensen, T.K.; Jones, P.J.S.; Kerr, S.; Badalamenti, F.; Anagnostou, C.; Breen, P.; Chust, G.; et al. Ecosystem-based marine spatial management: Review of concepts, policies, tools, and critical issues. Ocean Coast. Manag. 2011, 54, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Ruhl, H.A.; André, M.; Beranzoli, L.; Çagatay, M.N.; Colaço, A.; Cannat, M.; Dañobeitia, J.J.; Favali, P.; Géli, L.; Gillooly, M.; et al. Societal need for improved understanding of climate change, anthropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas. Prog. Oceanogr. 2011, 91, 1–33. [Google Scholar] [CrossRef]
- Clark, S.H., Jr.; Field, M.E.; Hirozawa, C.A. Reconnaissance Geology and Geologic Hazards of the Offshore Coos Bay Basin, Oregon. U.S. Geol. Surv. Bull. 1985. [Google Scholar] [CrossRef]
- Tinghuan, L.; Bo, J. Seismic fades analysis of the seafloor instabilities in the Pearl River mouth region. Mar. Geotech. 1989, 8, 19–31. [Google Scholar] [CrossRef]
- Carter, L.; Gavey, L.; Talling, P.J.; Liu, J.Y. Insights into submarine geohazards from breaks in subsea telecommunication cables. Oceanography 2014, 27, 58–67. [Google Scholar] [CrossRef]
- Casas, D.; Casalbore, D.; Yenes, M.; Urgeles, R. Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes. Bol. Geol. Min. 2015, 126, 257–278. [Google Scholar]
- Locat, J.; Lee, H.J. Submarine landslides: Advances and challenges. Can. Geotech. J. 2002, 39, 193–212. [Google Scholar] [CrossRef]
- Micallef, A.; Berndt, C.; Masson, D.G.; Stow, D.A.V. Scale invariant characteristics of the Storegga Slide and implications for large-scale submarine mass movements. Mar. Geol. 2008, 247, 46–60. [Google Scholar] [CrossRef]
- Zakeri, A. Review of State-Of-The-Art: Drag Forces on Submarine Pipelines and Piles Caused by Landslide or Debris Flow Impact. J. Offshore Mech. Arctic Eng. 2009, 131, 014001-1–014001-8. [Google Scholar] [CrossRef]
- Zhu, H.; Randolph, M.F. Large Deformation Finite-Element Analysis of Submarine Landslide Interaction with Embedded Pipelines. Int. J. Geomech. 2010, 10, 145–152. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, L.; Guo, Z.; Shi, R. A refined analytical model for landslide or debris flow impact on pipelines. Part I: Surface pipelines. Appl. Ocean Res. 2012, 35, 95–104. [Google Scholar] [CrossRef]
- Randolph, M.F.; White, D.J. Interaction forces between pipelines and submarine slides—A geotechnical viewpoint. Ocean Eng. 2012, 48, 32–37. [Google Scholar] [CrossRef]
- Solheim, A.; Bhasin, R.; De Blasio, F.V.; Blikra, L.H.; Boyle, S.; Braathen, A.; Dehls, J.; Elverhøi, A.; Etzelmüller, B.; Glimsdal, S.; et al. International Centre for Geohazards (ICG): Assessment, prevention and mitigation of geohazards. Norw. J. Geol. 2005, 85, 45–62. [Google Scholar]
- Tappin, D.R.; Watts, P.; Grilli, S.T. The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Nat. Hazards Earth Syst. Sci. 2008, 8, 243–266. [Google Scholar] [CrossRef] [Green Version]
- Urlaub, M.; Talling, P.J.; Masson, D. Timing and frequency of large submarine landslides: Implications for understanding triggers and future geohazard. Quat. Sci. Rev. 2013, 72, 63–82. [Google Scholar] [CrossRef]
- Kawamura, K.; Laberg, J.S.; Kanamatsu, T. Potential tsunamigenic submarine landslides in active margins. Mar. Geol. 2014, 356, 44–49. [Google Scholar] [CrossRef]
- Talling, P.J.; Clare, M.; Urlaub, M.; Pope, E.; Hunt, E.; Watt, S.F.L. Large submarine landslides on continental slopes: Geohazards, methane release, and climate change. Oceanography 2014, 27, 32–45. [Google Scholar] [CrossRef]
- Hampton, M.A.; Lee, H.J.; Locat, J. Submarine landslides. Rev. Geophys. 1996, 34, 33–59. [Google Scholar] [CrossRef]
- Krastel, S.; Wefer, G.; Hanebuth, T.J.J.; Antobreh, A.A.; Freudenthal, T.; Preu, B.; Schwenk, T.; Strasser, M.; Violante, R.; Winkelmann, D. M78/3 shipboard scientific party. Sediment dynamics and geohazards off Uruguay and the la Plata River Region (northern Argentina and Uruguay). Geo-Mar. Lett. 2011, 31, 271–283. [Google Scholar] [CrossRef]
- Handley, L.R. Mississippi River delta mudslides: techniques allow for continued development with reduced risk. Geo-Mar. Lett. 1982, 2, 179–184. [Google Scholar] [CrossRef]
- Huhnerbach, V.; Masson, D.G.; COSTA Project Partners. Landslides in the north Atlantic and its adjacent seas: An analysis of their morphology, setting and behaviour. Mar. Geol. 2004, 213, 343–362. [Google Scholar] [CrossRef]
- Urlaub, M.; Talling, P.J.; Zervos, A.; Masson, D. What causes large submarine landslides on low gradient (<2°) continental slopes with slow (~ 0.15 m/kyr) sediment accumulation? J. Geophys. Res. Solid Earth 2015, 120, 6722–6739. [Google Scholar] [CrossRef]
- Hovland, M. Geomorphological, geophysical, and geochemical evidence of fluid flow through the seabed. J. Geochem. Explor. 2003, 78, 287–291. [Google Scholar] [CrossRef]
- Dupré, S.; Scalabrin, C.; Grall, C.; Augustin, J.-M.; Henry, P.; Şengör, A.M.C.; Görür, N.; Çağatay, M.N.; Géli, L. Tectonic and sedimentary controls on widespread gas emissions in the Sea of Marmara: Results from systematic, shipborne multibeam echo sounder water column imaging. J. Geophys. Res. Solid Earth 2015, 120, 2891–2912. [Google Scholar] [CrossRef] [Green Version]
- Eruteya, O.E.; Waldmann, N.; Schalev, D.; Makovsky, Y.; Ben-Avraham, Z. Intra- to post-Messinian deep-water gas piping in the Levant Basin, SE Mediterranean. Mar. Pet. Geol. 2015, 66, 246–261. [Google Scholar] [CrossRef]
