Geological and Structural Control on Localized Ground Effects within the Heunghae Basin during the Pohang Earthquake (MW 5.4, 15th November 2017), South Korea
Abstract
:1. Introduction
2. General Characteristics of the Pohang Earthquake on 15th November 2017
3. Geological, Geomorphological, and Tectonic Setting of the Area
4. Coseismic Damages Within the Meizoseismal Area
4.1. Mapping of Liquefaction and Related Features
4.2. Liquefaction Features, Building Damages, and Ground Cracks
4.3. Liquefaction of Gravelly Soil
4.4. Water Logging and Ground Water Fluctuations
5. Discussion on Geological Aspects of the Mechanism Involved in Liquefaction
Possible Mechanisms Involved in Liquefaction Clustering in the South Part of the Heunghae Basin
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ambraseys, N.; Sarma, S. Liquefaction of soils induced by earthquakes. Bull. Seismol. Soc. Am. 1969, 59, 651–664. [Google Scholar]
- Seed, H.B.; Idriss, I.M. Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. 1971, 97, 1249–1273. [Google Scholar]
- Ishihara, K. Liquefaction and flow failure during earthquakes. Geotechnique 1993, 43, 351–451. [Google Scholar] [CrossRef]
- Youd, T.L.; Idriss, I.M. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 2001, 127, 297–313. [Google Scholar] [CrossRef]
- Wang, C.Y. Liquefaction beyond the near field. Seismol. Res. Lett. 2007, 78, 512–517. [Google Scholar] [CrossRef]
- Holzer, T.L.; Jayko, A.S.; Hauksson, E.; Fletcher, J.P.; Noce, T.E.; Bennett, M.J.; Dietel, C.M.; Hudnut, K.W. Liquefaction caused by the 2009 Olancha, California (USA), M5. 2 nearthquakes. Eng. Geol. 2010, 116, 184–188. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Wang, P.; Zhang, Z.; Li, Z.; Cao, Z.; Zhang, J.; Yuan, X.; Wang, W.; Xing, X. Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 2017, 694, 214–238. [Google Scholar] [CrossRef]
- Naik, S.P.; Patra, N.R. Generation of Liquefaction Potential Map for Kanpur City and Allahabad City of Northern India: An Attempt for Liquefaction Hazard Assessment. Geotech. Geol. Eng. 2018, 36, 293–305. [Google Scholar] [CrossRef]
- Naik, S.P.; Patra, N.R.; Malik, J.N. Spatial distribution of Shear wave velocity for late Quaternary Alluvial soil of Kanpur city, Northern India. Geotech. Geol. Eng. 2014, 32, 131–149. [Google Scholar] [CrossRef]
- Seed, H.B. Landslides during earthquakes due to liquefaction. J. Soil Mech. Found. 1968, 94, 1055–1122. [Google Scholar]
- Holzer, T.L.; Bennett, M.J.; Ponti, D.J.; Tinsley, J.C., III. Liquefaction and soil failure during 1994 Northridge earthquake. J. Geotech. Geoenviron. Eng. 1999, 125, 438–452. [Google Scholar] [CrossRef]
- Rajendran, K.; Rajendran, C.P.; Thakkar, M.; Tuttle, M.P. The 2001 Kutch (Bhuj) earthquake: Coseismic surface features and their significance. Curr. Sci. 2001, 80, 1397–1405. [Google Scholar]
- Wang, C.Y.; Wang, C.H.; Manga, M. Coseismic release of water from mountains: Evidence from the 1999 (Mw = 7.5) Chi-Chi, Taiwan, earthquake. Geology 2004, 32, 769–772. [Google Scholar] [CrossRef]
- Gómez, J.C.; Tavera, H.J.; Orihuela, N. Soil liquefaction during the Arequipa Mw 8.4, June 23, 2001 earthquake, Southern Coastal Peru. Eng. Geol. 2005, 78, 237–255. [Google Scholar]
- Yin, R.Y.; Liu, Y.M.; Li, Y.L.; Zhang, S.M. The relation between earthquake liquefaction and landforms in Tangshan region. Res. Soil Water Conserv. 2005, 12, 110–112. [Google Scholar]
- Bhattacharya, S.; Hyodo, M.; Gouda, K.; Tazoh, T.; Taylor, C.A. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dyn. Earth Eng. 2011, 31, 1618–1628. [Google Scholar] [CrossRef]
