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Abstract: Variability in precipitation patterns in the northeast and southeast regions of Brazil are
complex, and the combined effects of the Tropical Atlantic, Pacific Niños, and local characteristics
influence the precipitation rates. This study assesses the performance of multi-satellite precipitation
product SM2RAIN-Climate Change Initiative (SM2RAIN-CCI) for the period of 1998–2015 at
monthly scale. To accomplish this aim, various statistical analyses and comparison of multi-satellite
precipitation analysis products with rain gauge stations are carried out. In addition, we used
three values corresponding to extreme events: The total daily precipitation (PRCPTOT) and the
number of consecutive dry/wet days (CDD/CWD). Results reveal that monthly rainfall data from
SM2RAIN-CCI are compatible with surface observations, showing a seasonal pattern typical of
the region. Data correlate well with observations for the selected stations (r ≥ 0.85) but tend to
overestimate high rainfall values (>80 mm/month) in the rainy area. There is a significant decrease
in rainfall to the indices, especially in PRCPTOT during the occurrence of tropical ocean–atmosphere
interactions, reflecting CWD and CDD values. Moreover, our findings also indicate a relationship,
at interannual timescales, between the state of El Niño Southern-Oscillation (ENSO) and Tropical
Atlantic (TA) annual precipitation variability from 1998 to 2015. The SM2RAIN-CCI could be a useful
alternative for rain-gauge precipitation data in the São Francisco River basin.
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1. Introduction

Changes in hydrological cycles are expected in the context of global climate changes. In South
America, specifically, there is a diversity of precipitation, temperature, and wind patterns which
characterises the climate and climate variability over the region [1]. From these, precipitation is one
of the most critical and complex climate variables regarding global distribution and variability, and
its monitoring continues to represent a great challenge for the scientific community, mainly due to its
spatio-temporal variations in intensity and duration [2–5].

Traditionally measured by ground stations, precipitation data is of utmost importance for water
resources assessment, agricultural production, and decision making on extreme events of floods
or droughts [6]. However, in several regions around the world, ground stations are not very well
distributed across large areas, with some of them located in relatively remote areas where maintenance
and data extraction are not frequent. In such cases and at large scales, remotely sensed data and
numerical predictions have helped to overcome the lack of meteorological stations, serving as an
alternative source of time series data on global or regional scales and enabling event detection and
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decision-making with accurate and reliable information [7]. Significant improvements have been
made related to this subject, when several national and international agencies and institutes started
to produce satellite-based data sets through different procedures and algorithms. These products
include the NOAA Climate Prediction Center (CPC) morphing technique CMORPH [8], NASA TRMM
Multi-Satellite Precipitation Analysis (TMPA) [9], NASA Integrated MultisatellitE Retrievals for GPM
(IMERG) [10], the precipitation estimation from remotely sensed information using artificial neural
networks (PERSIANN) family of products [11] and, more recently, the rainfall product obtained from
satellite soil moisture (SM) data through the soil moisture to rainfall (SM2RAIN) algorithm based on
the inversion of the soil water balance equation [12]. SM2RAIN estimates the rainfall considering
the change in time of the amount of water stored into the soil, thus considering it as a natural rain
gauge [13,14]. Rather than use it to correct rainfall, as in Crow et al. [15] and Pellarin et al. [16],
Brocca et al. [12] presented an approach to directly estimate rainfall. This algorithm can provide
short-term precipitation with daily temporal resolution, and it has been applied at both local and
global scales with ground and satellite SM data as input [17]. The satisfactory results obtained in these
studies prove the SM2RAIN’s capability of estimating rainfall and eventually be a good alternative
for locations where few rainfall measurements are observed, such as in large hydrographic basins.
Therefore, to verify the suitability of the SM2RAIN data set in a region with still few applications as
South America [18], the São Francisco River basin, located in Brazil, was selected as study area.