- Rajan, A.; Mienert, J.; Bünz, S. Acoustic evidence for a gas migration and release system in Arctic glaciated continental margins offshore NW-Svalbard. Mar. Pet. Geol. 2012, 32, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Wang, X.; Völker, D.; Wu, S.; Wang, L.; Li, W.; Li, Q.; Zhu, Z.; Li, C.; Qin, Z.; et al. Three dimensional seismic studies of deep-water hazard-related features on the northern slope of South China Sea. Mar. Pet. Geol. 2016, 77, 1125–1139. [Google Scholar] [CrossRef]
- King, L.H.; MacLean, B. Pockmarks of the Scotian Shelf. Geol. Soc. Am. Bull. 1970, 81, 3141–3148. [Google Scholar] [CrossRef]
- Gay, A.; Lopez, M.; Cochonat, P.; Sérrane, M.; Levaché, D.; Sermondadaz, G. Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin. Mar. Geol. 2006, 226, 25–40. [Google Scholar] [CrossRef]
- Hovland, M.; Judd, A.G. Seabed Pockmarks and Seepages, Impact on Geology, Biology and the Marine Environment; Graham and Trotman: London, UK, 1988. [Google Scholar]
- Dimitrov, L.I. Mud volcanoes—The most important pathway for degassing deeply buried sediments. Earth-Sci. Rev. 2002, 59, 49–76. [Google Scholar] [CrossRef]
- Zoporowski, A.; Miller, S.A. Modeling eruption cycles and decay of mud volcanoes. Mar. Pet. Geol. 2009, 26, 1879–1887. [Google Scholar] [CrossRef]
- Planke, S.; Svensen, H.; Hovland, M.; Banks, D.A.; Jamtveit, B. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 2003, 23, 258–268. [Google Scholar] [CrossRef]
- León, R.; Somoza, L.; Medialdea, T.; González, F.J.; Díaz-del-Río, V.; Fernández-Puga, M.C.; Maestro, A.; Mata, M.P. Sea-floor features related to hydrocarbon seeps in deepwater carbonate-mud mounds of the Gulf of Cádiz: from mud flows to carbonate precipitates. Geo-Mar. Lett. 2007, 27, 237–247. [Google Scholar] [CrossRef]
- Paull, C.K.; Dallimore, S.R.; Caress, D.W.; Gwiazda, R.; Melling, H.; Riedel, M.; Jin, Y.K.; Hong, J.K.; Kim, Y.G.; Graves, D.; et al. Active mud volcanoes on the continental slope of the Canadian Beaufort Sea. Geochem. Geophys. Geosyst. 2015, 16, 3160–3181. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, P.; Razavi, S.M.; Ismaeili, S.; Azarpour, M. Gas-Chimney Detection in 3D Seismic by Neural Network. Pet. Sci. Tech. 2013, 31, 1188–1195. [Google Scholar] [CrossRef]
- Best, A.I.; Tuffin, M.D.J.; Dix, J.K.; Bull, J.M. Tidal height and frequency dependence of acoustic velocity and attenuation in shallow gassy marine sediments. J. Geophys. Res. 2004, 109, 1–17. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, S.; Cartwright, J.; Dong, D. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea. Mar. Geol. 2012, 315, 1–14. [Google Scholar] [CrossRef]
- Orange, D.L.; García-García, A.; McConnell, D.; Lorenson, T.; Fortier, G.; Trincardi, F.; Can, E. High-resolution surveys for geohazards and shallow gas: NW Adriatic (Italy) and Iskenderun Bay (Turkey). Mar. Geophys. Res. 2005, 26, 247–266. [Google Scholar] [CrossRef]
- Sloan, E.D. Clathrate Hydrates of Natural Gases, 2nd ed.; Marcel Dekker: New York, NY, USA, 1998. [Google Scholar]
- Collet, T.; Bahk, J.-J.; Baker, R.; Boswell, R.; Divins, D.; Frye, M.; Goldberg, D.; Husebø, J.; Koh, C.; Malone, M.; et al. Methane hydrates in nature—Current knowledge and challenges. J. Chem. Eng. Data 2015, 60, 319–329. [Google Scholar] [CrossRef]
- Nixon, M.F.; Grozic, J.L.H. Submarine slope failure due to gas hydrate dissociation: A preliminary quantification. Can. Geotech. J. 2007, 44, 314–325. [Google Scholar] [CrossRef]
- Li, X.; He, S. Progress in stability analysis of submarine slopes considering dissociation of gas hydrates. Environ. Earth Sci. 2012, 66, 741–747. [Google Scholar] [CrossRef]
- McConnell, D.R.; Zhang, Z.; Boswell, R. Review of progress in evaluating gas hydrate drilling hazards. J. Mar. Pet. Geol. 2012, 34, 209–223. [Google Scholar] [CrossRef]
- Wang, J. Historical earthquake investigation and research in China. Ann. Geophys. 2004, 47, 831–838. [Google Scholar]
- Stein, S.; Wysession, M. An Introduction to Seismology, Earthquakes, and Earth Structure; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Satriano, C.; Wu, Y.-M.; Zollo, A.; Kanamori, H. Earthquake early warning: Concepts, methods and physical grounds. Soil. Dyn. Earthq. Eng. 2011, 31, 106–118. [Google Scholar] [CrossRef]
- Holzer, T.L.; Savage, J.C. Global earthquake fatalities and population. Earthq. Spectra 2013, 29, 155–175. [Google Scholar] [CrossRef]
- Chen, L.J.; Chen, X.F.; Shao, L. Method Research of Earthquake Prediction and Volcano Prediction in Italy. Int. J. Geosci. 2015, 6, 963–971. [Google Scholar] [CrossRef]
- Pope, E.L.; Talling, P.J.; Carter, L. Which earthquakes trigger damaging submarine mass movements: Insights from a global record of submarine cable breaks? Mar. Geol. 2017, 384, 131–146. [Google Scholar] [CrossRef]
- Grezio, A.; Babeyko, A.; Baptista, M.A.; Behrens, J.; Costa, A.; Davies, G.; Geist, E.; Glimsdal, S.; González, F.I.; Griffin, J.; et al. Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications. Rev. Geophys. 2017, 55, 1158–1198. [Google Scholar] [CrossRef]
- García-García, A.; Orange, D.L.; Maher, N.M.; Heffernan, A.S.; Fortier, G.S.; Malone, A. Geophysical evidence for gas geohazards off Iskenderun Bay, SE Turkey. Mar. Pet. Geol. 2004, 21, 1255–1264. [Google Scholar] [CrossRef]
- Levi, J.K.; Gopalakrishnan, C. Promoting Disaster-resilient Communities: The Great Sumatra–Andaman Earthquake of 26 December 2004 and the Resulting Indian Ocean Tsunami. Int. J. Water Resour. D 2005, 21, 543–559. [Google Scholar] [CrossRef]
- Suzuki, W.; Aoi, S.; Sekiguchi, H.; Kunugi, T. Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Gavey, R.; Carte, L.; Liu, J.T.; Talling, P.J.; Hsu, R.; Pope, E.; Evans, G. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: Observations from subsea cable breaks off southern Taiwan. Mar. Geol. 2017, 384, 147–158. [Google Scholar] [CrossRef]
