Satellite SAR Data-based Sea Ice Classification: An Overview
Abstract
:1. Introduction
2. Synthetic Aperture Radar
3. Interactive Sea Ice Charting: GIS-based Techniques
4. SAR Data-based Ice Classification
5. Discussion
5.1. Ice Classification and SAR Technical Abilities
5.2. SAR Data-based Methods for Ice Classification
6. Conclusions
Funding
Conflicts of Interest
References
- Scheuchl, B.; Flett, D.; Caves, R.; Cumming, I. Potential of RADARSAT-2 data for operational sea ice monitoring. Can. J. Remote Sens. 2004, 30, 448–461. [Google Scholar] [CrossRef]
- Smirnov, V.G. Satellite Methods for Determination of Sea Ice Cover Characteristics; AARI: St. Petersburg, Russia, 2011. (In Russian) [Google Scholar]
- Jackson, C.R.; Apel, J.R. Synthetic Aperture Radar Marine User’s Manual; US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Serve, Office of Research and Applications: Washington, DC, USA, 2004. [Google Scholar]
- Dierking, W. Mapping of different sea ice regimes using images from Sentinel-1 and ALOS synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1045–1058. [Google Scholar] [CrossRef]
- Dierking, W. Sea ice monitoring by synthetic aperture radar. Oceanography 2013, 26, 100–111. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Sea Ice Nomenclature; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- Krovotyntsev, V.; Milekhin, O.E. Characteristics of the radar backscattering of the Arctic sea ice using Okean-O1 data. Stud. Earth Space 1998, 2, 68–80. (In Russian) [Google Scholar]
- Ramsay, B.; Manore, M.; Weir, L.; Wilson, K.; Bradley, D. Use of RADARSAT Data in the Canadian Ice Service. Can. J. Remote Sens. 1998, 24, 36–42. [Google Scholar] [CrossRef]
- Scheuchl, B.; Caves, R.; Flett, D.; De Abr, R.; Arkett, M.; Cumming, I. The potential of cross-polarization information for operational sea ice monitoring. In Proceedings of the Envisat and ERS Symposium, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Dierking, W.; Skriver, H.; Gudmandsen, P. On the improvement of sea ice classification by means of radar polarimetry. In Proceedings of the 23rd European Association of Remote Sensing Laboratories (EARSeL) Symposium, Ghent, Belgium, 2–5 June 2004; Goossens, R., Ed.; Millpress: Rotterdam, The Netherlands, 2004; pp. 203–209. [Google Scholar]
- SIGRID-3: A Vector Archive Format for Sea Ice Georeferenced Information and Data; JCOMM Technical Report Series No. 23; WMO/TD-No.1214; World Meteorological Organization: Geneva, Switzerland, 2014.
- Sea Ice Information Services in the World; WMO-No.574; World Meteorological Organization: Geneva, Switzerland, 2017.
- Similä, M.; Lensu, M. Estimating the Speed of Ice-Going Ships by Integrating SAR Imagery and Ship Data from an Automatic Identification System. Remote Sens. 2018, 10, 1132. [Google Scholar] [CrossRef]
- Bushuev, A.V.; Volkov, N.A. Remote Measurements of Ice Cover Parameters; Hydrometeoizdat: Leningrad, Russia, 1977. (In Russian) [Google Scholar]
- Asmus, V.; Krovotyntsev, V. ; Pyatkin. V. Software Technologies in Satellite Monitoring of the Arctic Ice Cover. J. Sib. Fed. Univ. Eng. Technol. 2015, 6, 680–689. (In Russia) [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Addison-Wesley: Reading, MA, USA, 1981. [Google Scholar]
- Barber, D.G. Microwave remote sensing, sea ice and Arctic climate. Phys. Can. 2005, 61, 105–111. [Google Scholar]
- Bushuev, A.V.; Bychenkov, Y.D.; Loschilov, V.S.; Masanov, A.D. Investigation of Ice Cover with Help of Side-Looking Radar (SLR); Hydrometeoizdat: Leningrad, Russia, 1983. (In Russian) [Google Scholar]
- Haverkamp, D.; Soh, L.K.; Tsatsoulis, C. A dynamic local thresholding technique for sea ice classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; pp. 638–640. [Google Scholar]