In the São Francisco River Basin, different aspects must be highlighted, such as the increase of
population density, the increase of water demand in the coming years due to the expansion of irrigated
areas, the implementation of Transposition Project, and the lack of policies and incentives for efficient
water use [19]. Moreover, a possible influence of climate change in the near future over the local
environment is currently a relevant concern. Episodes of extreme weather and climate events are
likely to change in the twenty-first century due to anthropogenic climate change [20–22]. A possible
scenario is an increase, in magnitude and frequency, of extreme precipitation events according to the
Intergovernmental Panel on Climate Change (IPCC) [23].

Therefore, the key question addressed in this paper is whether the development of satellite
remotely sensed datasets provides an opportunity to retrieve the spatio-temporal patterns of
precipitation with high resolution in areas that have had few field observations. Specifically, this
paper focuses on the performance evaluation of the satellite-derived SM product SM2RAIN-CCI over
the São Francisco River basin, Brazil, and its capability to estimate rainfall accumulations over an
extended period (18 years) including aspects related to ocean–atmosphere interaction and hydrological
factors. Although the short period limits the representability of the temporal pattern in weather,
this paper evaluates whether the rainfall satellite-derived SM can reflect the spatial patterns and
seasonal variations in precipitation.

2. Materials and Methods

2.1. Study Area

The São Francisco River basin is located in the east of Brazil, occupies an area of approximately
640 km2, and covers six Brazilian states: Bahia, Minas Gerais, Pernambuco, Alagoas, Sergipe, Goiás,
and the Distrito Federal, as shown in Figure 1.

The three different climate regions of the São Francisco River basin have been defined according
to the Köppen classification as the tropical and savanna (Aw), dry winter and warm summer (Cwb),
and another with dry winter and hot summer (Cwa) described by Santos et al. [24,25]. The mean
annual precipitation is 1036 mm, ranging from 600 mm in the semi-arid area to 1800 mm at the source
of the river (Minas Gerais State).
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Figure 1. The São Francisco river basin, showing the soil moisture to rainfall (SM2RAIN)-Climate
Change Initiative (CCI) grid and the locations of the selected meteorological stations.

2.2. Rainfall Dataset

For this study, the daily-observed rainfall data were analyzed from 1980 to 2015 for a network of
24 meteorological stations located across the study area (Figure 1). The data were obtained from the
Meteorological Data Base for Teaching and Research (BDMEP) of the National Meteorology Institute
(INMET).

The SM2RAIN algorithm [26] simplifies the soil-water balance equation to estimate rainfall
directly from the knowledge of relative soil moisture. The physical processes in the land part of the
hydrologic cycle can be mainly described by the soil-water balance, presented in Equation (1):

Z(L)
ds(t)

dt
= p(t)− r(t)− e(t)− g(t) (1)

where Z(L) [m] is the soil layer depth, ds(t)/dt[t−1] is the change of relative saturation of soil with
respect to time, p(t)

[
L.s−1] and e(t)

[
L.s−1] are the intensity of precipitation and evapotranspiration,

whilst r(t)
[
L.s−1] and g(t)

[
L.s−1] are the runoff and drainage flow rates. It is assumed that all

precipitation is infiltrated into the soil and consequently the runoff rate is zero. When precipitation
occurs, evapotranspiration is assumed negligible. Drainage to groundwater stores is expressed as:

g(t) = as(t)b (2)
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where a
[
L.s−1] and b[−] are the only two parameters that need calibration. Consequently, the formula

used to describe the retrieval of rainfall from soil moisture is:

p(t) = Z∗
ds(t)

dt
+ a.s(t)b (3)

The SM2RAIN-CCI product is obtained by the implementation of the SM2RAIN algorithm [27]
combined active and passive product provided by the European Space Agency (ESA) Climate Change
Initiative (CCI) (i.e., ESA CCI SM v03.2). Next, an integration procedure based on a weighted average is
applied to obtain the accumulated rainfall between 00:00 and 23:59 UTC of the same day. The algorithm
has been calibrated during three different periods (1998–2001, 2002–2006, and 2007–2013) against the
Global Precipitation Climatology Centre full-data daily dataset [2]. On the other hand, the quality
flag provided within the raw soil moisture observations is used to mask (see Figure 1) out low-quality
data and those observations characterised by issues in the retrieval (e.g., frozen soil, snow-dominated
regions, dense vegetation, and high topographic complexity).

