The Use of Gigapixel Photogrammetry for the Understanding of Landslide Processes in Alpine Terrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Case Study of Ingelsberg Landslide
2.2. Techniques and Tools Used
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guerin, A.; Nguyen, L.; Abellán, A.; Carrea, D.; Derron, M.H.; Jaboyedoff, M. Common problems encountered in 3D mapping of geological contacts using high-resolution terrain and image data. Eur. J. Remote Sens. 2015, 48, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Gigli, G.; Casagli, N. Extraction of rock mass structural data from high resolution laser scanning products. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin, Germany, 2013; pp. 89–94. [Google Scholar]
- Lato, M.J.; Bevan, G.; Fergusson, M. Gigapixel imaging and photogrammetry: Development of a new long range remote imaging technique. Remote Sens. 2012, 4, 3006–3021. [Google Scholar] [CrossRef]
- Remondino, F. Heritage recording and 3D modeling with photogrammetry and 3D scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef]
- Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections. J. Appl. Geophys. 2016, 127, 31–44. [Google Scholar] [CrossRef]
- Radicioni, F.; Matracchi, P.; Brigante, R.; Brozzi, A.; Cecconi, M.; Stoppini, A.; Tosi, G. The Tempio della Consolazione in Todi: Integrated geomatic techniques for a monument description including structural damage evolution in time. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 433–440. [Google Scholar] [CrossRef]
- Stock, G.M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite Valley, California. Geosphere 2011, 7, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Oppikofer, T.; Yugsi, M.; Freddy, X.; Böhme, M. Back-analysis of the 1810 Pollfjellet rockslide (northern Norway) using terrestrial laser scanning and GigaPan imagery. In Proceedings of the 1st Vertical Geology Conference, Lausanne, Switzerland, 5–7 February 2014; pp. 149–154. [Google Scholar]
- Matasci, B.; Ravanel, L.; Guerin, A.; Jaboyedoff, M.; Deline, P. Rockfalls detection and characterization in the west face of the Drus (Mont Blanc), based on Gigapixel images and Terrestrial Laser Scanning. In Proceedings of the 1st Vertical Geology Conference, University of Lausanne, Lausanne, Switzerland, 5–7 February 2014; pp. 1–7. [Google Scholar]
- Kromer, R.; Lato, M.; Hutchinson, D.J.; Gauthier, D.; Edwards, T. Managing rockfall risk through baseline monitoring of precursors using a terrestrial laser scanner. Can. Geotech. J. 2017, 54, 953–967. [Google Scholar] [CrossRef]
- Romeo, S.; Kieffer, D.S.; Di Matteo, L. The Ingelsberg landslide (Bad Hofgastein, Austria): Description and first results of monitoring system (GBInSAR technique). Rendiconti Online della Società Geologica Italiana 2014, 32, 24–27. [Google Scholar] [CrossRef]
- Romeo, S.; Kieffer, D.S.; Di Matteo, L. Reliability of GBInSAR Monitoring in Ingelsberg Landslide Area (Bad Hofgastein, Austria). In Geotechnical Safety and Risk V; Schweckendiek, T., van Tol, A.F., Pereboom, D., Eds.; IOS Press: Amsterdam, The Netherlands, 2015; pp. 803–807. [Google Scholar]
- Di Matteo, L.; Romeo, S.; Kieffer, D.S. Rock fall analysis in Alpine area by using a reliable integrated monitoring system: results from the Ingelsberg slope (Salzburg Land, Austria). Bull. Eng. Geol. Environ. 2017, 76, 413–420. [Google Scholar] [CrossRef]
- Schmid, M.S.; Fügenschuh, B.; Eduard, K.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Kieffer, D.S.; Valentin, G.; Unterberger, K. Continuous real-time slope monitoring of the Ingelsberg in Bad Hofgastein, Austria. Geomech. Tunn. 2016, 9, 37–44. [Google Scholar] [CrossRef]
- Shapiro, L.; Stockman, G. Computer Vision; Prentice Hall: Upper Saddle River, NJ, USA, 2001; p. 608. [Google Scholar]
- Riquelme, A.J.; Abellán, A.; Tomás, R.; Jaboyedoff, M. A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput. Geosci. 2014, 68, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Bozzano, F.; Mazzanti, P.; Prestininzi, A.; Mugnozza, G.S. Research and development of advanced technologies for landslide hazard analysis in Italy. Landslides 2010, 7, 381–385. [Google Scholar] [CrossRef]
- Mazzanti, P. Displacement monitoring by terrestrial SAR interferometry for geotechnical purposes. Geotech. Instrum. News 2011, 29, 25–28. [Google Scholar]
- Nistér, D. Reconstruction from uncalibrated sequences with a hierarchy of trifocal tensors. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2000; pp. 649–663. [Google Scholar]
- Nistér, D. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 26, 756–770. [Google Scholar] [CrossRef] [PubMed]
- Goesele, M.; Curless, B.; Seitz, S.M. Multi-view stereo revisited. IEEE Conf. Comput. Vis. Pattern Recognit. 2006, 2, 2402–2409. [Google Scholar]
- Micheletti, N.; Chandler, J.H.; Lane, S.N. Structure from motion (SFM) photogrammetry. In Geomorphological Techniques; Clarke, L.E., Nield, J.M., Eds.; British Society for Geomorphology: London, UK, 2015; pp. 1–12. [Google Scholar]
- Goodman, R.E. Introduction to Rock Mechanics; John Wiley & Sons: Toronto, ON, Canada, 1989; pp. 254–287. ISBN 9780471812005. [Google Scholar]
- Varnes, D.J. Slope movement types and processes. In Landslides, Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; Transportation Research Board, National Academy of Sciences: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeo, S.; Di Matteo, L.; Kieffer, D.S.; Tosi, G.; Stoppini, A.; Radicioni, F. The Use of Gigapixel Photogrammetry for the Understanding of Landslide Processes in Alpine Terrain. Geosciences 2019, 9, 99. https://doi.org/10.3390/geosciences9020099
Romeo S, Di Matteo L, Kieffer DS, Tosi G, Stoppini A, Radicioni F. The Use of Gigapixel Photogrammetry for the Understanding of Landslide Processes in Alpine Terrain. Geosciences. 2019; 9(2):99. https://doi.org/10.3390/geosciences9020099
Chicago/Turabian StyleRomeo, Saverio, Lucio Di Matteo, Daniel Scott Kieffer, Grazia Tosi, Aurelio Stoppini, and Fabio Radicioni. 2019. "The Use of Gigapixel Photogrammetry for the Understanding of Landslide Processes in Alpine Terrain" Geosciences 9, no. 2: 99. https://doi.org/10.3390/geosciences9020099
APA StyleRomeo, S., Di Matteo, L., Kieffer, D. S., Tosi, G., Stoppini, A., & Radicioni, F. (2019). The Use of Gigapixel Photogrammetry for the Understanding of Landslide Processes in Alpine Terrain. Geosciences, 9(2), 99. https://doi.org/10.3390/geosciences9020099