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Abstract: The relation between the fraction of snow cover and the spectral behavior of the surface is a
critical issue that must be approached in order to retrieve the snow cover extent from remotely sensed
data. Ground-based cameras are an important source of datasets for the preparation of long time series
concerning the snow cover. This study investigates the support provided by terrestrial photography
for the estimation of a site-specific threshold to discriminate the snow cover. The case study is located
in the Italian Alps (Falcade, Italy). The images taken over a ten-year period were analyzed using
an automated snow-not-snow detection algorithm based on Spectral Similarity. The performance
of the Spectral Similarity approach was initially investigated comparing the results with different
supervised methods on a training dataset, and subsequently through automated procedures on the
entire dataset. Finally, the integration with satellite snow products explored the opportunity offered
by terrestrial photography for calibrating and validating satellite-based data over a decade.

Keywords: fractional snow cover; remote sensing; terrestrial photography; cold regions

1. Introduction

Snow cover is an important component of the cryosphere that plays a key role for climate dynamics
and the resources availability: the seasonality of the snow cover influences, in fact, weather patterns,
hydropower generation, agriculture, forestry, tourism, and aquatic ecosystems [1–3]. Remote sensing
is the most common tool for the routine estimation of the snow cover extent. However, two different
aspects must be considered for the enhancement of the final output: time and spatial resolutions. Both
components, using remotely sensed data, are connected to each other, since the higher the spatial
resolution (below hundreds of meters), the lower the revisit time interval (more than 1 week) [4].

The state-of-the-art snow products concerning the snow extent are remotely sensed and they
are based mainly on multispectral optical sensors. They can investigate the snow cover and give
information about the size and the shape of snow grains [5]; the presence of impurity soot; the age of
the snow; and the presence of depth hoars. Furthermore, the short-wave infrared signal can support
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the discrimination between snow and clouds [6]. The estimation of the snow extent from remotely
sensed multispectral images is based on the relation between the radiative behavior of the surface
and the Fractional Snow Cover (FSC). This parameter describes the percentage of surface covered
by snow [7] in a pixel element of a remotely sensed image. Considering that snow-covered surfaces
are highly reflective in the visible range and low reflective in the short-wave infrared (swir) [8], it is
possible to define an index that enhances the discrimination between snow and not snow in a single
pixel. This index, defined as Normalized Difference Snow Index (NDSI), is calculated as follows:

NDSI =
green− swir
green + swir

(1)

The green and the swir parameters are the bands available for each satellite sensor and their
selection includes generally wavelength ranges centered at 500–600 nm (green) and 1500–1600 nm
(swir). The relation between the FSC and the Normalized Difference Snow Index (NDSI) represents
the most common inference required by remote sensing studies. There are two options for estimating
the NDSI—FSC relation: the first one consists in combining satellite products with different spatial
resolution [9,10]; and the second one can be approached having a ground truth information. The first
solution is based on [8] combining Landsat and MODIS data and a NDSI to FSC relation is defined.

FSC = 1.45×NDSI− 0.01 (2)

This knowledge is implemented in the SNOWMAP algorithm [11], which is the core of the
MODIS data chain for the definition of remotely sensed snow products. The second solution can
be approached defining an empirical reflectance-to-snow-cover model that requires a calibration
having a number of reference sites in the satellite image. The most important example is the so-called
Norwegian Linear Reflectance-to-snow-cover algorithm (NLR) [12] that is the core of the GlobSnow
Snow Extent (SE) data chain [13]. From this perspective, the availability of webcam networks is
an important data source for calibration and validation processes. The attention of the scientific
community of this proxy is increasing, and the literature about this topic is growing [9,14–17].
Furthermore, several tools (for example, FMIPROT and PRACTISE) can be considered for research
purposes [18–20]. The solutions available for the analysis of webcam imagery are commonly based
on two different processes: orthorectification and classification. While the geometrical issue is based
on the mathematical solution of the relationship between pixel elements and the ground surface, the
detection of snow cover represents the real cognitive gap. The classification issue can be approached,
following the applications available for the remote sensing imagery, using supervised, unsupervised
or object-oriented methods [21], depending on the number of images that must be processed.