The SM2RAIN-CCI is a global daily precipitation dataset available at 0.25◦ spatial resolution
and the time-span of the data ranges from 1 January 1998 to 31 December 2015 (available online at
http://doi.org/10.5281/zenodo.1305021). More information about the SM2RAIN algorithm can be
found in Reference [17].

The Climate Hazards Group infrared precipitation with station data (CHIRPS version 2) is a
global daily precipitation product specifically designed for monitoring agricultural drought and
global environmental change over land [28]. CHIRPS combine remotely sensed precipitation data of
geosynchronous and polar orbiting satellites, from five different satellite products, with more than
2000 stations records to calibrate global cold cloud duration rainfall estimates [29]. The product
presents a spatial resolution of 0.05◦ from 50◦ S to 50◦ N (across all longitudes) with a >30-year final
monthly precipitation record (1981–present).

The NOAA Climate Prediction Center (CPC) MORPHing technique [8] provides quasi-global
estimates of precipitation at relatively high spatial resolution (0.0726◦ × 0.0726◦) and frequent temporal
resolution (half-hourly), from 60◦ N to 60◦ S. CMORPH uses precipitation estimates from passive
microwave observations and propagates these features using motion vectors from geostationary
satellite IR (infrared) imagery at half-hour intervals. The shape and intensity of the precipitation
features are modified during the time between microwave sensors scans by performing a time-weighted
linear interpolation [30]. However, it is recognised that CMORPH could be strongly biased in regions
with sparse density and inconvenient spatial distribution of rain gauge station networking [31]
(Table 1).

Table 1. Satellite precipitation estimates considered and their main characteristics (in the data source
column, S stands for satellite, R for reanalysis, and G for gauge information).

Full Name Acronym Data Source Temporal
Coverage

Temporal
Resolution

Spatial
Resolution

Soil Moisture to Rain
from ESA Climate
Change Initiative

SM2RAIN-CCI S 1998–2015 Daily 0.25◦ × 0.25◦

Climate Hazard Group
InfraRed Precipitation

with Station
CHIRPS S, R, G 1981–present Daily 0.05◦ × 0.05◦

CPC MORPHing
technique bias corrected CMORPH-CRT S, G 1998–present 30 min 0.08◦ × 0.08◦

2.3. Rainfall Metrics

Three precipitation indices were used (Table 2): (1) The total precipitation (PRCPTOT); (2) the
maximum number of consecutive dry days (CDD) and; (3) the corresponding index for the maximum
number of consecutive wet days (CWD). These indices are usually employed to analyse precipitation

http://doi.org/10.5281/zenodo.1305021
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time series from rain gauge stations [32], but they are computed, hereafter, from the homogenised
daily rainfall time series of the SM2RAIN-CCI data at 0.25◦ resolution and annual timescales.

Table 2. Precipitation indices used in the study.

Indices (Units) Definition

PRCPTOT (mm) Total daily precipitation with RR ≥1 mm
CDD (days) Maximum number of consecutive dry days (RR <1 mm)
CWD (days) Maximum number of consecutive wet days (RR ≥1 mm)

* RR is the daily precipitation amount on a wet day.