- Shulgin, A.; Kopp, H.; Mueller, C.; Planert, L.; Lueschen, E.; Flueh, E.R.; Djajadhardja, Y. Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards. Geophys. J. Int. 2011, 184, 12–28. [Google Scholar] [CrossRef]
- ten Brink, U.S.; Lee, H.J.; Geist, E.L.; Twichell, D. Assessment of tsunami hazard to the U.S. East Coast using relationships between submarine landslides and earthquakes. Mar. Geol. 2009, 264, 65–73. [Google Scholar] [CrossRef]
- Tappin, D.R. Submarine mass failures as tsunami sources: their climate control. Phil. Trans. R. Soc. A 2010, 368, 2417–2434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, M.; Chamot-Rooke, N.; Hébert, H.; Fournier, M.; Huchon, P. Owen Ridge deep-water submarine landslides: Implications for tsunami hazard along the Oman coast. Nat. Hazards Earth Syst. Sci. 2013, 13, 417–424. [Google Scholar] [CrossRef]
- Harbitz, C.B.; Løvholt, F.; Bungum, H. Submarine landslide tsunamis: how extreme and how likely? Nat. Hazards 2014, 72, 1341–1374. [Google Scholar] [CrossRef]
- Løvholt, F.; Bondevik, S.; Laberg, J.S.; Kim, J.; Boylan, N. Some giant submarine landslides do not produce large tsunamis. Geophys. Res. Lett. 2017, 44, 8463–8472. [Google Scholar] [CrossRef] [Green Version]
- Tappin, D.R. Tsunamis from submarine landslides. Geol. Today 2017, 33, 190–200. [Google Scholar] [CrossRef]
- Billi, A.; Funiciello, R.; Minelli, L.; Faccenna, C.; Neri, G.; Orecchio, B.; Presti, D. On the cause of the 1908 Messina tsunami, southern Italy. Geophys. Res. Lett. 2008, 35, L06301. [Google Scholar] [CrossRef]
- Mazzanti, P.; Bozzano, F. Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar. Geophys. Res. 2011, 32, 273–286. [Google Scholar] [CrossRef]
- Geist, E.L.; Lynett, P.J. Source processes for the probabilistic assessment of tsunami hazards. Oceanography 2014, 27, 86–93. [Google Scholar] [CrossRef]
- Tappin, D.R.; Grilli, S.T.; Harris, J.C.; Geller, R.J.; Masterlark, T.; Kirby, J.T.; Shi, F.; Ma, G.; Thingbaijam, K.K.S.; Mai, P.M. Did a submarine landslide contribute to the 2011 Tohoku tsunami? Mar. Geol. 2014, 357, 344–361. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Heidarzadeh, M.; Cukur, D.; Chiocci, F.L.; Ridente, D.; Gross, F.; Bialas, J.; Krastel, S. Tsunamigenic potential of a newly discovered active fault zone in the outer Messina Strait, Southern Italy. Geophys. Res. Lett. 2017, 44, 2427–2435. [Google Scholar] [CrossRef]
- Staudigel, H.; Clague, D.A. The geological history of deep-sea volcanoes - Biosphere, hydrosphere and lithosphere interactions. Oceanography 2010, 23, 58–71. [Google Scholar] [CrossRef]
- Rivera, J.; Lastras, G.; Canals, M.; Acosta, J.; Arrese, B.; Hermida, N.; Micallef, A.; Tello, O.; Amblas, D. Construction of an oceanic island: Insights from the El Hierro (Canary Islands) 2011-2012 submarine volcanic eruption. Geology 2013, 41, 355–358. [Google Scholar] [CrossRef]
- Embley, R.W.; Tamura, Y.; Merle, S.G.; Sato, T.; Ishizuka, O.; Chadwick, W.W., Jr.; Wiens, D.A.; Shore, P.; Stern, R.J. Eruption of South Sarigan Seamount, Northern Mariana Islands: Insights into hazards from submarine volcanic eruptions. Oceanography 2014, 27, 24–31. [Google Scholar] [CrossRef]
- Watt, S.F.L.; Talling, P.J.; Hunt, J.E. New insights into the emplacement dynamics of volcanic island landslides. Oceanography 2014, 27, 46–57. [Google Scholar] [CrossRef]
- Holcomb, R.T.; Searle, R.C. Large landslides from oceanic volcanoes. Mar. Geotechnol. 1991, 10, 19–32. [Google Scholar] [CrossRef]
- Whelan, F.; Kelletat, D. Submarine slides on volcanic islands—A source for mega-tsunamis in the Quaternary. Prog. Phys. Geogr. 2003, 27, 198–216. [Google Scholar] [CrossRef]
- Moore, J.G.; Clague, D.A.; Holcomb, R.T.; Lipman, P.W.; Normark, W.R.; Torresan, M.E. Prodigious submarine landslides on the Hawaiian Ridge. J. Geophys. Res. 1989, 94, 17465–17484. [Google Scholar] [CrossRef]
- Moore, J.G.; Normark, W.R.; Holcomb, R.T. Giant Hawaiian underwater landslides. Science 1994, 264, 46–47. [Google Scholar] [CrossRef] [PubMed]
- Tappin, D.R. Digital elevation models in the marine domain: Investigating the offshore tsunami hazard from submarine landslides. In Elevation Models for Geoscience; Fleming, C., Marsh, S.H., Giles, J.R.A., Eds.; Geological Society: London, UK, 2005; Special Publications 345; pp. 81–101. [Google Scholar] [CrossRef]
- Oehler, J.F.; Labazuy, P.; Lénat, J.F. Recurrence of major flank landslides during the last 2Ma history of Réunion Island. Bull. Volcanol. 2004, 66, 585–598. [Google Scholar] [CrossRef]
- Masson, D.G.; Watts, A.B.; Gee, M.J.R.; Urgeles, R.; Mitchell, N.C.; Le Bas, T.P.; Canals, M. Slope failures in the flanks of the western Canary Islands. Earth-Sci. Rev. 2002, 57, 1–35. [Google Scholar] [CrossRef]
- Day, S.J.; Carracedo, J.C.; Guillou, H.; Gravestock, P. Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: Volcanic rift zone reconfiguration as a precursor to volcano flank instability. J. Volcanol. Geotherm. Res. 1999, 94, 135–167. [Google Scholar] [CrossRef]
- Masson, D.G.; Le Bas, T.P.; Grevemeyer, I.; Weinrebe, W. Flank collapse and large-scale landsliding in the Cape Verde Islands, off West Africa. Geochem. Geophys. Geosys. 2008, 9, Q07015. [Google Scholar] [CrossRef]
- McMurtry, G.M.; Fryer, G.J.; Tappin, D.R.; Wilkinson, I.P.; Williams, M.; Fietzke, J.; Garbe-Schoenberg, D.; Watts, P. Megatsunami deposits on Kohala Volcano, Hawaii, from flank collapse of Mauna Loa. Geology 2004, 32, 741–744. [Google Scholar] [CrossRef]
- Løvholt, F.; Pedersen, G.; Gisler, G. Oceanic propagation of a potential tsunami from the La Palma Island. J. Geophys. Res. 2008, 113, C09026. [Google Scholar] [CrossRef]