- Atzori, S.; Tolomei, C.; Antonioli, A.; Merryman Boncori, J.P.; Bannister, S.; Trasatti, E.; Pasquali, P.; Salvi, S. The 2010–2011 Canterbury, New Zealand, seismic sequence: Multiple source analysis from InSAR data and modeling. J. Geophyl. Res. Solid Earth 2012, 117, 1–16. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Tsuji, T.; Matsuoka, T. Detection and mapping of soil liquefaction in the 2011 Tohoku earthquake using SAR interferometry. Earth Planets Space 2012, 64, 1267–1276. [Google Scholar] [CrossRef] [Green Version]
- Papathanassiou, G.; Caputo, R.; Rapti-Caputo, D. Liquefaction phenomena along the paleo-Reno River caused by the May 20, 2012, Emilia (northern Italy) earthquake. Ann. Geophys. 2012, 55, 735–742. [Google Scholar]
- Quigley, M.C.; Bastin, S.; Bradley, B.A. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology 2013, 41, 419–422. [Google Scholar] [CrossRef]
- De la Maza, G.; Williams, N.; Sáez, E.; Rollins, K.; Ledezma, C. Liquefaction-Induced Lateral Spread in Lo Rojas, Coronel, Chile: Field Study and Numerical Modeling. Earth Spectra 2017, 33, 219–240. [Google Scholar] [CrossRef]
- Sharma, K.; Deng, L.; Khadka, D. Reconnaissance of liquefaction case studies in 2015 Gorkha (Nepal) earthquake and assessment of liquefaction susceptibility. Int. J. Geotech. Eng. 2017, 1–13. [Google Scholar] [CrossRef]
- Gautam, D.; de Magistris, F.S.; Fabbrocino, G. Soil liquefaction in Kathmandu valley due to 25 April 2015 Gorkha, Nepal earthquake. Soil Dyn. Earth Eng. 2017, 97, 37–47. [Google Scholar] [CrossRef]
- Kuribayashi, E.; Tatsuoka, F. Brief review of liquefaction during earthquakes in Japan. Soils Found. 1975, 15, 81–92. [Google Scholar] [CrossRef]
- Ambraseys, N.N. Engineering seismology: Part II. Earth Eng. Struct. Dyn. 1988, 17, 51–105. [Google Scholar] [CrossRef]
- Sims, J.D.; Garvin, C.D. Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: Implications for paleoseismicity studies. Bull. Seismol. Soc. Am. 1995, 85, 51–65. [Google Scholar]
- Galli, P. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 2000, 324, 169–187. [Google Scholar] [CrossRef]
- Choi, J.H.; Kim, Y.S.; Choi, S.J. Identification of a suspected Quaternary fault in eastern Korea: Proposal for a paleoseismic research procedure for the mapping of active faults in Korea. J. Asia Earth Sci. 2015, 113, 897–908. [Google Scholar] [CrossRef]
- Cetin, K.O.; Seed, R.B.; Kayen, R.E.; Moss, R.E.; Bilge, H.T.; Ilgac, M.; Chowdhury, K. Summary of SPT Based Field Case History Data of CETIN (2016) Database (No. METU/GTENG 08/16-01); Middle East Technical University: Ankara, Turkey, 2016. [Google Scholar]
- Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 2006, 132, 1032–1051. [Google Scholar] [CrossRef]
- Kim, S.I.; Park, I.J.; Choi, J.S. A Study on the Assessment of Liquefaction Potential in Korea. J. Korean Soc. Civ. Eng. 2000, 20, 129. [Google Scholar]
- Park, D.; Kwak, D.Y.; Cho, C.K.; Chun, B.S. Evaluation of liquefaction potential of port structures with earthquake magnitude adjustment. J. Coast. Res. 2009, 2, 1035–1039. [Google Scholar]
- Seo, M.W.; Olson, S.M.; Sun, C.G.; Oh, M.H. Evaluation of liquefaction potential index along western coast of South Korea using SPT and CPT. Mar. Geores. Geotech. 2012, 30, 234–260. [Google Scholar] [CrossRef]
- Michetti, A.M.; Esposito, E.; Guerrieri, L.; Porfido, S.; Serva, L.; Tatevossian, R.; Vittori, E.; Audemard, F.; Azuma, T.; Clague, J.; et al. Intensita’ scale ESI 2007. In Memorie Descrittive della. Carta Geologica d’Italia, Servizio Geologico d’Italia; Guerrieri, L., Vittori, E., Eds.; Dipartimento Difesa del Suolo, APAT: Rome, Italy, 2007; pp. 1–54. [Google Scholar]
- Korean Meteorological Administration. KMA Report on Pohang Earthquake (Korean); Korean Meteorological Administration: Seoul, Korea, 2018; pp. 1–41.