2.4. Statistical Measures

Four comparison parameters were used to evaluate the results of the satellite product
SM2RAIN-CCI, including the coefficient of determination (R2), mean absolute error (MAE), root
mean square error (RMSE), and the Bias. These parameters were calculated by Equations (4)–(7),
respectively:

R2 =

[
∑N

i=1
(
Oi −O

)(
Pi − P

)]2

∑N
i=1
(
Oi −O

)2
∑N

i=1
(

Pi − P
)2 (4)

MAE =
N

∑
i=1

|Oi − Pi|
N

(5)

RMSE =

√√√√ N

∑
i=1

(Oi − Pi)
2

N
(6)

Bias =
N

∑
i=1

Oi/
N

∑
i=1

Pi − 1 (7)

where Oi is the observation measured by rain gauge; Pi is the precipitation estimated by
satellite-derived SM at the location of rain gauge; O is the mean value of all rain gauge observations,
and P is the mean value of the estimated precipitation in all locations with rain gauges.

In particular, the linear regression and nonparametric Mann–Kendall (MK) trend test were used
to test the variation trends of precipitation [33]. The MK non-parametric statistical test method is a
rank-based procedure that is suitable for detecting non-linear trends, which are not disturbed by few
outliers and are commonly used in meteorological and hydrological sequence analysis. In this study,
5% significance level (Z0.025 = 1.96) was considered.

In addition, the Sen non-parametric test [33,34] was used to calculate the magnitude of trends in
the time series data. This test proceeds by calculating the slope of a change in observation values to
the change of the corresponding times. According to Sen’s test, the overall estimator bsen is the median
of the data slopes, and it can be calculated from Equation (8),

bsen = Median
[Xi − Xj

i− j

]
(8)

where Xi and Xj are data values at time i and j, respectively.

3. Results

3.1. Validation of SM2RAIN-CCI with Ground Stations Rainfall Data

The annual rainfall trends over São Francisco River basin are presented in Figure 2. The mean
annual satellite product SM2RAIN-CCI shows a minor decreased trend (−6.3 mm/year) over an
18-year period, however it does not present any significant increasing trends at the 95% confidence
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level under MK analysis. Moreover, the variation trend of the annual precipitation from SM2RAIN-CCI
was considered consistent with the observed time series, with linear tendency rates of 3.5 and−6.3 mm
year−1 and determination coefficients (R2) of 0.0062 and 0.0141, respectively. The annual precipitation
observed by the average ground stations was 1880.7 mm.
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Figure 3 shows the averaged values of monthly precipitation between the satellite-derived SM and
the in-situ rain gauge data for the São Francisco River basin. Due to the data regularity and consistency
along the period analyzed, 10 meteorological stations were selected to represent precipitation across
the basin (Figure 3).
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In the upper area, the rainfall totals were consistently overestimated by as much as 10 mm in all
months, except in the Água Branca and Arco Verde meteorological stations located in the Alagoas and
Pernambuco states, respectively. The middle and lower areas had similar rainfall pattern in most of
the months.

As would be expected, the high-resolution SM2RAIN-CCI data captured more seasonal trends
in precipitation patterns for the entire basin. The most significant difference pattern between the
observed and the estimated datasets occurred in February, March, September, October, November, and
December months. One of the notable discrepancies occurred in the tropical coastal of the northeast
region, where the Arco Verde and Água Branca meteorological stations are located, and SM2RAIN-CCI
exceeded >150 mm during the May to August and May to September, respectively. The annual monthly
mean precipitation observed by the ground stations increased from approximately 25 mm month−1

in June and September to approximately 100 to 300 mm month−1 in December and then decreased
gradually to 40 mm month−1 in April.

The results show that the SM2RAIN-CCI has high correlation for the monthly rainfall estimation.
The coefficient of determination ranges from a maximum of 0.92 (Belo Horizonte) to a minimum
value of 0.64 (Água Branca). On average, 85% of the total observed rainfall variation is explained
by the SM2RAIN algorithm. In addition, the SM2RAIN-CCI obtained a RMSE ranging from 15.17 to
47.45 mm day−1 and a MAE ranging from 11.47 to 34.2 mm day−1, although precipitation is slightly
overestimated in some areas as in Arcoverde e Água Branca stations.