- Barkan, R.; ten Brick, U.S.; Lin, J. Far field tsunami simulations of the 1755 Lisbon earthquake: Implication for tsunami hazard to the U.S. East Coast and the Caribbean. Mar. Geol. 2009, 264, 109–122. [Google Scholar] [CrossRef]
- Abadie, S.; Harris, J.C.; Grilli, S.T.; Fabre, R. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near field effects. J. Geophys. Res. 2012, 117, C05030. [Google Scholar] [CrossRef]
- Grilli, S.T.; O’Reilly, C.; Zhou, H.; Moore, C.W.; Wei, Y.; Titov, V.V. A nested-grid Boussinesq type approach to modelling dispersive propagation and run-up of landslide generated tsunamis. Nat. Hazards Earth Syst. Sci. 2011, 11, 2677–2697. [Google Scholar]
- Grilli, S.T.; Harris, J.C.; Tajali-Bakhsh, T.; Masterlark, T.L.; Kyriakopoulos, C.; Kirby, J.T.; Shi, F. Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure Appl. Geophys. 2013, 170, 1333–1359. [Google Scholar] [CrossRef]
- Tehranirad, B.; Harris, J.C.; Grilli, A.R.; Grilli, S.T.; Abadie, S.; Kirby, J.T.; Shi, F. Far-field tsunami hazard in the north Atlantic basin from large scale flank collapses of the Cumbre Vieja volcano, La Palma. Pure Appl. Geophys. 2015, 172, 3589–3616. [Google Scholar] [CrossRef]
- Nunn, P.D.; Baniala, M.; Harrison, M.; Geraghty, P. Vanished Islands in Vanuatu: New research and a preliminary geohazard assessment. J. R. Soc. N. Z. 2006, 36, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Nunn, P.D.; Pastorizo, M.A.R. Geological histories and geohazard potential of Pacific Islands illuminated by myths. In Myth and Geology; Piccardi, L., Masse, W.B., Eds.; Geological Society: London, UK, 2007; Special Publications 273; pp. 143–163. [Google Scholar]
- Stanley, J.-D.; Goddio, F.; Jorstad, T.F.; Schnepp, G. Submergence of ancient greek cities off Egypt’s Nile Delta—A cautionary tale. GSA Today 2004, 14, 4–10. [Google Scholar] [CrossRef]
- Iacono, C.L.; Guillén, J.; Puig, P.; Ribó, M.; Ballesteros, M.; Palanques, A.; Farrán, M.I.; Acosta, J. Large-scale bedforms along a tideless outer shelf setting in the western Mediterranean. Cont. Shelf Res. 2010, 30, 1802–1813. [Google Scholar] [CrossRef]
- Clare, M.A.; Vardy, M.E.; Cartigny, J.B.; Talling, P.J.; Himsworth, M.D.; Dix, J.K.; Harris, J.M.; Whitehouse, R.J.S.; Belal, M. Direct monitoring of active geohazards: Emerging geophysical tools for deep-water assessments. Near Surf. Geophys. 2017, 15, 427–444. [Google Scholar] [CrossRef]
- Barrie, J.V.; Hill, P.R.; Conway, K.W.; Iwanowska, K.; Picard, K. Environmental Marine Geoscience 4: Georgia Basin: Seabed Features and Marine Geohazards. Geosci. Can. 2005, 32, 145–156. [Google Scholar]
- Cecchini, S.; Taliana, D.; Giacomini, L.; Herisson, C.; Bonnemaire, B. Submarine geo-hazards on the eastern Sardinia-Corsica continental margin based on preliminary pipeline route investigation. Mar. Geophys. Res. 2011, 32, 71–81. [Google Scholar] [CrossRef]
- Besio, G.; Blondeaux, P.; Brocchini, M.; Vittori, G. Migrating sand waves. Ocean Dyn. 2003, 53, 232–238. [Google Scholar] [CrossRef]
- Besio, G.; Blondeaux, P.; Brocchini, M.; Hulscher, S.J.M.H.; Idier, D.; Knaapen, M.A.F.; Németh, A.A.; Roós, P.C.; Vittori, G. The morphodynamics of tidal sand waves: a model overview. Coast. Eng. 2008, 55, 657–670. [Google Scholar] [CrossRef]
- Emeana, C.J.; Hughes, T.J.; Dix, J.K.; Gernon, T.M.; Henstock, T.J.; Thompson, C.E.L.; Pilgrim, J.A. The thermal regime around buried submarine high-voltage cables. Geophys. J. Int. 2016, 206, 1051–1064. [Google Scholar] [CrossRef] [Green Version]
- Tiffany, J.M.; Devine, C.A. Effects of data resolution on early-stage pipeline route selection. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2017. [Google Scholar] [CrossRef]
- Nonnis, O.; Maggi, C.; Lanera, P.; Proietti, R.; Izzi, A.; Antonelli, P.; Gabellini, M. The Management of Information to Identify the Submarine Cable Route: the Case Study of Campania islands. J. Coast. Res. 2016, 75, 1002–1006. [Google Scholar] [CrossRef]
- Puig, P.; Durán, R.; Muñoz, A.; Elvira, E.; Guillén, J. Submarine canyon-head morphologies and inferred sediment transport processes in the Alías-Almanzora canyon system (SW Mediterranean): On the role of the sediment supply. Mar. Geol. 2017, 393, 21–34. [Google Scholar] [CrossRef]
- He, Y.; Zhong, G.; Wang, L.; Kuang, Z. Characteristics and occurrence of submarine canyon-associated landslides in the middle of the northern continental slope, South China Sea. Mar. Pet. Geol. 2014, 57, 546–560. [Google Scholar] [CrossRef]
- Micallef, A.; Ribó, M.; Canals, M.; Puig, P.; Lastras, G.; Tubau, X. Space-for-time substitution and the evolution of a submarine canyon–channel system in a passive progradational margin. Geomorphology 2014, 221, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Normandeau, A.; Lajeunesse, P.; St-Onge, G.; Bourgault, D.; Drouin, S.S.-O.; Senneville, S.; Bélanger, S. Morphodynamics in sediment-starved inner-shelf submarine canyons (Lower St. Lawrence Estuary, Eastern Canada). Mar. Geol. 2014, 357, 243–255. [Google Scholar] [CrossRef]
- Vangriesheim, A.; Khripounoff, A.; Crassous, P. Turbidity events observed in situ along the Congo submarine channel. Deep-Sea Res. II 2009, 56, 2208–2222. [Google Scholar] [CrossRef]
- Khripounoff, A.; Crassous, P.; Lo Bue, N.; Dennielou, B.; Jacinto, R.S. Different types of sediment gravity flows detected in the Var submarine canyon (northwestern Mediterranean Sea). Prog. Oceanogr. 2012, 106, 138–153. [Google Scholar] [CrossRef]
- Lastras, G.; Acosta, J.; Muñoz, A.; Canals, M. Submarine canyon formation and evolution in the Argentine Continental Margin between 44°30’S and 48°S. Geomorphology 2011, 128, 116–136. [Google Scholar] [CrossRef]