The focus of this paper is to investigate the contribution of the terrestrial photography to define
site-specific thresholds useful for studying the snow cover with remotely sensed data. The expected
outcomes are: (i) the description of an automated procedure able to process long time series of
ground-based images; (ii) the comparison between automated approaches and supervised methods;
(iii) and the evaluation of the potential contribution of terrestrial photography to the snow cover
retrieval from remotely sensed data.

2. Methods

The purposes of this study required the investigation of different components and the integration
of different data sources (Figure 1). The accomplishment of the declared objectives was approached
selecting a study site where ground-based cameras were positioned for a decade. The first part of the
effort was devoted to the analysis of the available terrestrial dataset. In this case, the selection of the
most appropriate procedure was obtained considering the automated procedures and the supervised
methods in order to check the overall performance of automated solutions under different conditions
of illumination and snow coverage. Secondly, the collection of different satellite products provided
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the material useful for evaluating the potential impact of terrestrial photography on the estimation of
snow extent from remotely sensed data.
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Figure 1. Description of the workflow followed in the manuscript. While the green boxes represent the
considered data sources, the other colored boxes constitute the final products obtained by the different
procedures required for the estimation of the Fractional Snow Cover.

2.1. Study Area

The considered study area (Figure 2) is located in the Italian northeastern Alps (Lago di Cavia,
Falcade, Italy). The webcam (46◦21′24” N, 11◦49′20” E, WGS84) was positioned in a ski resort at
2200 m above the sea level. The study site is characterized by a snow cover duration almost complete
from mid-November to late April, a melting season completed at the beginning of June and occasional
snowfall in the rest of the year [22]. The selection of the site for the camera setup was supported by the
topographic behavior of the location, which is an almost flat area with a soft slope where an artificial
water body is located. The presence of an important ski facility and the management of this water
resource outline the importance of this location.

2.2. Camera Setup

The webcam system was provided by Sistemi Video Monitoraggio S.r.l. (Romito Magra-SP) using
a digital camera (Olympus C765). The camera was deployed at 2 m above the ground. The camera
was featured by 4-megapixel sensor and a 1/2.5” CCD, the focal length was 6.3 mm and images were
saved in the jpeg data format with an 800 × 600 pixel resolution. Data logging and transmission were
provided by specific hardware placed into a waterproof case and the power supply was ensured by the
direct connection to the electric mains and by photovoltaic panels with a buffer battery. Data transfer
was performed using an intranet connection with the receiving station located in Arabba through
a mobile connection. The Veneto Regional Agency for Environmental Protection and Prevention
developed a webcam section in the website (www.arpa.veneto.it) that supported the near-real-time
availability of the images. The field of view defined by the camera perspective considered an area
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of about 5000 m2 with a maximum distance from the camera up to 180 m. The camera acquired
all-year-round images every 1 hour since 2004 to 2013. For this study, we considered a “complete”
dataset with about 8000 images where every melting season was included in order to have a large
range of snow cover and illuminating conditions. In addition of that, we defined a “small” dataset with
30 images dating back to 2008 and 2009, which included a large variability in terms of illuminating
conditions and snow cover.
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Figure 2. The study site of Cima Pradazzo (a), close to Falcade (Italy). Panoramic view of the camera
(b) with the considered mask in red. The orthorectified views of the camera (c): the grey shaded area
with red contour shows the camera view projected on the ground; and the colored lines indicate the
pixel grids of the different satellite products.

2.3. Terrestrial Image Classification

Following the guidelines developed for the analysis of multispectral remotely sensed images,
the classification issue can be approached using different principles depending on the methods for
measuring the spectral matching or the spectral similarity: the deterministic-empirical methods and
the stochastic approaches [23]. The deterministic measures include the spectral angle, the Euclidean
distance and the cross-correlation of spectral vectors in the hyperspectral space. The stochastic
measures evaluate the statistical distributions of spectral reflectance values of the targeted region of
interests. Within this framework, a large variety of classification methods that can be grouped from
different perspectives [24].

