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Abstract: Seabed sediment predictions at regional and national scales in Australia are mainly based
on bathymetry-related variables due to the lack of backscatter-derived data. In this study, we applied
random forests (RFs), hybrid methods of RF and geostatistics, and generalized boosted regression
modelling (GBM), to seabed sand content point data and acoustic multibeam data and their derived
variables, to develop an accurate model to predict seabed sand content at a local scale. We also
addressed relevant issues with variable selection. It was found that: (1) backscatter-related variables
are more important than bathymetry-related variables for sand predictive modelling; (2) the inclusion
of highly correlated predictors can improve predictive accuracy; (3) the rank orders of averaged
variable importance (AVI) and accuracy contribution change with input predictors for RF and are
not necessarily matched; (4) a knowledge-informed AVI method (KIAVI2) is recommended for RF;
(5) the hybrid methods and their averaging can significantly improve predictive accuracy and are
recommended; (6) relationships between sand and predictors are non-linear; and (7) variable selection
methods for GBM need further study. Accuracy-improved predictions of sand content are generated
at high resolution, which provide important baseline information for environmental management
and conservation.

Keywords: machine learning; variable importance; variable selection; model selection; predictive
accuracy; spatial predictive model; acoustic multibeam data; spatial predictions

1. Introduction

Seabed mapping and characterization utilize datasets that describe the physical form and
composition of seabed features that, when integrated, contribute important baseline information to
support evidence-based environmental management [1–6]. A key component in the integration of
seabed mapping data is the development of models that predict the spatial distribution of seabed
sediment types (i.e., mud, sand, and gravel content). Previously, predictions of seabed sediments
have been generated [7–10] at regional and larger scales for the Australian margin (e.g., seabed sand
content at 1000 m resolution [11] and 250 m resolution for the northwest region [12]). However, these
predictions were based largely on bathymetry-derived variables (e.g., slope, relief) and other spatial
measures (e.g., latitude, longitude) due to data availability at these scales [7–10].

Many environmental variables have been reviewed [5,13] for marine environmental modelling,
including acoustic multibeam data and their derived variables. In contrast to the limited availability of
predictive variables at regional and larger scales, with the increased application of high-resolution
acoustic multibeam technologies to seabed mapping, usually more predictive variables are available at
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desired resolution at local scales such as for seabed sediment [1–4]. Thus, bathymetry and backscatter
have been used to predict seabed sediment at local scales [14]. However, the backscatter-derived
variables have been rarely used for producing sediment predictions at local scales [4]. Here, we
utilize high-resolution acoustic multibeam data and seabed sediment samples for the Timor Sea
region, northern Australia (Figure 1) [15–17], to test the usefulness of backscatter-derived variables in
combination with bathymetry-derived variables for improving predictive accuracy and generating
high resolution, spatially continuous predictions of seabed sediments.

To generate spatially continuous predictions, many statistical and mathematical techniques can
be applied [18–20]. The accuracy of these predictions is crucial for evidence-based environmental
management and conservation. To improve the accuracy of seabed sediment predictions, many
methods have been tested and compared [7–9,21]. Due to their high predictive accuracy in data
mining and other disciplines [22–28], a number of machine learning methods, including random forests
(RFs) and generalized boosted regression modelling (GBM), were introduced to spatial statistics by
combining them with commonly used geostatistical methods to predict the spatial distribution of seabed
sediments [7–9]. Consequently, some novel and accurate hybrid methods of machine learning and
geostatistics were developed [7–9,21]. Some of these methods have shown high predictive capacity not
only in marine environmental sciences [29] but also in terrestrial environmental sciences [30–33]. More
importantly these highly accurate methods (i.e., RF, GBM, and their hybrid methods with geostatistics)
as well as the most commonly used geostatistical methods (i.e., inverse distance weighting (IDW) and
ordinary kriging (OK)) have been implemented in an R computing package, spm [34], which provides
useful tools for this study.