- Alsop, G.I.; Weinberger, R.; Levi, T.; Marco, S. Cycles of passive versus active diapirism recorded along an exposed salt wall. J. Struct. Geol. 2016, 84, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Gemmer, L.; Ings, S.J.; Medvedev, S.; Beaumont, C. Salt tectonics driven by differential sediment loading: stability analysis and finite-element experiments. Basin Res. 2004, 16, 199–218. [Google Scholar] [CrossRef]
- Salazar, J.A.; Knapp, J.H.; Knapp, C.C.; Pyles, D.R. Salt tectonics and Pliocene stratigraphic framework at MC-118, Gulf of Mexico: An integrated approach with application to deep-water confined structures in salt basins. Mar. Pet. Geol. 2014, 50, 51–67. [Google Scholar] [CrossRef]
- Salmazo, E.; Mendes, J.R.P.; Miura, K. The influence of salt domes in drilling well activities. Braz. J. Pet. Gas 2013, 7, 43–55. [Google Scholar] [CrossRef]
- Matsumoto, T.; Shinjo, R.; Nakamura, M.; Kimura, M.; Ono, T. Submarine active normal faults completely crossing the southwest Ryukyu Arc. Tectonophysics 2009, 466, 289–299. [Google Scholar] [CrossRef]
- Hengesh, J.V.; Angell, M.; Lettis, W.R.; Bachhuber, J.L. A systematic approach for mitigating geohazards in pipeline design and construction. In Proceedings of the IPC2004 International Pipeline Conference, Calgary, AB, Canada, January 2004; pp. 2567–2576. [Google Scholar]
- Trimintziou, M.S.; Sakellariou, M.G.; Psarropoulos, P.N. Designing Offshore Pipelines Facing the Geohazard of Active Seismic Faults. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2015, 9, 775–784. [Google Scholar] [CrossRef]
- Hough, G.; Green, J.; Fish, P.; Mills, A.; Moore, R. A geomorphological mapping approach for the assessment of seabed geohazards and risk. Mar. Geophys. Res. 2011, 32, 151–162. [Google Scholar] [CrossRef]
- Armijo, R.; Pondard, N.; Meyer, B.; Uçarkus, G.; de Lépinay, B.M.; Malavieille, J.; Dominguez, S.; Gustcher, M.-A.; Schmidt, S.; Beck, C.; et al. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in Istanbul. Geochem. Geophys. Geosyst. 2005, 6, Q06009. [Google Scholar] [CrossRef]
- Hébert, H.; Schindelé, F.; Altinok, Y.; Alpar, B.; Gazioglu, C. Tsunami hazard in the Marmara Sea (Turkey): A numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Mar. Geol. 2005, 215, 23–43. [Google Scholar] [CrossRef]
- Gràcia, E.; Pallàs, R.; Soto, J.I.; Comas, M.; Moreno, X.; Masana, E.; Santanach, P.; Diez, S.; García, M.; Dañobeitia, J. Active faulting offshore SE Spain (Alboran Sea): Implications for earthquake hazard assessment in the Southern Iberian Margin. Earth Planet. Sci. Lett. 2006, 241, 734–749. [Google Scholar] [CrossRef]
- Mouslopoulou, V.; Walsh, J.J.; Nicol, A. Fault displacement rates on a range of timescales. Earth Planet. Sci. Lett. 2009, 278, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.M.; Pondard, N. Derivation of direct on-fault submarine paleoearthquake records from high-resolution seismic reflection profiles: Wairau Fault, New Zealand. Geochem. Geophys. Geosyst. 2010, 11, Q11013. [Google Scholar] [CrossRef]
- DuRoss, C.B.; Personius, S.F.; Crone, A.J.; Olig, S.S.; Hylland, M.D.; Lund, W.R.; Schwartz, D.P. Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA. J. Geophys. Res. Solid Earth 2016, 121, 1131–1157. [Google Scholar] [CrossRef]
- Maier, K.L.; Paull, C.K.; Brothers, D.S.; Caress, D.W.; McGann, M.; Lundsten, E.M.; Anderson, K.; Gwiazda, R. Investigation of Late Pleistocene and Holocene activity in the San Gregorio Fault Zone on the continental slope north of Monterey Canyon, offshore Central California. Bull. Seismol. Soc. Am. 2017, 107, 1094–1106. [Google Scholar] [CrossRef]
- Angell, M.M.; Hanson, K.; Swan, F.H.; Youngs, R.; Abramson, H. Probabilistic Fault Displacement Hazard Assessment For Flowlines and Export Pipelines, Mad Dog and Atlantis Field Developments, Deepwater Gulf of Mexico. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2003. OTC 15402. [Google Scholar]
- Alves, T.M.; Cartwright, J.; Davies, R.J. Faulting of salt-withdrawal basins during early halokinesis: Effects on the Paleogene Rio Doce Canyon system (Espírito Santo Basin, Brazil). AAPG Bull. 2009, 93, 617–652. [Google Scholar] [CrossRef]
- Omosanya, K.O.; Johansen, S.E.; Harishidayat, D. Evolution and character of supra-salt faults in the Easternmost Hammerfest Basin, SW Barents Sea. Mar. Pet. Geol. 2015, 66, 1013–1028. [Google Scholar] [CrossRef]
- Weissenburger, K.S.; Borbas, T. Fluid -properties, phase and compartmentalization: Magnolia field case study, deepwater Gulf of Mexico, U.S.A. In Understanding Petroleum Reservoirs: Toward an Integrated Reservoir Engineering and Geochemical Approach; Cubitt, J.M., England, W.A., Larter, S.R., Eds.; Geological Society: London, UK, 2004; Special Publication 237; pp. 231–255. [Google Scholar]
- Barrie, J.V.; Hill, P.R. Holocene faulting on a tectonic margin: Georgia Basin, British Columbia, Canada. Geo-Mar. Lett. 2004, 24, 86–96. [Google Scholar] [CrossRef]
- Mohammedyasin, S.M.; Lippard, S.J.; Omosanya, K.O.; Johansen, S.E.; Harishidayat, D. Deep-seated faults and hydrocarbon leakage in the Snøhvit Gas Field, Hammerfest Basin, Southwestern Barents Sea. Mar. Pet. Geol. 2016, 77, 160–178. [Google Scholar] [CrossRef] [Green Version]
- Isiaka, A.I.; Durrheim, R.J.; Manzi, M.S.D.; Andreoli, M.A.G. 3D seismic analysis of the AK Fault, Orange Basin, South Africa: Implications for hydrocarbon leakage and offshore neotectonics. Tectonophys 2017, 721, 477–490. [Google Scholar] [CrossRef]