2.3.1. Supervised Methods

The requirement for the automated solution is a “parametric” method, based on a “per-pixel”
classification about the presence of snow cover. The description of the pixel content must be definitive
and, consequently, a “hard” classifier is necessary. Furthermore, the classification process cannot be
iterative and specific for a single image. Consequently, the generalization for different images, under
different illumination conditions, can be obtained with a “supervised” classifier, which considers a
“training” Region Of Interest (ROIs) associated with the theoretical “white” snow. Looking at the
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supervised methods, we can include classifiers that are sensitive to the user experience during the
definition of the region of interests and to the selection of discriminant parameters between snow
and not snow. Some methods are associated with the threshold selection defined by the statistics
of the identified ROIs. This is the case, for example, of the Parallelepiped classifier (PA), where
the user defines a threshold based on the standard deviation. Some other approaches consider the
probability associated with a specific ROI [25], calculating the Euclidean distance for the Minimum
Distance (MD) method, the Mahalanobis distance for the Mahalanobis classifier (MA), and the
covariance-based discriminant function for the Maximum Likelihood method (ML). These algorithms
are all implemented in the commercial suite ENVI version 4.7 (Exelis Visual Information Solutions,
Boulder, Colorado).

2.3.2. Blue Thresholding

Within the group of automated methods, there is a well-established method that is currently in
use for snow-cover purposes with some limitations: it is a linear classifier based on thresholding of the
blue channel (BT) that was introduced by [26] in the Snow-noSnow software. The method is based
on the frequency counting of the blue component, and its hardness is associated with the definition
of snow-not-snow limit looking at increments in the blue-channel histogram. This method has been
used in several studies and it has shown some limitations. The illuminating conditions, the surface
roughness and the distance from the camera are critical issues that affect the performance on retrieving
snowed covers [27]. These limitations are the grounds of research for a higher performing method that
possibly increases the depth of analyzing RGB imagery.

2.3.3. Spectral Similarity

The approach proposed in this paper is based on measuring the spectral variations in a 3D
color space where reference endmembers are a theoretical “white” snow and a theoretical “black”
target. The parameters estimated in this vector system are the spectral angle defined by [28] and
the Euclidean distance [21], respectively calculated considering white and black references. While
the parameter based on the Spectral Similarity (SS) represents an independent spectral feature, the
Euclidean distance of the vector can be defined as a brightness-dependent feature. The involvement of
all the three-color components will support the increase of surface types that can be discriminated:
snow, shadowed snow and not snow. The proposed approach (Figure 1) was developed in the R
programming environment [29].

The first step consists of rearranging the three-color components of each pixel into a new
two-dimensional vector space, mathematically defined as follows:

θ = acos
PRRR + PGRG + PBRB√

P2
R + P2

G + P2
B

√
R2

R + R2
G + R2

B

(3)

The spectral angle θ in Equation (3) represents the relative proportion of the three-pixel
components (PR, PG and PB) in relationship to the reference composition (RR = 1, RG = 1
and RB = 1). The angle varies from zero, which can be associated with a “flat” behavior of colors
(R = G = B), to π

2 , referring to a very dissimilar behavior from the theoretical “white” reference.

∆ =
√

P2
R + P2

G + P2
B (4)

The spectral distance ∆ in Equation (4) is conversely an estimation of the vector length in the RGB
space. It can range from 0 (black) to 1.73 (white) and it can be associated with the Euclidean distance
from a “black” reference RGB composition (RR = 0, RG = 0 and RB = 0). While this parameter is
sensitive to the brightness of colors, the spectral angle is invariant with brightness [23]. The outcome
of this step consists in the frequency counting of pixels considering the two spectral components with
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a 0.05 resolution. Furthermore, the total number of included pixels ( ftot) and the area included in the
cluster perimeter (Pf ) were estimated.