- Choi, J.H.; Ko, K.; Gihm, Y.S.; Cho, C.S.; Lee, H.; Song, S.G.; Bang, E.S.; Lee, H.J.; Bae, H.K.; Kim, S.W.; et al. Surface Deformations and Rupture Processes Associated with the 2017 Mw 5.4 Pohang, Korea, Earthquake. Bul. Seism. Soc. Am. 2019, 109, 756–769. [Google Scholar] [CrossRef]
- Sohn, Y.K.; Son, M. Synrift stratigraphic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang Basin, SE Korea. Sedimentology 2004, 51, 1387–1408. [Google Scholar] [CrossRef]
- Son, M.; Kim, J.S.; Chong, H.Y.; Lee, Y.H.; Kim, I.S. Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. Korean J. Petrol. Geol. 2007, 13, 1–16. [Google Scholar]
- Kim, K.H.; Ree, J.H.; Kim, Y.; Kim, S.; Kang, S.Y.; Seo, W. Assessing whether the 2017 MW 5.4 Pohang earthquake in South Korea was an induced event. Science 2018, 26, 1007–1009. [Google Scholar] [CrossRef]
- Gihm, Y.S.; Kim, S.W.; Ko, K.; Choi, J.H.; Bae, H.; Hong, P.S.; Lee, Y.; Lee, H.; Jin, K.; Choi, S.J.; et al. Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake. Geosci. J. 2018, 22, 1–10. [Google Scholar] [CrossRef]
- Grigoli, F.; Cesca, S.; Rinaldi, A.P.; Manconi, A.; López-Comino, J.A.; Clinton, J.F.; Westaway, R.; Cauzzi, C.; Dahm, T.; Wiemer, S. The November 2017 MW 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science 2018, 360, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Kim, H.J.; Huh, S.; Park, C.H.; Kim, S.R.; Lee, Y.K.; Yoo, H.S.; Choi, D.L.; Park, B.K. Basin structure of the northeastern Ulleung basin (Ulleung and Dok island areas), East Sea of Korea. J. Geol. Soc. Korea 1997, 33, 127–138. [Google Scholar]
- Kim, I.S. Origin and Tectonic Evolution of the East Sea (Sea of Japan) and the Yangsan Fault System: A new synthetic Interpretation. J. Geol. Soc. Korea 1992, 28, 84–109. [Google Scholar]
- Hwang, I.G.; Chough, S.K.; Hong, S.W.; Choe, M.Y. Controls and evolution of fan delta systems in the Miocene Pohang Basin, SE Korea. Sediment. Geol. 1995, 98, 147–179. [Google Scholar] [CrossRef]
- Chough, S.K.; Kwon, S.T.; Ree, J.H.; Choi, D.K. Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth Sci. Rev. 2000, 52, 175–235. [Google Scholar] [CrossRef]
- Sahoo, R.N.; Reddy, D.V.; Sukhija, B.S. Evidence of liquefaction near Baramulla (Jammu and Kashmir, India) due to the 2005 Kashmir earthquake. Curr. Sci. 2007, 92, 293–295. [Google Scholar]
- Huang, Y.; Jiang, X. Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Nat. Hazards 2010, 54, 839–850. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, J.G.; Zhang, Y.S.; Yang, B.; Yu, K. Study of sand liquefaction hazard features induced by Yingjiang Ms 5.8 earthquake on March 10, 2011. J. Eng. Geol. 2011, 19, 152–161. [Google Scholar]
- Castilla, R.A.; Audemard, F.A. Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. J. Seismol. 2007, 11, 473–487. [Google Scholar] [CrossRef]
- Kramer, S.L. Geotechnical Earthquake Engineering. International Series in Civil Engineering and Engineering Mechanics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1996. [Google Scholar]