- Haverkamp, D.; Soh, LK.; Tsatsoulis, C. A comprehensive, automated approach to determining sea ice thickness from SAR data. IEEE Trans. Geosci. Remote Sens. 1995, 33, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Baltzer, T. The geophysical processor system at the Alaska SAR Facility. Photogramm. Eng. Remote Sens. 1995, 61, 1445–1453. [Google Scholar]
- Kwok, R.; Holt, B. Identification of Sea Ice Types in Spaceborne Synthetic Aperture Radar Data. J. Geophys. Res. 1992, 97, 2391–2402. [Google Scholar] [CrossRef]
- Fetterer, F.M.; Gineris, D.; Kwok, R. Sea ice type maps from Alaska Synthetic Aperture Radar Facility imagery: An assessment. J. Geophys. Res. 1994, 99, 22443–22458. [Google Scholar] [CrossRef]
- Bertoia, C.; Manore, M.; Andersen, H.S. Mapping Ice Covered Waters from Space; Agencies and Staff of the US Department of Commerce: Washington, DC, USA, 2001. [Google Scholar]
- Fetterer, F.; Ye, J. Multi-year ice concentration from Radarsat. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Singapore, 3–8 August 1997; Volume 1, pp. 402–404. [Google Scholar]
- Bertoia, C.; Gineris, D.; Partington, K.; Soh, L.-K.; Tsatsoulis, C. Transition from research to operations: ARKTOS-a knowledge-based sea ice classification system. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 28 June–2 July 1999; Volume 3, pp. 1573–1575. [Google Scholar]
- Soh, L.; Tsatsoulis, C. ARCTOS: A Knowledge Engineering Software Tool for Images. Int. J. Hum. Comput. Stud. 2002, 57, 469–496. [Google Scholar] [CrossRef]
- Soh, L.; Tsatsoulis, C.; Gineris, D.; Bertoia, C. ARCTOS: An Intelligent System for SAR Sea Ice Image Classification. IEEE Trans. Geosci. Remote Sens. 2004, 42, 229–248. [Google Scholar] [CrossRef]
- Kwok, R. The RADARSAT Geophysical Processor System. In Analysis of SAR Data of the Polar Oceans; Springer: Berlin/Heidelberg, Germany, 1998; pp. 235–257. [Google Scholar]
- Kwok, R.; Cunninghan, G. Radarsat Geophysical Processor System; User Handbook. Version 1.0; National Aeronautics and Space Administration: Pasadena, CA, USA, 2000.
- Karvonen, J.; Simila, M.; Makynen, M. Open water detection from Baltic Sea ice Radarsat-1 SAR imagery. IEEE Geosci. Remote Sens. Lett. 2005, 2, 275–279. [Google Scholar] [CrossRef]
- Karvonen, J. C-band sea ice SAR classification based on segmentwise edge features. In Geoscience and Remote Sensing New Achievements; Imperatore, P., Riccio, D., Eds.; In-Tech: Vienna, Austria, 2010; pp. 129–146. [Google Scholar]
- Karvonen, J. Operational SAR-based sea ice drift monitoring over the Baltic Sea. Ocean Sci. 2012, 8, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J.A. A sea ice concentration estimation algorithm utilizing radiometer and SAR data. Cryosphere 2014, 8, 1639–1650. [Google Scholar] [CrossRef] [Green Version]
- Karvonen, J. Baltic Sea ice concentration estimation using SENTINEL-1 SAR and AMSR2 microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2871–2883. [Google Scholar] [CrossRef]
- Maillard, P.; Clausi, D.A.; Deng, H. Map-guided sea ice segmentation and classification using SAR imagery and a MRF segmentation scheme. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2940–2951. [Google Scholar] [CrossRef]
- Clausi, D.A.; Qin, A.K.; Chowdhury, M.S.; Yu, P.; Maillard, P. MAGIC: MAp-Guided Ice Classification System. Can. J. Remote Sens. 2010, 36, S13–S25. [Google Scholar] [CrossRef]
- Yu, Q.; Clausi, D.A. IRGS: Image segmentation using edge penalties and region growing. IEEE Trans. Pattern Anal. 2008, 30, 2126–2139. [Google Scholar]
- Ochilov, S.; Clausi, D.A. Operational SAR sea-ice image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4397–4408. [Google Scholar] [CrossRef]
- Leigh, S.; Wang, Z.; Clausi, D.A. Automated ice–water classification using dual polarization SAR satellite imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5529–5539. [Google Scholar] [CrossRef]