- Moore, J.L.; Griggs, G.B. Long-term cliff retreat and erosion hotspots along the central shores of the Monterey Bay National Marine Sanctuary. Mar. Geol. 2002, 181, 265–283. [Google Scholar] [CrossRef]
- Mortimore, R.N.; Lawrence, J.; Pope, D.; Duperret, A.; Genter, A. Coastal cliff geohazards in weak rock: The UK Chalk cliffs of Sussex. In Coastal Chalk Cliff Instability; Mortimore, R.N., Duperret, A., Eds.; Geological Society: London, UK, 2004; pp. 3–31. [Google Scholar]
- Ferreira, Ó.; Garcia, T.; Matias, A.; Taborda, R.; Dias, J.A. An integrated method for the determination of set-back lines for coastal erosion hazards on sandy shores. Cont. Shelf Res. 2006, 26, 1030–1044. [Google Scholar] [CrossRef]
- Nunes, M.; Ferreira, Ó.; Schaefer, M.; Clifton, J.; Baily, B.; Moura, D.; Loureiro, C. Hazard assessment in rock cliffs at Central Algarve (Portugal): A tool for coastal management. Ocean Coast. Manag. 2009, 52, 506–515. [Google Scholar] [CrossRef]
- Radosavljevic, B.; Lantuit, H.; Pollard, W.; Overduin, P.; Couture, N.; Sachs, T.; Helm, V.; Fritz, M. Erosion and Flooding—Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada. Estuar. Coast. 2016, 39, 900–915. [Google Scholar] [CrossRef]
- Orange, D.L.; Angell, M.M.; Brand, J.R.; Thomson, J.; Buddin, T.; Williams, M.; Hart, W.; Berger, W.J., III. Geologic and shallow salt tectonic setting of the Mad Dog and Atlantis fields: Relationship between salt, faults, and seafloor geomorphology. Lead. Edge 2004, 23, 354–365. [Google Scholar] [CrossRef]
- Meleddu, A.; Deiana, G.; Paliaga, E.M.; Todde, S.; Orrù, P.E. Continental shelf and slope geomorphology: Marine slumping and hyperpycnal flows (Sardinian Southern Continental Margin, Italy). Geomorphol. Soc. 2016, 39, 183–192. [Google Scholar] [CrossRef]
- Gillie, R.D. Causes of coastal erosion in Pacific Island Nations. J. Coast. Res. 1997, 24, 173–204. [Google Scholar]
- Garcin, M.; Desprats, J.F.; Fontaine, M.; Pedreros, R.; Attanayake, N.; Fernando, S.; Siriwardana, C.H.E.R.; de Silva, U.; Poisson, B. Integrated approach for coastal hazards and risks in Sri Lanka. Nat. Hazards Earth Syst. Sci. 2008, 8, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Finkl, C.W.; Pelinovsky, E.; Cathcart, R.B. A review of potential tsunami impacts to the Suez Canal. J. Coast. Res. 2012, 28, 745–759. [Google Scholar] [CrossRef]
- Casagli, N.; Falorni, G.; Tofani, V. Projects of International Programme on Landslides. In Landslides—Disaster Risk Reduction; Sassa, K., Canuti, P., Eds.; Springer-Verlag: Berlin, Germany, 2007; pp. 15–28. [Google Scholar]
- Farr, H.K. Multibeam bathymetric sonar: Sea beam and hydro chart. Mar. Geod. 1980, 4, 77–93. [Google Scholar] [CrossRef]
- Chavez, P.S., Jr. Processing Techniques for Digital Sonar Images from GLORIA. Photogramm. Eng. Remote Sens. 1986, 52, 1133–1145. [Google Scholar]
- Searle, R.C.; Le Bas, T.P.; Mitchell, N.C.; Somers, M.L.; Parson, L.M.; Patriat, P.H. GLORIA Image Processing: The State of the Art. Mar. Geophys. Res. 1990, 12, 21–39. [Google Scholar] [CrossRef]
- Le Bas, T.P.; Mason, D.C. Suppression of multiple reflections in GLORIA sidescan sonar imagery. Geophys. Res. Lett. 1994, 21, 549–552. [Google Scholar] [CrossRef]
- Wynn, R.B.; Masson, D.G.; Stow, D.A.V.; Weaver, P.P.E. The Northwest African slope apron: A modern analogue for deep-water systems with complex seafloor topography. Mar. Pet. Geol. 2000, 17, 253–265. [Google Scholar] [CrossRef]
- Wynn, R.B.; Huvenne, V.A.I.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.; Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 2014, 352, 451–468. [Google Scholar] [CrossRef] [Green Version]
- Huvenne, V.; Rooij, D.V.; Wheeler, A.; de Haas, H.; Henriet, J.P. TOBI sidescan sonar mapping of carbonate mound provinces and channel heads in the Porcupine Seabight, W of Ireland. Geophys. Res. Abst. 2003, 5, 08519. [Google Scholar]
- Habgood, E.L.; Kenyon, N.H.; Masson, D.G.; Akhmetzhanov, A.; Weaver, P.P.E.; Gardner, J.; Mulder, T. Deep-water sediment wave fields, bottom current sand channels and gravity flow channel-lobe systems: Gulf of Cadiz, NE Atlantic. Sedimentology 2003, 50, 483–510. [Google Scholar] [CrossRef]
- Dorschel, B.; Wheeler, A.J.; Huvenne, V.A.I.; de Haas, H. Cold-water coral mounds in an erosive environmental setting: TOBI side-scan sonar data and ROV video footage from the northwest Porcupine Bank, NE Atlantic. Mar. Geol. 2009, 264, 218–229. [Google Scholar] [CrossRef]
- Todd, B.J.; Fader, G.B.J.; Courtney, R.C.; Pickrill, R.A. Quaternary geology and surficial sediment processes, Browns Bank, Scotian Shelf, based on multibeam bathymetry. Mar. Geol. 1999, 162, 165–214. [Google Scholar] [CrossRef]
- Hughes Clarke, J.E.; Mayer, L.A.; Wells, D.E. Shallow-water imaging multibeam sonars: A new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Mar. Geophys. Res. 1996, 18, 607–629. [Google Scholar] [CrossRef]
- Hughes Clarke, J.E. Acoustic Seabed Surveying - Meeting the new demands for Accuracy, Coverage, and Spatial Resolution. Geomatica 2000, 54, 473–513. [Google Scholar]
- Long, D.; Bulat, J.; Stoker, M.S. Sea bed morphology of the Faroe-Shetland Channel derived from 3D seismic datasets. In 3D Seismic Technology: Application to the Exploration of Sedimentary Basins; Davies, R.J., Cartwright, J.A., Stewart, S.A., Lappin, M., Underhill, J.R., Eds.; Geological Society: London, UK, 2007; pp. 53–61. [Google Scholar]
- Haskell, N.; Nissen, S.; Hughes, M.; Grindhaug, J.; Dhanani, S.; Heath, R.; Kantorowicz, J.; Antrim, L.; Cubanski, M.; Nataraj, R.; et al. Delineation of geologic drilling hazards using 3-D seismic attributes. Lead. Edge 1999, 18, 373–382. [Google Scholar] [CrossRef]