The second step of the procedure consists in discriminating clusters from the obtained frequency
distribution, and a watershed algorithm [30] can support this segmentation phase. Each cluster was
fitted with a normal distribution in order to retrieve modes (defined by µ∆ and µθ) and deviations
(σ∆ and σθ). If clusters are very close to each other, they can be combined in one larger group depending
on their probability to be discriminated using the Mahalanobis distance. The criteria adopted for the
definition of the cluster perimeter was based on the pixel frequency f (∆′, θ′) higher than the Poisson
error of the adjacent pixel f (∆, θ) (Equation (5)).

f (∆′, θ′) >
√

f (∆, θ) (5)

The procedure for the delimitation of the cluster perimeter was implemented using a per-pixel method
following [31].

The final step consists in the identification of the surface type (snow, not snow and shadowed
snow). This step was defined observing the frequency distributions of pixels in the defined spectral
space (Figure 3). It was possible to detect that snow covers were generally characterized by higher
θ angles and lower ∆ values than not-snow covers. Snowed centroids (defined by µ∆ and µθ) were
generally positioned where angles were higher than 0.9 and distances were lower than 0.1.
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Figure 3. Examples of two different snow-not-snow mixtures. Colored polygons identified areas of
clusters in presence of two different situations: partial (a) and full (b) snow cover. Lower plots are
frequency distribution of pixels at the different spectral angles (θ) and spectral distances (∆).

Furthermore, the range of cluster values (∆max, ∆min, θmax and θmin) were characterized by short
distance variations compared to angles in the case of snow-covered surfaces. From this point of
view, clusters with limited perimeters (Pf < 0.04) and a high number of included pixels ( ftot > 50
of the analyzed pixels) described surfaces with homogeneous reflective behavior, as expected for
snow-covered surfaces. The second rule that can be considered includes clusters with limited
perimeters (Pf < 0.04) and consistent number of included pixels (10 < ftot < 50 of the analyzed pixels).
The optical behavior of those clusters must be coupled to their centroid position that must have low
spectral angles (µ∆ < 0.5). These constraints describe, also in this case, clusters characterized by a
homogeneous spectral behavior coherent with a snow-covered surface. The third rule that completes
the classification procedure consisted on estimating the range of ∆ between the defined clusters in the
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image and on defining a threshold (T∆) that discriminates snow and other surface types. Two situations
can occur for defining clusters above the threshold as snow-covered surface: one with multiple clusters
(Equation (6)) and one with a single polygon (Equation (7)).

µ∆ > max∆max −min∆min (6)

µ∆ > 0.8 (7)

Once performed the classification, the amount of snow-covered surface was obtained adding the
contribution of each cluster identified as snow covered. Furthermore, the quality of the final output
was checked by the target area over the 10-year series of images. From this perspective, the ground
control points were used to estimate eventually-induced shifting of the target view, and also to control
the occurrence of adverse meteorological conditions (fog, clouds, intense raining/snowing) that could
affect the image. Finally, the dataset was filtered from artifacts coupling this analysis to some basic
tests about the file corruption and the image resolution.

2.4. Orthorectification

The orthorectification module was based on the geometrical correction of the perspective view.
This step was implemented following [32]. The available digital elevation model [33], with a 5 m spatial
resolution and 1 m vertical resolution, provided about 300 topographic points that were projected
on the camera view (Figure 1c). The effectiveness of the correction was estimated considering eight
ground control points.

2.5. Satellite Snow Products

Several satellite products are available for the remote sensing of the cryosphere and for this study
we considered products obtained by optical sensors, characterized by different spatial resolutions:
high (below 100 m); intermediate (below 1 km); and low (higher than 1 km). The integration between
those products and ground-based imagery will be tested, in order to improve the dataset concerning
the snow cover over a decade.