- Hughes, N.; Wadhams, P. Dual-Polarisation SAR Sea Ice Type Classification and Iceberg Detection in the western Fram Strait. In Proceedings of the ESA Conference on Earth Observation and Cryospheric Science, Frascati, Italy, 13–16 November 2012. [Google Scholar]
- Dinessen, F. Operational multisensor sea ice concentration algorithm utilizing Sentinel-1 and AMSR2 data. Geophysical Research Abstracts, EGU2017-19037. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017; Volume 19. [Google Scholar]
- Arkett, M.; Flett, D.; De Abrea, R. Sea Ice Type and Open Water Discrimination for Operational Ice Monitoring with RADARSAT-2. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Denver, CO, USA, 31 July–4 August 2006; pp. 1631–1635. [Google Scholar]
- Nakamura, K.; Wakabayashi, H.; Naoki, K.; Nishio, F.; Moriyama, T.; Uratsuka, S. Observation of sea-ice thickness in the Sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (Pi-SAR) data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2460–2469. [Google Scholar] [CrossRef]
- Ressel, R.; Singha, S.; Lehner, S.; Rosel, A.; Spreen, G. Investigation into Different Polarimetric Features for Sea Ice Classification Using X-Band Synthetic Aperture Radar. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3131–3143. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.J.; Livingstone, C.E.; Raney, R.K. Discrimination of sea ice in the Labrador marginal ice zone from synthetic aperture radar image texture. Int. J. Remote Sens. 1997, 18, 535–571. [Google Scholar] [CrossRef]
- Nakamura, K.; Wakabayashi, H.; Uto, S.; Naoki, K.; Nishio, F.; Uratsuka, S. Sea-ice thickness retrieval in the Sea of Okhotsk using dual-polarization SAR data. Ann. Glaciol. 2006, 44, 261–268. [Google Scholar] [CrossRef]
- Geldsetzer, T.; Yackel, J. Sea ice type and open water discrimination using dual co-polarized C-band SAR. Can. J. Remote Sens. 2009, 35, 73–84. [Google Scholar] [CrossRef]
- Yu, P.; Qin, A.K.; Clausi, D.A. Feature extraction of dual-pol SAR imagery for sea ice image segmentation. Can. J. Remote Sens. 2012, 38, 352–366. [Google Scholar] [CrossRef] [Green Version]
- Manore, M.; Flett, D.G.; De Abreu, R.A.; Ramsay, B.R. Multi-polarization SAR data for operational ice monitoring. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Sydney, Australia, 9–13 July 2001; Volume 3, pp. 1246–1248. [Google Scholar]
- Moen, M.-A.N.; Anfinsen, S.N.; Doulgeris, A.P.; Renner, A.H.H.; Gerland, S. Assessing polarimetric SAR sea-ice classifications using consecutive day images. Ann. Glaciol. 2015, 56, 285–294. [Google Scholar] [CrossRef]
- Ressel, R.; Frost, A.; Lehner, S. A Neural Network-Based Classification for Sea Ice Types on X-Band SAR Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3672–3680. [Google Scholar] [CrossRef]
- Johansson, A.M.; Brekke, C.; Spreen, G.; King, J.A. X-, C-, and L-band SAR signatures of newly formed sea ice in Arctic leads during winter and spring. Remote Sens. Environ. 2018, 204, 162–180. [Google Scholar] [CrossRef]
- Freeman, T.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Scheuchl, B.; Caves, R.; Cumming, I.; Staples, G. Automated Sea Ice Classification Using Spaceborne Polarimetric SAR Data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Scanning the Present and Resolving the Future, Sydney, Australia, 9–13 July 2001. IEEE Cat. No.01CH37217. [Google Scholar]
- Scheuchl, B.; Cumming, I.G.; Hajnsek, I. Classification of fully polarimetric single- and dual-frequency SAR data of sea ice using the Wishart statistics. Can. J. Remote Sens. 2005, 31, 61–72. [Google Scholar] [CrossRef]
- Gill, J.P.S.; Yackel, J.J. Evaluation of C-band SAR polarimetric parameters for discriminating of first-year sea ice types. Can. J. Remote Sens. 2012, 38, 306–323. [Google Scholar] [CrossRef]