Variable selection is essential for developing an optimal RF predictive model [10,35,36] and is
also essential for its hybrid methods [8,9,37,38]. Several variable selection methods (e.g., variable
importance (VI), averaged VI (AVI), knowledge-informed AVI (KIAVI), Boruta [39] and regularized RF
(RRF), and variable selection using RF (VSURF) [40]) were tested for RF [29,35,41], where predictive
accuracy was used to determine the selection of each predictive variable; and AVI or KIAVI were
recommended [29,35,41]. However, variable selection for generalized boosted regression modelling
(GBM) is rarely addressed, although a variable selection method based on relative variable influence
(RVI), which is similar to VI for RF [42], has been used for deriving a dataset in spm from a full dataset
containing 50 predictive variables [29].

In this study, we apply advanced spatial predictive methods in spm to predict seabed sand content
in the Timor Sea region of northern Australia, based on seabed samples, acoustic multibeam data, and
their derived variables. To achieve this, we: (1) compared several variable selection methods for RF; (2)
developed and applied a variable selection method for GBM; (3) compared the predictive accuracy of
models based on RF and its hybrid methods with OK and IDW (i.e., RFOK and RFIDW), GBM, IDW,
and OK; and (4) predicted sand content using the most accurate model and visually examined the
spatially continuous predictions.
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2. Materials and Methods

2.1. Study Region and Sediment Samples

The study region was located in the outer Joseph Bonaparte Gulf and Timor Sea offshore northern
Australia. Here, the continental shelf is characterized by a spatially complex seabed of shallow
carbonate banks and terraces separated by valleys and plains (Figure 1). Within this region, eight
areas (A–H) were surveyed between 2009 and 2012 to acquire high-resolution bathymetry, acoustic
backscatter data, and seabed samples [15,16]. Bathymetry and backscatter data were collected using
a Kongsberg EM3002D 300 kHz multibeam sonar system and sediment samples collected using
grab and gravity corer methods. Post-processing of bathymetry and backscatter data is detailed in
post-survey reports [15–17], with resultant grids reduced to a common 10 m spatial resolution for
this study. In survey areas A–D, sediment sampling sites were selected to represent all geomorphic
seabed features across the range of mapped water depths. In the survey areas E–H, sampling sites
were selected using a spatially-balanced random stratified method [15–17] and further detailed in
subsequent studies [6,29,43,44]. In total, 195 seabed sediment samples were collected and processed in
the laboratory using wet sieve separation to determine percentage gravel, sand, and mud content.

In this study, sand content data were used as a response variable. The sand content data are in
percentage and provided in S1.
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Figure 1. (a) Location of the study areas (A–H) and associated geomorphic features in the Timor Sea 
region, northern Australian marine with bathymetry. Also showing the border of Oceanic Shoals 
Marine Park (grey line) and key ecological features (KEFs) of the region: the carbonate banks and
terraces of the Van Diemen Rise (blue), the carbonate banks and terraces of the Sahul Shelf (yellow), 
and the pinnacles of the Bonaparte Basin (black). (b) Seabed sampling locations (black dots) within 
each study area overlaid with associated geomorphic features.
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Figure 1. (a) Location of the study areas (A–H) and associated geomorphic features in the Timor Sea
region, northern Australian marine with bathymetry. Also showing the border of Oceanic Shoals
Marine Park (grey line) and key ecological features (KEFs) of the region: the carbonate banks and
terraces of the Van Diemen Rise (blue), the carbonate banks and terraces of the Sahul Shelf (yellow),
and the pinnacles of the Bonaparte Basin (black). (b) Seabed sampling locations (black dots) within
each study area overlaid with associated geomorphic features.
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2.2. Predictive Variables

Following a preliminary analysis based on data availability and the relationships with seabed
sediments [7–9,37,45,46], 77 predictive variables were acquired for this study. They were:

1. Two location variables: latitude (lat) and longitude (long),
2. Bathymetry (bathy),
3. Twenty-seven backscatter (bs) variables (bs10 to bs36): a diffused reflection of acoustic energy

due to scattering process back to the direction from which it was generated, measured as the ratio
of the acoustic energy sent to a seabed to that returned from the seabed, normalized to incidence
angles between 10◦ and 36◦,

4. Seventeen backscatter-derived variables from bs25 based on object and spatial windows (i.e.,
window size of 30, 50, and 70 m) approach:

• bs_o,
• homogeneity (bs_homo_o, bs_homo3, bs_homo5, and bs_homo7),
• entropy (bs_entro_o, bs_entro3, bs_entro5, and bs_entro7),
• local Moran I (bs_lmi_o, bs_lmi3, bs_lmi5, and bs_lmi7), and
• variance (bs_var_o, bs_var3, bs_var5, and bs_var7).