2.5.1. Optical Remote Sensing with High Spatial Resolution

The available remotely sensed snow products with a higher spatial resolution (below 100 m) were
limited to Landsat missions, considering the studied time range (2004–2013). The selected sensors
included Landsat satellites from 5 to 8, taking some differences into account in terms of band spectral
ranges. All these data are now processed and available in the Swiss Data Cube [34]. The Landsat
satellites are characterized by a spatial resolution of 30 m and a revisit time of 16 days. The considered
data were geometrically and atmospherically corrected (Level 2A) using the Second Simulation of the
Satellite Signal in the Solar Spectrum (6S) algorithm available in the Atmospheric and Radiometric
Correction of Satellite Imagery (ARCSI) software [35]. The final estimation of NDSI was possible
considering Eq.1 and the first short-wave infrared band of Landsat sensors. The wavelength ranges
are specific for each sensor and they correspond to 520–600 nm and 1550–1755 nm for missions 5 and 7,
and 533–590 nm and 1566–1651 nm for mission 8 [36].

2.5.2. Optical Remote Sensing with Intermediate Spatial Resolution

The highest time resolution available for optical remote sensing at our latitudes is provided, in
the framework of the Earth Observing System (EOS) flagship, by NASA’s satellites Terra and Aqua.
Both platforms are equipped with the Moderate Resolution Imaging Spectroradiometer (MODIS) and
they provide the coverage of the Earth two times daily (Terra in the local morning and Aqua in the
local afternoon). The instrument is characterized by 36 bands with a spatial resolution of 250 m in the
visible range and 500 m in the short-wave infrared. The NASA’s data chain provides the retrieval of
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NDSI at the ground, and we considered the MOD10A1_006 and the MYD10A1_006 products, for Terra
and Aqua respectively, obtained using the National Snow and Ice Data Center services [11]. The NDSI
values, calculated using the MODIS bands 4 (545–565 nm) and 6 (1628–1652 nm) in Equation1, were
obtained in absence of clouds 2314 times over 6556 overpasses within the studied period.

2.5.3. Optical Remote Sensing with Low Spatial Resolution

The daily estimation of the snow cover extent is being provided, over the considered period, by
the European Space Agency as a component of the Data User Element. The GlobSnow Snow Extent
(SE) product covers the Northern Hemisphere and it is going to be extended to the Sentinel missions.
The GlobSnow SE processing system applies optical measurements in the visual and in the thermal part
of the electromagnetic spectrum acquired by the ERS-2 sensor ATSR-2 and the Envisat sensor AATSR.
The first step of the data chain is based on a cloud-cover retrieval algorithm (SCDA) where clouds,
as well as large water bodies (oceans, lakes and rivers) and glaciers, are masked out. This algorithm is
based on the brightness - temperature difference between 11 and 3.7 µm and on a set of additional
rules, useful for certain sky conditions. Furthermore, the snow cover information is retrieved for
not-vegetated areas by the NLR algorithm [37] where the band 2 (670 nm) is considered. This step is
based on a semi-empirical reflectance model, where reflectance from a target is expressed as a function
of the snow fraction. The Fractional Snow Cover can then be derived from the observed reflectance
based on the given reflectance constants and the transmissivity values. The product is provided daily
with a spatial resolution of 1 km and the data are available using the GlobSnow service [13].

2.6. Statistical Analysis

The statistical analysis performed on the available datasets was carried out using state-of-the-art
tools [38] that were implemented in the R-Project programming environment [29].

3. Results

Results will be presented separating the three objectives of the paper. The first part of the analysis
will consider a small dataset where different supervised and automated classifiers will be compared.
The second section will consider a ten-year dataset where about 8000 images will be processed using
automated solutions. Finally, the FSC estimated by terrestrial photography will be compared to the
output obtained by remotely sensed data.