- Moen, M.-A.N.; Doulgeris, A.P.; Anfinsen, S.N.; Renner, A.H.H.; Hughes, N.; Gerland, S.; Eltoft, T. Comparison of feature based segmentation of full polarimetric SAR satellite sea ice images with manually drawn ice charts. Cryosphere 2013, 7, 1693–1705. [Google Scholar] [CrossRef] [Green Version]
- Dabboor, M.; Shokr, M. A new Bayesian likelihood ratio test for supervised classification of fully polarimetric SAR data: An application for sea ice type mapping. ISPRS J. Photogramm. Remote Sens. 2013, 84, 1–11. [Google Scholar] [CrossRef]
- Dabboor, M.; Geldsetzer, T. Towards sea ice classification using simulated RADARSAT constellation mission compact polarimetric SAR imagery. Remote Sens. Environ. 2014, 140, 189–195. [Google Scholar] [CrossRef]
- Singha, S.; Ressel, R. Arctic sea ice characterization using RISAT-1 compact-pol SAR imagery and feature evaluation: A case study over Northeast Greenland. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3504–3514. [Google Scholar] [CrossRef]
- Dabboor, M.; Montpetit, B.; Howell, S. Assessment of the High Resolution SAR Mode of the RADARSAT Constellation Mission for First Year Ice and Multiyear Ice Characterization. Remote Sens. 2018, 10, 594. [Google Scholar] [CrossRef]
- Arkett, M.; Carrieres, T.; Zagon, T.; Zabeline, V.; Buehner, M.; Caya, A.; Pogson, L.; Luo, Y. Preparations by the Canadian Ice Service for Future Earth Observation Missions. In Proceedings of the Earth Observation and Cryosphere Science Conference, Frascati, Italy, 13–16 November 2012. ESA SP-712. [Google Scholar]
- Hara, Y.; Atkins, R.G.; Shin, R.T.; Kong, J.A.; Yueh, S.H.; Kwok, R. Application of Neural Networks for Sea Ice Classification in Polarimetric SAR Images. IEEE Trans. Geosci. Remote Sens. 1995, 33, 740–748. [Google Scholar] [CrossRef]
- Dierking, W.; Busche, T. Sea Ice Monitoring by L-Band SAR: An Assessment Based on Literature and Comparisons of JERS-1 and ERS-1 Imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 957–970. [Google Scholar] [CrossRef]
- Bogdanov, A. Neuroinspired architecture for robust classifier fusion of multisensor imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1467–1487. [Google Scholar] [CrossRef]
- Gupta, M.; Scharien, R.K.; Barber, D.G. C-band polarimetric coherences and ratios for discriminating sea ice roughness. Int. J. Oceanogr. 2013, 2013, 567182. [Google Scholar] [CrossRef]
- Casey, J.A.; Howell, S.E.; Tivy, A.; Haas, C. Separability of sea ice types from wide swath C- and L-band synthetic aperture radar imagery acquired during the melt season. Remote Sens. Environ. 2016, 174, 314–328. [Google Scholar] [CrossRef] [Green Version]
- Aldenhoff, W.; Heuzé, C.; Eriksson, L.E.B. Comparison of ice/water classification in Fram Strait from C- and L-band SAR imagery. Ann. Glaciol. 2018, 59, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Dierking, W. Sea ice classification on different spatial scales for operational and scientific use. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. [Google Scholar]
- Wohl, G.M. Operational sea ice classification from synthetic aperture radar imagery. Photogramm. Eng. Remote Sens. 1995, 61, 1455–1462. [Google Scholar]
- Haralick, R.; Shanmagan, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Shokr, M. Evaluation of second-order texture parameters for sea-ice classification from radar images. J. Geophys. Res. 1991, 96, 10625–10640. [Google Scholar] [CrossRef]
- Shuchman, R.A.; Wackerman, C.; Maffett, A.L.; Onstott, R.G.; Sutherland, L.L. The Discrimination of Sea Ice Types using SAR Backscatter Statistics. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; pp. 381–385. [Google Scholar]
- Holmes, Q.A.; Nuesch, D.R.; Shuchman, R.A. Textural analysis and real-time classification of sea ice types using digital SAR data. IEEE Trans. Geosci. Remote Sens. 1984, 22, 113–120. [Google Scholar] [CrossRef]