The Table 3 presents the statistical results from SM2RAIN-CCI rainfall product against rain gauge
measurements at multi-time scale from 1998 to 2015. From Table 3, it can be observed a significant
correlation between the two datasets during the seasonal variability. The correlation coefficients
reached 0.86 (Ouricuri) and 0.92 (Belo Horizonte), which all passed the 0.05 level of significance
test. These results indicated a linear correlation and consistency between SM2RAIN-CCI rainfall
product and rain gauge data. In terms of bias, the mean annual was −23.5 (Água Branca) and
20.88 (Divinópolis), which means that the precipitation was overestimated by SM2RAIN-CCI when
compared with observations from rain gauge stations. Taken together, these findings suggest a strong
applicability of the SM2RAIN-CCI data in the estimation of precipitation over the São Francisco
River basin.

Table 3. Mean seasonal values for coefficient of determination, mean absolute error (MAE), root mean
square error (RMSE), and Bias (from 1998 to 2015).

Season

Validation Station

Upper Middle Lower

1 2 3 4 5 6 7 8 9 10

R
2

December–January–February 0.74 0.89 0.59 0.59 0.61 0.72 0.80 0.76 0.32 0.83
March–April–May 0.82 0.82 0.64 0.74 0.81 0.64 0.73 0.85 0.86 0.66
June–July–August 0.34 0.85 0.04 0.03 0.79 0.02 0.03 0.82 0.64 0.77

September–October–November 0.86 0.60 0.77 0.73 0.76 0.86 0.79 0.87 0.35 0.78

M
A

E
(m

m
) December–January–February 22.75 12.98 14.24 27.98 25.68 22.46 18.32 20.36 34.97 26.81

March–April–May 16.34 16.91 37.94 18.5 14.16 12.17 15.87 13.52 13.91 13.06
June–July–August 2.98 10.81 64.67 10.58 0.881 1.955 7.1 1.24 4.01 1.95

September–October–November 3.84 7.37 21.32 15.16 11.37 12.64 19.9 13.18 32.83 18.61

R
M

SE
(m

m
) December–January–February 30.91 18.38 20.25 39.23 37.09 27.23 25.35 26.76 60.31 36.64

March–April–May 20.52 22.14 52.42 25.53 18.03 18.13 20.91 15.81 18.89 19.83

June–July–August 4.61 7.43 84.18 12.15 1.646 5.85 11.47 1.95 5.86 3.23

September–October–November 4.63 10.17 32.97 19.67 15.97 17.53 28.53 16.16 44.36 24.81

BI
A

S
(%

) December–January–February −11.9 2.07 −12.6 −38.3 11.99 2.90 −10.2 3.02 12.28 3.64
March–April–May 4.03 7.36 −43.0 −22.7 −1.42 2.51 −14.1 9.02 15.62 8.09
June–July–August −27.9 −6.58 −70.2 15.61 13.66 −128 −200 4.60 10.58 2.13

September–October–November −2.32 −7.42 −68.4 −33.5 1.32 2.33 −22.3 6.28 23.62 3.02
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3.2. Comparison between Satellite Products SM2RAIN-CCI, CHIRPS, and CMORPH

Figure 4 shows the mean seasonal rainfall of SM2RAIN-CCI over the San Francisco basin
compared to other data from satellite estimates, such as the CMORPH and CHIRPS products. It is
observed that on the basin area, the SM2RAIN precipitation distribution behaved in a similar way to
that obtained with other remote sensing data.