3.1. Comparison between Supervised and Automated Classifiers

This first part of the analysis includes two steps: one dedicated to the orthorectification of the
panoramic view observed by the webcam; the other focused on the image classification performed
considering the color components associated with a RGB color space. The first process produced a
weighting mask applying a geometrical correction and all the considered classification algorithms used
this product successively. The classification step was operated on a small dataset of 30 images due to
the user intervention required by the supervised methods (ML, MD, MA and PD) for the definition of
snowed ROIs. This is a strong limitation for the analysis of long time series, and it outlines the need
of automated solutions since BT and SS algorithms, for example, did not require any user decision.
The results obtained by the BT method and the SS algorithm were preliminarily analyzed considering
the confusion matrix of each image and estimating the average overall accuracy as reported in Table 1.

Considering only two classes of cover (snow and not snow pixels), the comparison between
automated and supervised classifiers showed in general a good agreement with an overall accuracy
higher than 90%. Furthermore, SS showed a better performance compared to BT with an increased
average accuracy of about 1–2% in terms of pixel number. While BT reached the full agreement with
the supervised methods in 10% of images, SS matched the classifications obtained by the traditional
approaches in more than 30% of images. The goodness of the automated algorithms is confirmed by
the Cohen’s kappa coefficient, which increases from 0.89 for BT to 0.93 for SS. Both averages indicated
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very good agreements between supervised and automated solutions but they confirmed the increased
performance of the algorithm based on Spectral Similarity. Although these differences may seem
limited, the contribution of 2000–5000 pixels (in a masked part of the camera image of 250,000 pixels)
in terms of surface can be important, depending on the distance of each pixel. The projection of each
pixel on the surface could increase consistently from closer to faraway pixels. From this perspective,
the impact of omissions and false discoveries on the projected area could be higher than the overall
accuracy in terms of pixels and it should be analyzed case by case.

Table 1. Overall accuracy of automated algorithms, Blue Thresholding (BT) and Spectral Similarity
(SS), versus supervised classifiers: the Mahalanobis distance (MA); the Maximum Likelihood (ML); the
Minimum Distance (MD); and the Parallelepiped classifier (PD).

Overall Accuracy (%)

MA ML MD PD

BT 96.9 96.8 97.9 97.8
SS 97.9 98.5 99.2 98.6

3.2. Comparison between Automated Classifiers

The comparison between the estimated snow-covered areas obtained by the two automated
algorithms (Figure 4a and Figure S1 for one example) confirmed the trend on underestimating
the snow extent by BT compared to SS (see Table S1 for the raw data). The FSC estimated by
the two methods differed slightly (the non-parametric Kruskal-Wallis chi-squared test indicated
a non-significant statistical difference) and the Root Mean Squared Error (RMSE) was about 7.4%.
The relation between the two FSC estimations showed a good correlation (R2 close to 0.95) and the
slope of the regression was 0.91 with an intercept of 11.5%.
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Although BT and SS estimations were almost consistent considering only the small dataset,
the complete dataset highlighted an improved performance of SS (Figure 4b). The Kruskal-Wallis
test indicated differences with a significance level higher than 99% and the RMSE was about 12%.
The relation between the two FSC estimations showed a limited correlation (R2 close to 0.87) compared
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to the small dataset, and the slope of the regression was 0.87 with an intercept of 14.5%. The detection
of snow-covered areas using SS was generally higher than that obtained by BT and in few occurrences,
it was completely missed by BT (see Table S2 for the raw data). The points closer to the left axis
were, in fact, situations where light conditions (low sun elevation or intense cloud cover) affected
the BT output. Those illumination conditions were important also in additional cases, where BT
underestimated the snow-covered area compared to SS.

3.3. Comparison between FSC Estimations Obtained by Terrestrial Photography and Remote Sensing

The comparison between satellite products and terrestrial photography retrievals was focused
on evaluating the relationship associated with the two data sources (see Table S3 for the raw data).
We considered remotely sensed data with different spatial resolutions and data chains. The Landsat
images available in the considered time range was 189, but 55 images were discarded due to the intense
cloud coverage. The MODIS values were obtained in absence of clouds 2314 times over 6556 overpasses
within the studied period. Finally, 289 GlobSnow data points were available during the considered
period. While Landsat and MODIS data were converted in FSC considering the state-of-the-art relation
described by [8], the GlobSnow product is ready-to-be-used considering the ground-truth support of
the calibration sites identified in the images.