- Barber, D.G.; LeDrew, E.F. SAR sea ice discrimination using texture statistics, A multivariate approach. Phtogram. Eng. Remote Sens. 1991, 57, 385–395. [Google Scholar]
- Barber, D.G.; Shokr, M.; Soulis, E.; Fernandes, R.; Flett, D.; LeDrew, E.F. A comparison of second order texture classifiers for SAR sea ice. Photogramm. Eng. Remote Sens. 1993, 59, 1397–1408. [Google Scholar]
- Baraldi, A.; Parmigiani, F. An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters. IEEE Trans. Geosci. Remote Sens. 1995, 33, 293–304. [Google Scholar] [CrossRef]
- Clausi, D.A. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sens. 2002, 28, 45–62. [Google Scholar] [CrossRef]
- Liu, A.K.; Martin, S.; Kwok, R. Tracking of ice edges and ice floes by wavelet analysis of SAR images. J. Atmos. Ocean. Tech. 1997, 14, 1187–1198. [Google Scholar] [CrossRef]
- Yu, Q.; Moloney, C.; Williams, F.M. SAR sea-ice texture classification using discrete wavelet transform based methods. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 July 2002; Volume 5, pp. 3041–3043. [Google Scholar]
- Simila, M.; Helminen, J. The identification of the deformed sea ice fields from ERS-1 SAR image by wavelets. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Firenze, Italy, 10–14 July 1995; Volume 2, pp. 868–870. [Google Scholar]
- Clausi, D.A.; Yue, B. Comparing Cooccurrence Probabilities and Markov Random Fields for Texture Analysis of SAR Sea Ice Imagery. IEEE Trans. Geosci. Remote Sens. 2004, 42, 215–228. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Clausi, D.A. Unsupervised segmentation of synthetic aperture Radar sea ice imagery using a novel Markov random field model. IEEE Trans. Geosci. Remote Sens. 2005, 43, 528–538. [Google Scholar] [CrossRef]
- Similä, M.; Dinessen, F.; Hughes, N.E.; Mäkynen, M. Ice edge detection with dual-polarized SAR data. In Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions, Espoo, Finland, 9–13 June 2013. [Google Scholar]
- Gill, R.S. Operational detection of sea ice edges and icebergs using SAR. Can. J. Remote Sens. 2001, 27, 411–432. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Y.; Zhang, J.; Zhang, X.; Meng, J.; Xie, Q. PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform. Acta Oceanol. Sin. 2015, 34, 59–67. [Google Scholar] [CrossRef]
- Soh, L.K.; Tsatsoulis, C. Texture analysis of SAR imagery using grey level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Alexandrov, V.; Johannessen, O.M.; Sandven, S.; Frolov, I. Classification of sea ice types in ENVISAT synthetic aperture radar images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Haarpainter, J.; Solbo, S. Automatic Ice-Ocean Discrimination in SAR Imagery; Norut IT-Rapport; NORUT Northern Research Institute: Tromsø, Norway, 2007. [Google Scholar]
- Bogdanov, A.V.; Sandven, S.; Johannessen, O.M.; Alexandrov, V.Y.; Bobylev, L.P. Multisensor approach to automated classification of sea ice image data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1648–1664. [Google Scholar] [CrossRef] [Green Version]
- Kaleschke, L.; Kern, S. ERS-2 SAR image analysis for sea ice classification in the marginal ice zone. In Proceedings of the 22nd International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA; pp. 3038–3040. [Google Scholar]
- Liu, H.; Guo, H.; Zhang, L. SVM-based sea ice classification using textural features and concentration from RADARSAT-2 dual-pol ScanSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1601–1613. [Google Scholar] [CrossRef]
- Zakhvatkina, N.; Korosov, A.; Muckenhuber, S.; Sandven, S.; Babiker, M. Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images. Cryosphere 2017, 11, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Yang, C.S. Automatic discrimination approach of sea ice in the Arctic Ocean using Sentinel-1 Extra Wide Swath dual-polarized SAR data. Int. J. Remote Sens. 2018, 39, 4469–4483. [Google Scholar] [CrossRef]