The December–January–February (DJF) precipitation (Figure 4a) of the SM2RAIN-CCI showed
a spatial variation of 10 to 80 mm, from 90 to 160 mm, and 120 to 200 mm for the upper, middle,
and lower areas, respectively. This same spatial variation is presented in the data series of the
CMORPH and CHIRPS products, with differences in rainfall accumulation between 15 and 45 mm,
mainly in the basin lower area. The seasonal periods for March–April–May (MAM) (Figure 4b,f,j) and
June–July–August (JJA) (Figure 4c,g,k) presented a homogeneity of the data, where JJA stands out
as the driest period of the São Francisco river basin, both in the series and temporal (see Figure 3).
In the September–October–November (SON) period, the SM2RAIN-CCI data presented a precipitation
deficit in the lower part of the basin, where rainfall above 150 mm stands out, consistent with the data
observed from São Francisco.
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3.3. Analysis of Rainfall Metrics for 1998–2015, 2009–2010, 2011–2012, 2013–2014 Periods

Figure 5 shows the spatial analysis results and reveals large differences for means of different
years and the long-term average to SM2RAIN-CCI, especially in the upper and middle area of the
São Francisco River basin, whereas the differences were relatively small in the lower area of the
São Francisco River basin.

The overall spatial distribution of the observed annual precipitation in 2009–2010 was generally
the same as that the 2011–2012; however, the number of regions with lower precipitation decreased in
the upper area (Figure 5c). In the 2013–2014 period, the observed annual precipitation was relatively
low over the entire basin. In addition, the SM2RAIN-CCI data for the period 2009–2014 allows us
to understand the rainfall pattern of the region, describing two regions of higher and lower rainfall.
The annual average cycle of precipitation (Figure 5a) under the São Francisco River Basin is represented
by the consistency of each period (Figure 5b–d) estimated, with different standards, considering an
interannual scale, which are more visible in the upper and lower areas of the basin.
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in 2013–2014.

Annual rainfall trends (PRCPTOT) at 10 stations over the São Francisco River basin are listed in
Table 4 and the variability of the rainfall metrics is plotted in Figure 6a–l. Rainfall data analysis results
indicate that the annual rainfall of approximately 69% of the basin area had insignificant decrease
during the period 1998–2015, and the annual rainfall reduction occurred mainly in the upper area.
However, only 17% of the basin area had an increase in annual rainfall with an insignificant trend
during the past 18 years, and a significant reduction in annual rainfall between 1998 and 2015 found at
station 9 (Belo Horizonte). It is worthy to note that the station 9 is located in the lower area, which
records information for approximately 18% of the basin.

Table 4. Detail of total precipitation (PRCPTOT) rainfall metric.

PRCPTOT
(1998–2015)

Station

Upper Middle Lower

1 2 3 4 5 6 7 8 9 10

Trend nature − − + − − − − − + −
Trend significant No Yes Yes No No No No No Yes No

Sen’s slope 17.3 −30.3 −25.4 22.2 −21.4 −40.3 −23.4 −9.86 −84.2 25.3
Available years 10 15 13 12 12 16 15 16 8 11
Average (mm) 574 703 602 664 836 877 959 1100 1458 1106

SD (mm) 154 215 149 164 209 207 229 206 319 336

* + = increasing trend, − = decreasing trend.
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The maximum consecutive wet days (CWD) and maximum consecutive dry days (CDD) describe
the duration of wet and dry periods, respectively. In general, the CWD and CDD always show an
opposite trend. Results of trend tests of CWD and CDD for the São Francisco River basin are presented
in Tables 5 and 6, respectively.

Table 5 shows that an increasing trend in wet duration was found in 77% of the basin lower
area over the last years, whereas the decrease trend in the wet period was mainly found in the upper
area. However, the change in wet duration over the short-term period (1998–2015) is not statistically
significant. During the past decade, an insignificant decrease trend in wet duration was found in most
of the whole basin. However, only 15% of the total area located in the upper area had a significant
reduction in wet duration.