- Kumar, A.; Borah, N.; Naik, S.P.; Olympa, B. Detailed review on methodologies available to find preinstrumental missing earthquakes of the present catalogue with the relevance to seismicity assessment of the Northeast India. Ind. Geotech. J. 2018, 1–15. [Google Scholar] [CrossRef]
- Tsuchida, H.; Hayashi, S. Estimation of Liquefaction Potential of Sandy Soils; Publication of Mcgraw Hill Book Company: New York, NY, USA, 1972. [Google Scholar]
- Andrus, R.D. In-Situ Characterization of Gravelly Soils That Liquefied in the 1983 Borah Peak Earthquake. Ph.D. Thesis, University of Texas, Austin, TX, USA, 1994. [Google Scholar]
- Sirovich, L. Repetitive liquefaction at a gravelly site and liquefaction in overconsolidated sands. Soils Found. 1996, 36, 23–34. [Google Scholar] [CrossRef]
- Hatanaka, M.; Uchida, A.; Ohara, J. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu earthquake. Soils Found. 1997, 37, 107–115. [Google Scholar] [CrossRef]
- Kokusho, T.; Matsumoto, M. Nonlinearity in site amplification and soil properties during the 1995 Hyogoken-Nambu earthquake. Soils Found. 1998, 38, 1–9. [Google Scholar] [CrossRef]
- Lin, P.S.; Chang, C.W.; Chang, W.J. Characterization of liquefaction resistance in gravelly soil: Large hammer penetration test and shear wave velocity approach. Soil Dyn. Earthq. Eng. 2004, 24, 675–687. [Google Scholar] [CrossRef]
- Cao, Z.; Hou, L.; Xu, H.; Yuan, X. Distribution and characteristics of gravelly soil liquefaction in the Wenchuan M s 8.0 earthquake. Earthq. Eng. Eng. Vibr. 2010, 9, 167–175. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.; Cao, Z.; Hou, L.; Sun, R.; Dong, L.; Wang, W.; Meng, F.; Chen, H. Liquefaction macro phenomena in the great Wenchuan earthquake. Earthq. Eng. Eng. Eng Vibra. 2009, 8, 219–229. [Google Scholar] [CrossRef]
- Liu, C.Y.; Chia, Y.; Chuang, P.Y.; Chiu, Y.C.; Tseng, T.L. Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes. Hydrogeol. J. 2018, 26, 451–465. [Google Scholar] [CrossRef]
- Nespoli, M.; Micol, T.; Enrico, S.; Maria, E.B.; Maurizio, B.; Marco, M.; Antonio, P.R.; Letizia, A.; Adriano, G. Modeling earthquake effects on groundwater levels: Evidences from the 2012 Emilia earthquake (Italy). Geofluids 2016, 16, 452–463. [Google Scholar] [CrossRef]
- Yun, S.M.; Hamm, S.Y.; Cheong, J.Y.; Lee, C.M.; Seo, W.S.; Woo, N.C. Analyzing groundwater level anomalies in a fault zone in Korea caused by local and offshore earthquakes. Geosci. J. 2019, 23, 137–148. [Google Scholar] [CrossRef]
- Porfido, S.; Esposito, E.; Vittori, E.; Tranfaglia, G.; Guarrieri, L.; Pece, R. Seismically induced ground effects of the 1805, 1930 and 1980 earthquakes in the Southern Apennines, Italy. Ital. J. Geosci. 2007, 126, 333–346. [Google Scholar]
- Amoruso, A.; Crescentini, L.; Petitta, M.; Rusi, S.; Tallini, M. Impact of the 6 April 2009 L’Aquila earthquake on groundwater flow in the Gran Sasso carbonate aquifer, Central Italy. Hydrol. Process. 2011, 25, 1754–1764. [Google Scholar] [CrossRef]
- Fleeger, G.M.; Goode, D.J.; Buckwalter, T.F.; Risser, D.W. Hydrologic Effects of the Pymatuning Earthquake of September 25, 1998, in Northwestern Pennsylvania; US Department of the Interior, US Geological Survey: Reston, VA, USA, 1999; No. 99-4170.