- Heggland, R.; Meldahl, P.; Groot, P.; Aminzadeh, F. Chimneys in the Gulf of Mexico. Am. Oil Gas Rep. 2000, 43, 78–83. [Google Scholar]
- Meldahl, P.; Heggland, R.; Bril, B.; de Groot, P. Identifying faults and gas chimneys using multi attributes and neural networks. Lead. Edge 2001, 20, 474–482. [Google Scholar] [CrossRef]
- Aminzadeh, F.; Connolly, D.; Heggland, R.; Meldahl, P.; de Groot, P. Geohazard detection and other applications of chimney cubes. Lead. Edge 2002, 21, 681–685. [Google Scholar] [CrossRef]
- Ligtenberg, H.; Connolly, D. Chimney detection and interpretation, revealing sealing quality of faults, geohazards, charge of and leakage from reservoirs. J. Geochem. Explor. 2003, 78, 385–387. [Google Scholar] [CrossRef]
- Games, K.P. Shallow gas detection—Why HRS, why 3D, why not HRS 3D? First Break 2012, 30, 25–33. [Google Scholar] [CrossRef]
- Sack, P.; Haugland, T.; Stock, G. A New System for Three-Dimensional High-Resolution Geophysical Surveys. Mar. Tech. Soc. J. 2012, 46, 33–39. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, Z.; Xing, Y. Analysis of New Developments and Key Technologies of Autonomous Underwater Vehicle in Marine Survey. Procedia Environ. Sci. 2011, 10, 1992–1997. [Google Scholar] [CrossRef] [Green Version]
- Gafurov, S.A.; Klochkov, E.V. Autonomous unmanned underwater vehicles development tendencies. Procedia Eng. 2015, 106, 141–148. [Google Scholar] [CrossRef]
- Campbell, K.J.; Kinnear, S.; Thame, A. AUV technology for seabed characterization and geohazards assessment. Lead. Edge 2015, 34, 170–178. [Google Scholar] [CrossRef]
- Unterseh, S.; Letaief, W. Time-lapse attempt using AUV survey data in geohazards prone area, results and lessons learned. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 30 April–3 May 2007. OTC-27546-MS. [Google Scholar]
- Geldof, J.-B.; Naankeu-Wati, G.; Labaune, C. Time lapse 4D assessment of shallow water seabed with repeated multi-beam hydrographic surveys. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 1–4 May 2017. OTC-27669-MS. [Google Scholar]
- Talling, P.J.; Wynn, R.B.; Masson, D.G.; Frenz, M.; Cronin, B.T.; Schiebel, R.; Akhmetzhanov, A.M.; Dallmeier-Tiessen, S.; Benetti, S.; Weaver, P.P.E.; et al. Onset of submarine debris flow deposition far from original giant landslide. Nature 2007, 450, 541–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flemings, P.B.; Long, H.; Dugan, B.; Germaine, J.; John, C.M.; Behrmann, J.H.; Sawyer, D.; IODP Expedition 308 Scientists. Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth Planet. Sci. Lett. 2008, 269, 309–325. [Google Scholar] [CrossRef]
- Morgan, J.K.; Silver, E.; Camerlenghi, A.; Dugan, B.; Kirby, S.; Shipp, C.; Suyehiro, K. Addressing Geohazards Through Ocean Drilling. Sci. Drill. 2009, 7, 15–30. [Google Scholar] [CrossRef]
- Mori, J.; Chester, F.; Brodsky, E.E.; Kodaira, S. Investigation of the huge tsunami from the 2011 Tōhoku-Oki, Japan, earthquake using ocean floor boreholes to the fault zone. Oceanography 2014, 27, 132–137. [Google Scholar] [CrossRef]
- Hernández-Molina, F.J.; Sierro, F.J.; Llave, E.; Roque, C.; Stow, D.A.V.; Williams, T.; Lofi, J.; Van der Schee, M.; Arnaíz, A.; Ledesma, S.; et al. Evolution of the Gulf of Cadiz Margin and southwest Portugal contourite depositional system: tectonic, sedimentary and paleoceanographic implications from IODP Expedition 339. Mar. Geol. 2015, 377, 7–39. [Google Scholar] [CrossRef]
- Strout, J.M.; Tjelta, T.I. In situ pore pressures: What is their significance and how can they be reliably measured? Mar. Pet. Geol. 2005, 22, 275–285. [Google Scholar] [CrossRef]
- Iannaccone, G.; Guardato, S.; Vassallo, M.; Elia, L.; Beranzoli, L. A new multidisciplinary marine monitoring system for the surveillance of volcanic and seismic areas. Seismol. Res. Lett. 2009, 80, 203–213. [Google Scholar] [CrossRef]
- Monna, S.; Falcone, G.; Beranzoli, L.; Chierici, F.; Cianchini, G.; De Caro, M.; De Santis, A.; Embriaco, D.; Frugoni, F.; Marinaro, G.; et al. Underwater geophysical monitoring for European Multidisciplinary Seafloor and water column Observatories. J. Mar. Syst. 2014, 130, 12–30. [Google Scholar] [CrossRef]
- Kelley, D.S.; Delaney, J.R.; Juniper, S.K. Establishing a new era of submarine volcanic observatories: Cabling Axial Seamount and the Endeavour Segment of the Juan de Fuca Ridge. Mar. Geol. 2014, 343, 426–450. [Google Scholar] [CrossRef]
- Talling, P.J.; Paull, C.K.; Piper, D.J.W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth-Sci. Rev. 2013, 125, 244–287. [Google Scholar] [CrossRef] [Green Version]
- Favali, P.; Beranzoli, L. EMSO: European multidisciplinary seafloor observatory. Nucl. Instrum. Methods Phys. Res. A 2009, 602, 21–27. [Google Scholar] [CrossRef]
- Baba, T.; Takahashi, N.; Kaneda, Y. Near-field tsunami amplification factors in the Kii Peninsula, Japan for Dense Oceanfloor Network for Earthquakes and Tsunamis (DONET). Mar. Geophys. Res. 2013, 35, 319–325. [Google Scholar] [CrossRef]
- Nakano, M.; Nakamura, T.; Kamiya, S.; Ohori, M.; Kaneda, Y. Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations. Earth Planet. Space 2013, 65, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Ariyoshi, K.; Nakata, R.; Matsuzawa, T.; Hino, R.; Hori, T.; Hasegawa, A.; Kaneda, Y. The detectability of shallow slow earthquakes by the Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET) in Tonankai district, Japan. Mar. Geophys. Res. 2014, 35, 295–310. [Google Scholar] [CrossRef]
- Kaneda, Y. DONET: A real-time monitoring system for megathrust earthquakes and tsunamis around southwestern Japan. Oceanography 2014, 27, 103. [Google Scholar] [CrossRef]