Regarding Table 6, the decreasing trend in dry duration was found in 56% of the total basin
scattered across the São Francisco River basin during the period 1998–2015. However, only 13% of the
basin area had a statistically significant reduction of dry period. In addition, during the past 18 years,
the insignificant increase of dry duration was found in as much 70% of the São Francisco River basin
(Figure 6j–i), and about 20% of the basin showed a significant increasing trend in dry period (Figure 6j).

Table 5. Detail of consecutive wet days (CWD) rainfall metric.

CWD
(1998–2015)

Station

Upper Middle Lower

1 2 3 4 5 6 7 8 9 10

Trend nature − NA − − + − + + + +
Trend significant No No No No No No No No No No

Sen’s slope −0.12 −0.23 −0.27 −0.25 0.00 −0.63 −0.08 0.00 0.15 0.07
Available years 13 7 15 16 15 16 15 16 13 13
Average (days) 3 5 4 5 6 6 8 12 15 12

SD (days) 1 3 2 2 3 3 4 4 6 4

* + = increasing trend, − = decreasing trend.

Table 6. Detail of consecutive dry days (CDD) rainfall metric.

CDD
(1998–2015)

Station

Upper Middle Lower

1 2 3 4 5 6 7 8 9 10

Trend nature + NA − + − + − + + +
Trend significant Yes No No No No No No No Yes No

Sen’s slope 2.23 −2.80 −3.81 0.50 −2.08 0.81 0.16 1.50 8.00 3.40
Available years 14 8 15 16 15 16 15 16 14 12
Average (days) 151 117 126 121 112 115 88 92 134 89

SD (days) 54 61 49 48 41 50 44 47 67 44

* + = increasing trend, − = decreasing trend.

Figure 6a–l illustrates the spatial distribution of rainfall metrics during climatological and seasonal
years from SM2RAIN-CCI product applied in this study. Rainfall metrics for different years such as:
(i) Above normal rainfall year (2009–2010), (ii) deficit rainfall year (2011–2012), and (iii) normal rainfall
year (2013–2014) are reviewed. The distribution of total rainfall (PRCPTOT) for 2009–2010, 2011–2012,
and 2013–2014 was 118%, 71%, and 89% of long-term average (1998–2015) respectively. It should be
noted that São Francisco River basin did not experience an above normal extreme precipitation during
the last years, thus 2009–2010 year, which was close to the above normal category (>118% of long-term
average), is treated as an above normal year in the present study.

The spatial distribution of 2009–2010, 2011–2012 and 2013–2014 years follows long-term average
over São Francisco River basin except the lower area where 2009–2010 (Figure 6b,f,j) was above wet
over the upper area, while in 2011–2012 (Figure 6c,g,k) was much warmer. For the normal year, rainfall
distribution was typically wet while in the deficit year, rainfall estimates were relatively dry and
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hence warm. Thus, the SM2RAIN-CCI data product was able to capture the inter-annual variability in
accordance to the variation in seasonal rainfall, which is consistent with the known hydro-climatology
of the region.

The spatial distribution of CWD (Figure 6e–h) shows good variability when compared with CDD
(Figure 6i−l), however, CDD exhibited wet trend in the São Francisco River basin from SM2RAIN-CCI
(Table 5). This led to a relatively less spatial correlation in CDD (0.71) than CWD (0.87) when compared
with the rain gauge stations. This has been verified calculating the correlation and excluding the upper
area and found that it increases to 0.89. This lower correlation was reviewed further and found to be
primarily due to the coastal area where the quality/reliability of SM2RAIN-CCI is questionable.
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4. Discussion

This study aimed to compare SM2RAIN-CCI datasets and classic time series meteorological
stations according to different criteria in the São Francisco River basin. The results pointed out that
the SM2RAIN algorithm seasonal trends are relatively consistent, as already proved in some studies
carried out in different regions of the world and, particularly, in the northeast region of Brazil [35],
making the SM2RAIN-CCI a suitable algorithm for use in the São Francisco River basin.