The Landsat sensors provided 24 observations (Figure 5a) and 10 were characterized by NDSI
higher than 0.6, indicating the total coverage of snow in pixels. While two observations showed
coherent NDSI values with the camera estimates (when snow cover was absent, the NDSI was negative),
intermediate values were 3 times slightly above the expected results estimated using Equation (2)
and 9 times consistently higher (more than 30% of overestimation). Whereas illumination differences
can be related to the definition of a possible site-specific relation, heavy differences occurred when a
partial shadow of clouds on the ground was present during the satellite revisit. The non-parametric
Kruskal-Wallis chi-squared test indicated differences with a significance level of 80%, the RMSE was
about 21% and the correlation coefficient was 0.59.

The MODIS sensors provided 430 observations (Figure 5b) and 205 were characterized by NDSI
higher than 0.6, indicating the total coverage of snow in terms of pixels. The intermediate values were,
also in this case, generally above the expected results. A first group of 26 observations showed camera
FSC higher than expected NDSI-derived values with a difference higher than 30%; 33 observations
were up to 30% higher; and 15 times MODIS products didn’t detect any snow cover while the
camera measured FSC ranging between 10–60%. All of these situations occurred when the cloud
screening missed to identify partial cloud shadows on the ground while the satellite was overpassing.
This comparison, in addition to Landsat indications, showed negative estimations in eight cases.
These estimations (more than 20%) were artifacts associated with wrong cloud masking (there was
no snow on the ground and it was full of clouds in the sky). The non-parametric Kruskal-Wallis
chi-squared test indicated differences with a significance level of 99%, the RMSE was about 14% and
the correlation coefficient was 0.91.

Finally, the GlobSnow SE product provided 62 observations (Figure 5c) and the estimated output
was coherent 57 times (with full snow coverage at the ground), whereas the GlobSnow product
missed to detect the snow cover 5 times, compared to the camera observations. The non-parametric
Kruskal-Wallis chi-squared test indicated differences with a significance level of 99%, the RMSE
was about 18% and the correlation coefficient was 0.84. From a statistical point of view, all the
satellite products showed significant differences compared to the camera-based estimations even
if the correlation was good. This observation is influenced, of course, by the number of outliers
included in the available dataset composed by the different satellite revisits, which depends mostly on
cloud screening.
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4. Discussion

The first part of the results evidenced that automated solutions provide FSC estimations
compatible to the supervised solutions available in literature. The major advantage of automated
methods consists in the reduction of time consumption and, consequently, in the opportunity of
processing long time series of terrestrial images. We described an automated approach based on
the concept of Spectral Similarity [23], which could prevent artifacts under particular illuminating
conditions. While a small training dataset supported the training of an SS-based algorithm, the ten-year
dataset, with about 8000 images, showed a better performance compared to a state-of-the-art automated
method BT described by [26]. The trend of FSC underestimation (about 10%) outlined by the small
training dataset was confirmed by the large decadal comparison. The observed statistically significant
differences were limited in terms of pixel number (less than 1%), but these discrepancies were important
in terms of surface. The projection of each pixel on the surface could increase consistently from closer
to faraway pixels and from this perspective; the impact of omissions and false discoveries on the
projected area could be high. Furthermore, the ability to analyze the “difficult” conditions affecting
the BT performance [10] was confirmed by statistically significant differences detected between the
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two data series. The limitations of BT retrievals can be associated with poor illuminating conditions
(low Sun elevation or heavy cloud coverage) and surface roughness. While low Sun elevation can
occur in the early morning or in the late afternoon, surface roughness and cloud coverage are not time
dependent. Furthermore, while the illuminating conditions can alter the reflective behavior of snow in
response to a more blueish incident light, the roughness can imply the presence of shadowed surfaces
that BT cannot discriminate compared to SS. While BT tends to separate shadowed and illuminated
areas, SS can be trained to integrate both types since the spectral angle is similar and its only variation is
the spectral distance. While BT can generally provide good results between 11:00 am and 3:00 pm local
time, SS can enlarge the range of performing conditions in terms of both Sun elevation and cloud cover.
These preliminary results concerning the SS approach represent a first step towards the development of
a machine learning strategy aimed to analyze routinely ground-based images. Artifacts associated with
purely-BT classification [19,26,28], which are well documented in literature [19,27,28], were reduced
and the need to consider all the information present in a RGB composite image [27] was followed.
Differently from [27], which combined principal component analysis to BT, SS is independent from
BT and considers all the bands at the beginning of the classification step obtaining a discrimination
between surface types based directly on the spectral behavior of each classified feature. Furthermore,
SS considers the color variations induced by illumination conditions and the probability to separate
different surface types is associated with statistical measurements such as the Mahalanobis distance.