- Yun, H.; Min, K.D.; Moon, H.S.; Lee, H.K.; Yi, S.S. Biostratigraphic, Chemostratigraphic, Paleomagne Tostratigraphic, and Tephrochronological Study for the Correlation of Tertiary Formations in Southern Part of Korea. Paleontology 1991, 7, 1–12. [Google Scholar]
- Yan, R.; Woith, H.; Wang, R.J. Groundwater level changes induced by the 2011 Tohoku earthquake in China mainland. Geophys. J. Int. 2014, 199, 533–548. [Google Scholar] [CrossRef] [Green Version]
- Alessio, G.; Alfonsi, L.; Brunori, C.A.; Burrato, P.; Casula, G.; Cinti, F.R.; Civico, R.; Colini, L.; Cucci, L.; De Martini, P.M.; et al. Liquefaction phenomena associated with the Emilia earthquake sequence of May-June 2012 (Northern Italy). Nat. Hazards Earth Syst. Sci. 2013, 13, 935–947. [Google Scholar] [CrossRef]
- Alessio, G.; Alfonsi, L.; Brunori, C.A.; Burrato, P.; Casula, G.; Cinti, R.F.; Civico, R.; Colini, L.; Cucci, L.; De Martini, P.M.; et al. A photographic dataset of the coseismic geological effects induced on the environment by the 2012 Emilia (Northern Italy) earthquake sequence. J. Jpn. Geotech. Soc. Soils Found. 1997, 37, 107–115. [Google Scholar]
- Davis, P.M.; Rubinstein, J.L.; Liu, K.H.; Gao, S.S.; Knopoff, L. Northridge earthquake damage caused by geological focusing of seismic waves. Science 2000, 289, 1746–1750. [Google Scholar] [CrossRef]
- Lee, S.J.; Komatitsch, D.; Huang, B.S.; Tromp, J. Effects of topography on seismic-wave propagation: An example from northern Taiwan. Bull. Seismol. Soc. Am. 2009, 99, 314–325. [Google Scholar] [CrossRef]
- Graves, R.W.; Pitarka, A.; Somerville, P.G. Ground-motion amplification in the Santa Monica area: Effects of shallow basin-edge structure. Bull. Seismol. Soc. Am. 1998, 88, 1224–1242. [Google Scholar]
- Stewart, J.P.; Bray, J.D.; McMahon, D.J.; Smith, P.M.; Kropp, A.L. Seismic performance of hillside fills. J. Geotech. Geoenviron. Eng. 2001, 127, 905–919. [Google Scholar] [CrossRef]
- Olsen, K.B.; Day, S.M.; Minster, J.B.; Cui, Y.; Chourasia, A.; Faerman, M.; Moore, R.; Maechling, P.; Jordan, T. Strong shaking in Los Angeles expected from the southern San Andreas earthquake. Geophy. Res. Lett. 2006, 33, L073054. [Google Scholar] [CrossRef]
- Pitarka, A.; Irikura, K.; Iwata, T.; Sekiguchi, H. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-ken Nanbu (Kobe), Japan, earthquake. Bull. Seismol. Soc. Am. 1998, 88, 428–440. [Google Scholar]
- Ergin, M.; Özalaybey, S.; Aktar, M.; Yalcin, M.N. Site amplification at Avcılar, Istanbul. Tectonophysics 2004, 391, 335–346. [Google Scholar] [CrossRef]
- Debbarma, J.; Martin, S.S.; Suresh, G.; Ahsan, A.; Gahalaut, V.K. Preliminary observations from the 3 January 2017, MW 5.6 Manu, Tripura (India) earthquake. J. Asian Earth Sci. 2017, 148, 173–180. [Google Scholar] [CrossRef]