Precipitation over São Francisco River basin varies dramatically, geographically, and seasonally
due to the influences of different atmospherics systems [36], as the Intertropical Convergence Zone
(ITCZ) [37], Easterly Wave Disturbances (EWD) [38], Front Systems (FS) in the lower part of the
São Francisco River Basin, and South Atlantic Convergence Zone (SACZ) [39,40]. When analysing
the mean precipitation of the areas, it can be observed different mean precipitation within the basin.
This is due to the activity of different weather systems in the northeast and southeast regions of Brazil
as well as different types of vegetation cover and the effect of mesoscale phenomena, such as breeze
circulation [41,42]. Therefore, the SM2RAIN-CCI product was able to reproduce well the mean annual
rainfall (1998 to 2015) when compared to the historical series of the meteorological stations, CMORPH
and CHIRPS [43].

In a study carried over the northeast region of Brazil [35], the performance of SM2RAIN-CCI
was partially affected by orographic effects, suggesting that some areas of the São Francisco River
basin may have suffered from a large overestimation. These findings are consistent with our results
(see Figure 3), demonstrating some limitations of the SM2RAIN algorithm in comparison with other
precipitation data over São Francisco River basin in coastal areas and high elevation zones.

According to the spatial patterns observed in the graphs of Figure 6 and probable seasonal trends
in the short-term (18 years), SM2RAIN-CCI data provide useful information for a better understanding
of the climatology over São Francisco River basin. It can be inferred that the main precipitation
variation is influenced by the ocean–atmosphere interactions, mainly by the tropical ocean among
rainy months [37,44]. Barbosa and Kumar [45] reported that the precipitation variability over the
Brazilian northeast and southeast regions is associated with the passage of the ITCZ and the passage
of the SACZ, partially influenced by the intraseasonal and interannual conditions distributed through
the year.

5. Conclusions

This study focuses on the performance of SM2RAIN-CCI for precipitation estimates in the
São Francisco river basin, Brazil. The evaluation carried out here indicated that rainfall data from
SM2RAIN-CCI fits well with the seasonality of the São Francisco basin when compared to data
from local meteorological stations. In general, the SM2RAIN-CCI rainfall estimates had a good
correspondence in the first six years of study (1998–2004) regarding the interannual variability but,
presented lower performance in the subsequent years (2005–2010).

The local scale data indicated that precipitation in the São Francisco basin has two periods:
Rainy and dry, considering the rainfall records of meteorological stations. It was observed a greater
overestimation of precipitation in areas close to the coastal region, and the divergences of the
overestimated data occur mainly in the months of greater rainfall intensity. Such findings might
reflect a possible limitation of SM2RAIN-CCI data; however, the evaluation of parameters related to
the amount and occurrence of precipitation showed satisfactory values, according with those found in
the recent literature.

Spatial comparisons of SM2RAIN-CCI to determine seasonality over the basin showed the
great potential that SM2RAIN-CCI precipitation estimates have when associated with CMORPH and
CHIRPS products. These estimates describe the distribution of hydrological patterns considering
seasonal accumulations and are of great importance for a region with a scarcity of local data. With a
tendency to overestimate some months of higher rainfall intensity, rainfall estimates derived from SM
allowed reproducing the seasonal variations in the São Francisco river basin, spatially and temporally.
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Overall, the results demonstrate the great potential of SM2RAIN-CCI to provide more accurate rainfall
estimates for the study area, being able to present a high temporal and spatial resolution precipitation
data in the northeast and southeast regions of Brazil.

Thus, the SM2RAIN-CCI rainfall estimates can complement the information of the local rainfall
networks, supply the areas of poor coverage of rain gauges, as well as the areas of difficult access,
improving the estimation of spatial variability. However, further spatio-temporal analyses using the
SM2RAIN-CCI data are needed to assess the product quality since its extension in grid points and the
scarcity of observed data are potential limiting factors that should be careful considered. Therefore,
new approaches to integrate that SM2RAIN algorithm are required.
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