- Gill, R.S. SAR Ice Classification Using Fuzzy Screening Method; Scientific Report 02-12; Scientific Report 02-12; Danish Meteorological Institute: Copenhagen, Danmark, 2002. [Google Scholar]
- Liu, J.; Scott, K.A.; Gawish, A.; Fieguth, P. Automatic Detection of the Ice Edge in SAR Imagery Using Curvelet Transform and Active Contour. Remote Sens. 2016, 8, 480. [Google Scholar] [CrossRef]
- Gill, R.S.; Tonboe, R.T. Classification of GreenIce SAR data using fuzzy screening method. In Arctic Sea Ice Thickness: Past, Present and Future; Wadhams, P., Amanatidis, G., Eds.; Climate Change and Natural Hazards Series 10, EUR22416; European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Benediktsson, J.A.; Ersoy, O.K. Neural Network Approaches Versus Statistical Methods in Classification of Multisource Remote Sensing Data win. IEEE Trans. Geosci. Remote Sens. 1990, 28, 540–552. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Verspeek, J.A. Sea Ice Classification Using Bayesian Statistics; Royal Netherlands Meteorological Institute (KNMI): De Bilt, The Netherlands, 2006; 30p. [Google Scholar]
- OSI SAF Sea Ice Product Manual, v. 3.11 ed.; Eumetsat: Copenhagen, Danmark, 2014.
- Heerman, P.D.; Khazenie, N. Classification of Multispectral Remote Sensing Data Using a Back-Propagation Neural Network. IEEE Trans. Geosci. Remote Sens. 1992, 30, 81–88. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tatnall, A.R.L. Neural network in remote sensing. Int. J. Remote Sens. 1997, 18, 669–709. [Google Scholar] [CrossRef]
- Mejia, C.; Thiria, S.; Tran, N.; Crépon, M.; Badran, F. Determination of the Geophysical Model Function of the ERS-1 Scatterometer by the Use of Neural Networks. J. Geophys. Res. 1998, 103, 12853–12868. [Google Scholar] [CrossRef]
- Karvonen, J.A. Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1566–1574. [Google Scholar] [CrossRef]
- Wackerman, C.C.; Miller, D.L. An Automated Algorithm for Sea Ice Classification in the Marginal Ice Zone Using ERS-1 Synthetic Aperture Radar Imagery; ERIM: Ann Arbor, MI, USA, 1996. [Google Scholar]
- Korosov, A.; Park, J.-W. Very high resolution classification of Sentinel-1A data using segmentation and texture features. In Proceedings of the European Space Agency Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 740. [Google Scholar]
- Herzfeld, U.C.; Williams, S.; Heinrichs, J.; Maslanik, J.; Sucht, S. Geostatistical and Statistical Classification of Sea-Ice Properties and Provinces from SAR Data. Remote Sens. 2016, 8, 616. [Google Scholar] [CrossRef]
Sea Ice Algorithm | Input/Image Features + Additional Method | Results and Comments | Reference |
---|---|---|---|
Wavelet transforms | ERS-1 | ice boundary, ice floes; estimated using a visual interpretation of 3 scenes 1 | Liu et al. (1997) [80] |
RS-1/Entropy (texture) | ice boundary; estimated using visual interpretation 1 | Gill (2001) [86] | |
RS-1/texture | ~87% for three ice classes (by Discrete Wavelet Transform); estimated using 1 scene; results are consistent with ice observer reports | Yu et al., 2002 [81] | |
ENVISAT (VV)/texture, CBERS-02B 2 + hue-intensity-saturation transformation = fusing + PCA 3 | 63.5% (OW), 36.6% (new ice) and 82.99% (young ice); estimated using 3 scenes | Liu M. et al., 2015 [87] | |
Bayes classifier | ERS/texture | 94.17% for seven classes; estimated using independent test dataset | Soh and Tsatsoulis (1999) [88] |
RS-1/texture + MRF | better detection of smooth and rough FYI, MYI; estimated using visual interpretation 1 | Deng and Clausi 2005 [84] | |
ENVISAT (HH)/mean | 68% for FYI and 96% for FYI, estimated using AARI ice charts | Zakhvatkina et al., 2013 [89] | |