- Suzuki, K.; Nakano, M.; Takahashi, N.; Hori, T.; Kamiya, S.; Araki, E.; Nakata, R.; Kaneda, Y. Synchronous changes in the seismicity rate and ocean-bottom hydrostatic pressures along the Nankai trough: A possible slow slip event detected by the Dense Oceanfloor Network system for Earthquakes and Tsunamis (DONET). Tectonophys 2016, 680, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Caplan-Auerbach, J.; Duennebier, F. Seismic and acoustic signals detected at Lo’ihi Seamount by the Hawai’i Undersea Geo-Observatory. Geochem. Geophys. Geosyst. 2001, 2. [Google Scholar] [CrossRef]
- Delaney, J.R.; Heath, G.R.; Howe, B.; Chave, A.D.; Kirkham, H. NEPTUNE: Real-time ocean and earth sciences at the scale of a tectonic plate. Oceanography 2000, 13, 71–83. [Google Scholar] [CrossRef]
- Thomson, R.; Fine, I.; Rabinovich, A.; Mihaly, S.; Davis, E.; Heesemann, M.; Krassovski, M. Observation of the 2009 Samoa tsunami by the NEPTUNE - Canada cabled observatory: Test data for an operational regional tsunami forecast model. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Sgroi, T.; Monna, S.; Embriaco, D.; Giovanetti, G.; Marinaro, G.; Favali, P. Geohazards in the Western Ionian Sea: Insights from non-earthquake signals recorded by the NEMO-SN seafloor observatory. Oceanography 2014, 27, 154–166. [Google Scholar] [CrossRef]
- Oaie, G.; Seghedi, A.; Radulescu, V. Natural marine hazards in the Black Sea and the system of their monitoring and real-time warning. Geo-Eco-Marina 2016, 22, 5–28. [Google Scholar]
- Hsiao, N.-C.; Lin, T.-W.; Hsu, S.-K.; Kuo, K.-W.; Shin, T.-C.; Leu, P.-L. Improvement of earthquake locations with the Marine Cable Hosted Observatory (MACHO) offshore NE Taiwan. Mar. Geophys. Res. 2013, 35, 327–336. [Google Scholar] [CrossRef]
- Favali, P.; Beranzoli, L. Seafloor Observatory Science: A review. Ann. Geophys. 2006, 49, 515–567. [Google Scholar]
- Fujinawa, Y.; Noda, Y. Japan’s Earthquake Early Warning System on 11 March 2011: Performance, Shortcomings, and Changes. Earthq. Spectra 2013, 29, S341–S368. [Google Scholar] [CrossRef]
- Nascimento, K.R.D.S.; Alencar, M.H. Management of risks in natural disasters: A systematic review of the literature on NATECH events. J. Loss Process Ind. 2016, 44, 347–359. [Google Scholar] [CrossRef]
- Cozzani, V.; Spadoni, G.; Antonioni, G.; Landucci, G.; Tugnoli, A.; Bonvicini, S. Quantitative assessment of domino and NaTech scenarios in complex industrial areas. J. Loss Process Ind. 2014, 28, 10–22. [Google Scholar] [CrossRef]
- Meng, Y.; Lu, C.; Yan, Y.; Shi, L.; Liu, J. Method to analyze the regional life loss risk by airborne chemicals released after devastating earthquakes: A simulation approach. Process Saf. Environ. Prot. 2015, 94, 366–379. [Google Scholar] [CrossRef]
- Kadri, F.; Birregah, B.; Châtelet, E. The impact of natural disasters on critical infrastructures: A domino effect-based study. J. Homel. Secur. Emerg. Manag. 2014, 11, 217–241. [Google Scholar] [CrossRef]
- Krausmann, E.; Cruz, A.M. Impact of the 11 march 2011, great east Japan earthquake and tsunami on the chemical industry. Nat. Hazards 2013, 67, 811–828. [Google Scholar] [CrossRef]
- Maes, M.A.; Dann, M.R. Assessing global change when data are sparse. Int. J. Risk Assess. Manag. 2011, 15, 349–363. [Google Scholar] [CrossRef]
Marine Geohazard Categories | Geological Feature, Process or Event |
---|---|
Slope failure | Creep, slumps, debris flow, mud flows, turbidity currents, landslides, slope failure, scars, scarps, slide blocks, slope instability |
Fluids seepage | Pockmarks, gas chimney, mud volcanoes, shallow gas, charged sediments, gas hydrate, overpressured sands, shallow-water flows, seeps, free gas accumulations, fluid flow |
Earthquake | Earthquakes |
Tsunami | Tsunamis |
Volcanism | Submarine eruptions, submarine volcanoes, flank collapse, volcanic tremor |
Subsidence | Vanished islands, subsidence |
Bedforms | Sediment waves, mudwaves, sandwaves, boulder fields, mobile sediments |
Positive reliefs | Outcrops, mounds, ridges, seamounts, volcanic highs |
Negative reliefs | Canyons, steep slope, channels, gullies, escarpments, iceberg plough marks |
Diapirs | Salt bodies, diapirs, mud diapirism |
Faulting | Faults |
Erosion | Cliff erosion, beach erosion, submarine erosion |
Country/Region | Project | References |
---|---|---|
Japan | Dense Ocean floor Network system for Earthquakes and Tsunamis, DONET | [223,224,225,226,227] |
USA | Monterey Accelerated Research System, MARS and Ocean Observatories Initiative, OOI | [220,228] |
Canada | North-East Pacific Time-Series Undersea Networked Experiments, NEPTUNE and Victoria Experimental Network Under the Sea, VENUS | [229,230] |
European Union | European Multidisciplinary Seafloor and water-column Observatory, EMSO | [35,217,231,232] |
Taiwan | Marine Cable Hosted Observatory, MACHO | [233] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camargo, J.M.R.; Silva, M.V.B.; Ferreira Júnior, A.V.; Araújo, T.C.M. Marine Geohazards: A Bibliometric-Based Review. Geosciences 2019, 9, 100. https://doi.org/10.3390/geosciences9020100
Camargo JMR, Silva MVB, Ferreira Júnior AV, Araújo TCM. Marine Geohazards: A Bibliometric-Based Review. Geosciences. 2019; 9(2):100. https://doi.org/10.3390/geosciences9020100
Chicago/Turabian StyleCamargo, João M. R., Marcos V. B. Silva, Antônio V. Ferreira Júnior, and Tereza C. M. Araújo. 2019. "Marine Geohazards: A Bibliometric-Based Review" Geosciences 9, no. 2: 100. https://doi.org/10.3390/geosciences9020100
APA StyleCamargo, J. M. R., Silva, M. V. B., Ferreira Júnior, A. V., & Araújo, T. C. M. (2019). Marine Geohazards: A Bibliometric-Based Review. Geosciences, 9(2), 100. https://doi.org/10.3390/geosciences9020100