- Pratt, T.L.; Brocher, T.M.; Weaver, C.S.; Creager, K.C.; Snelson, C.M.; Crosson, R.S.; Miller, K.C.; Tréhu, A.M. Amplification of seismic waves by the Seattle basin, Washington State. Bull. Seismol. Soc. Am. 2003, 93, 533–545. [Google Scholar] [CrossRef]
- Lee, T.J.; Song, Y.; Uchida, T. Three dimensional magnetotelluric surveys for geothermal development in Pohang, Korea. Explor. Geophy. 2007, 38, 89–97. [Google Scholar] [CrossRef]
- Donati, S.; Marra, F.; Rovelli, A. Damage and ground shaking in the town of Nocera Umbra during Umbria-Marche, central Italy, earthquakes: The special effect of a fault zone. Bull. Seismol. Soc. Am. 2001, 91, 511–519. [Google Scholar] [CrossRef]
- Li, Y.G.; Vidale, J.E.; Cochran, E.S. Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves. Geophy. Res. Lett. 2004, 31, L12S06. [Google Scholar] [CrossRef]
- Lombardi, D.; Bhattacharya, S. Liquefaction of soil in the Emilia-Romagna region after the 2012 Northern Italy earthquake sequence. Nat. Hazards 2014, 73, 1749–1770. [Google Scholar] [CrossRef]
- Thakkar, M.G.; Goyal, B. On the relation between magnitude and liquefaction dimension at the epicentral zone of 2001 Bhuj earthquake. Curr. Sci. 2004, 87, 811–817. [Google Scholar]
- Lee, T.J.; Yoonho, S.; Deok-Won, P.; Jaesoo, J.; Woon, S.Y. Three dimensional geological model of Pohang EGS pilot site, Korea. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; Volume 19. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naik, S.P.; Kim, Y.-S.; Kim, T.; Su-Ho, J. Geological and Structural Control on Localized Ground Effects within the Heunghae Basin during the Pohang Earthquake (MW 5.4, 15th November 2017), South Korea. Geosciences 2019, 9, 173. https://doi.org/10.3390/geosciences9040173
Naik SP, Kim Y-S, Kim T, Su-Ho J. Geological and Structural Control on Localized Ground Effects within the Heunghae Basin during the Pohang Earthquake (MW 5.4, 15th November 2017), South Korea. Geosciences. 2019; 9(4):173. https://doi.org/10.3390/geosciences9040173
Chicago/Turabian StyleNaik, Sambit Prasanajit, Young-Seog Kim, Taehyung Kim, and Jeong Su-Ho. 2019. "Geological and Structural Control on Localized Ground Effects within the Heunghae Basin during the Pohang Earthquake (MW 5.4, 15th November 2017), South Korea" Geosciences 9, no. 4: 173. https://doi.org/10.3390/geosciences9040173
APA StyleNaik, S. P., Kim, Y. -S., Kim, T., & Su-Ho, J. (2019). Geological and Structural Control on Localized Ground Effects within the Heunghae Basin during the Pohang Earthquake (MW 5.4, 15th November 2017), South Korea. Geosciences, 9(4), 173. https://doi.org/10.3390/geosciences9040173