Maximum likelihood | RS-1, ENVISAT/texture | ice/water; estimated with confidence level using visual interpretation 1 | Haarpainter and Solbo 2007 [90] |
RS-2 (quad-pol)/polarimetric parameters = couple of best 3 parameters combinations selected | 90.63% for three ice classes and OW; estimated using independent test dataset of ground truth points | Gill and Yackel (2012) [57] | |
ERS-1, RS-1/mean + LUT of expected backscatter + air temperature (Bayesian rule) | four ice types (winter), and 2–3 classes(summer) | Kwok 1992 [22] Fetterer et al., 1994 (see details above) [23] | |
RS-2 (quad-pol)/co- and cross-pol ratio + kurtosis | 7 classes; estimated using 2 training images 1 | Moen et al., 2015 [51] | |
RS-2 (CP-pol using RCM simulator)/23 statistical parameters + Jeffries-Matusit distances = selected sets of the best CP parameters combinations | ~100% for MYI, FYI and OW; estimated using independent test dataset | Daboor and Geldsetzer, 2014 [60] | |
Neural Networks | ERS-2 (VV) and RS-1 (HH)/mean + texture | 84% for six classes; estimated using independent test dataset | Bogdanov et al., 2005 [91] |
ERS-2/texture | 8 classes; estimated using visual comparison 1 | Kaleschke and Kern 2002 [92] | |
RS-2 (HH, HV)/polarization and gradient ratios of four AMSR2 radiometer channels | Baltic ice concentration is underestimated with signed error 3.9% using FMI ice charts independent test dataset of 10 scenes | Karvonen, 2014 (see details above) [34] | |
S1 (HH, HV)/mean, texture, polarization and gradient ratios of four AMSR2 radiometer channels | Baltic ice concentration is overestimated with signed error 3.8% using FMI ice charts independent test dataset of for 50 scenes | Karvonen 2017 [35] | |
ENVISAT (HH)/mean + texture | 80% for 4 classes; estimated using independent 20 scenes | Zakhvatkina et al., 2013 [89] | |
TerraSAR-X (VV)/texture | ~83% for three ice classes and OW; estimated using test datasets from 3 scenes | Ressel et al, 2015 [52] | |
TerraSAR-X (HH, VV)/co-pol ratio, polarimetric features | ~95% for three ice classes and OW; estimated using test datasets from 3 scenes | Ressel et al, 2016 [45] | |
ALOS-2 and S1(HH, HV)/co- and cross-pol ratios, incidence angle, autocorrelation (texture) | S1: 87.23% and 89.33%; ALOS-2: 84.17% and 85.2% for three classes compared with manual ice charts and the AMSR2 data; estimated using independent 12 S1 and 13 ALOS-2 scenes respectively | Aldenhoff et al., 2018 [69] | |
Support Vector Machine | RS-2/texture + IRGS segmentation | 96.5% for ice edge/open water; estimated over groundtruthed 20 scenes | Leigh et al., 2014 [39] |
RS-2/texture + decision tree | 91.7% for four ice classes and OW; estimated using independent test dataset | Liu et al., 2015 [93] | |
RS-2/texture | 91.4% for ice edge/open water; estimated using 2700 scenes in comparison with MET Norway product | Zakhvatkina et al., 2017 [94] | |
S1/mean, incidence angle, ancillary data | 82.8 % for ice edge/open water; estimated using 226 scenes in comparison with MASIE 4 product | Hong and Yang 2018 [95] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakhvatkina, N.; Smirnov, V.; Bychkova, I. Satellite SAR Data-based Sea Ice Classification: An Overview. Geosciences 2019, 9, 152. https://doi.org/10.3390/geosciences9040152
Zakhvatkina N, Smirnov V, Bychkova I. Satellite SAR Data-based Sea Ice Classification: An Overview. Geosciences. 2019; 9(4):152. https://doi.org/10.3390/geosciences9040152
Chicago/Turabian StyleZakhvatkina, Natalia, Vladimir Smirnov, and Irina Bychkova. 2019. "Satellite SAR Data-based Sea Ice Classification: An Overview" Geosciences 9, no. 4: 152. https://doi.org/10.3390/geosciences9040152
APA StyleZakhvatkina, N., Smirnov, V., & Bychkova, I. (2019). Satellite SAR Data-based Sea Ice Classification: An Overview. Geosciences, 9(4), 152. https://doi.org/10.3390/geosciences9040152