Finally, the FSC estimated by terrestrial photography and satellite products evidenced different
aspects to be considered: the spatial resolution and the cloud screening. The cloud screening is a
critical step present in all of the data chain considered in this study. Our data demonstrated, in fact,
that a large number of satellite omissions were associated with a wrong detection of clouds. In addition
to those exclusions, different situations evidenced an underestimation of FSC affected by the presence
of cloud shadows that reduce the reflection of light from the surface. Although the different data
chains [6,8,13] of course, consider these anomalies, the contribution of terrestrial photography, in this
case, could support for the validation of remotely sensed retrievals. Moving to the spatial resolution,
we considered data ranging from a 30 m resolution (Landsat), to 500 m (MODIS), to 1 km (GlobSnow
SE) in order to test different data chains with different spatial and time resolutions. The spatial
resolution had, of course, an impact and we found a more reliable relation with Landsat data than
with those characterized by a coarser resolution. While the projected area of the camera view is five
times the surface covered by a single Landsat pixel, it represents the 2% of a MODIS pixel the 0.5% of a
single GlobSnow grid element. This implies that the surface morphology can affect the final estimates
due to the presence of hills and small valleys.

This framework outlines the potentiality of facilities where different satellite snow products can
have a common term of comparison such as terrestrial cameras. Ground-based images represent
a good proxy, useful for validating the coherence between different products. On the one hand,
this data-source can support the reconstruction of long time series useful for climate change studies.
On the other one, this kind of proxy can assist the definition of site-specific relation between FSC and
the optical behavior of the surface.

5. Conclusions

The contribution of terrestrial photography for the definition of the relation between the Fractional
Snow Cover and the spectral behavior of the surface is a major issue. Ground-based cameras represent
a valuable proxy of data useful for investigating the snow cover extension over a long period. From
this perspective, terrestrial photography can be used as ancillary information and it supports the
integration among different multispectral remotely sensed datasets. The availability of an automated
procedure useful for the discrimination between snow and not-snow covered surfaces can support
the analysis of large datasets. The selected approach based on Spectral Similarity was compared with
supervised methods and with the Blue Thresholding procedure on a training dataset. Considering
the supervised methods as a reference, the Spectral Similarity approach showed better performance
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in estimating the snow cover area. Furthermore, expanding the dataset to a 10-year terrestrial image
record, the algorithm increased the capability to estimate the Fractional Snow Cover under a larger
range of conditions compared to the state-of-the-art method. The integration with three different
satellite snow products (Landsat, MODIS and GlobSnow) highlighted the potentiality to define a
site-specific relation and threshold useful for isolating the snow cover area from remotely sensed data.
Finally, the support provided by terrestrial photography enhanced the possibility to detect artifacts
associated with clouds and shadows.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/9/2/97/s1,
Figure S1: Example of comparison between output obtained by automated classifications on a terrestrial image,
Table S1: Training dataset composed by FSC estimated using supervised and automated methods (Figure 4a),
Table S2: Complete dataset composed by FSC estimated using only automated methods (Figure 4b), Table S3:
Complete dataset composed by FSC estimated using satellite products (Figure 5).
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