5. Twenty-nine derived variables from bathy using object and spatial windows (i.e., window size of
30, 50, and 70 m) approach:

• bathy_o,
• lmi_o, lmi3, lmi5, lmi7,
• topographic position index (tpi_o, tpi3, tpi5, and tpi7),
• seabed slope (slope_o, slope3, slope5, and slope7),
• planar curvature (plan_cur_o, plan_cur3, plan_cur5, and plan_cur7),
• profile curvature (prof_cur_o, prof_cur3, prof_cur5, and prof_cur7),
• topographic relief (relief_o, relief3, relief5, and relief7), and
• seabed rugosity (rugosity_o, rugosity3, rugosity5, and rugosity7).

6. Distance to coast (dist.coast).

Acquisition and processing of multibeam bathymetry, backscatter, and their derived variables
have been detailed in S2 and also described in previous studies [29,42,47]. All these variables were
numerical and available for each grid cell at 10 m resolution in the eight study areas for generating the
spatial predictions of sand content in this study. They were also available at the 195 sample locations
for developing models to predict seabed sediments (S1).

2.3. Preliminary Selection of Predictive Variables

There were strong correlations among some predictive variables (e.g., lmio and lmi3, bs12 and
bs13) based on Spearman’s rank correlation (ρ). The use of ρ was due to non-linear relationships
between some variables. Amongst the highly correlated predictors (i.e., ρ ≥ 0.99), only the variable
with the highest ρ with sand content was retained, leading to the overall retention of 49 variables.
The inclusion of highly correlated variables (i.e., ρ < 0.99) were because they improved the predictive
accuracy in previous studies [8,29,35,36,42]. The bs25 was used as it was the default backscatter
predictor in Geoscience Australia (S2). As a result, in total 50 variables were used for this study
(Table 1).
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Table 1. Predictive variables and their corresponding number for sand content.

No. Predictive Variable Unit No. Predictive Variable Unit

1 long degree 26 slope7 degree
2 lat degree 27 rugosity3
3 bs25 dB 28 rugosity5
4 bs_entro_o3 29 rugosity7
5 bs_entro_o5 30 tpi3
6 bs_entro_o7 31 tpi5
7 bs_homo3 32 tpi7
8 bs_homo5 33 bs12
9 bs_homo7 34 bs15
10 bs_var3 35 bs23
11 bs_var5 36 bs28
12 bs_var7 37 bs36
13 bs_lmi5 38 dist.coast m
14 bathy m 39 bs_o dB
15 plan_curv3 40 bs_homo_o
16 plan_curv5 41 bs_entro_o
17 plan_curv7 42 bs_var_o
18 prof_curv3 43 bs_lmi_o
19 prof_curv5 44 lmi_o
20 prof_curv7 45 tpi_o
21 relief3 m 46 slope_o
22 relief5 m 47 plan_cur_o
23 relief7 m 48 prof_cur_o
24 slope3 degree 49 relief_o m
25 slope5 degree 50 rugosity_o

2.4. Predictive Methods

We used RF, RFOK, RFIDW, GBM, IDW, and OK (Table 2) to develop an optimal predictive model
to predict sand content. For RFOK and RFIDW, firstly RF was applied to the data, then OK or IDW
was applied to the residuals of RF. We also used the average of RFOK and RFIDW (RFOKRFIDW) to
test if the predictive accuracy could be improved by model averaging.

Table 2. Full name for the abbreviations of all modelling methods, feature selection methods, and
measures of model performance in this study.

Abbreviation Full Name Type

IDW Inverse distance weighting Modelling methods
OK Ordinary kriging

GBM Generalized boosted regression modelling
RF Random forest

RFIDW The hybrid of RF with IDW
RFOK The hybrid of RF with OK

RFOKRFIDW The average of RFOK and RFIDW
AVI Averaged variable importance Selection methods

KIAVI Knowledge-informed AVI
RVI Relative variable influence

KIRVI Knowledge-informed RVI (KIRVI)
RFE Recursive feature selection

VSURF Variable selection using RF
VEcv Variance explained by predictive models Accuracy measure

R functions (i.e., idwcv, okcv, gbmcv, RFcv, rfokcv, rfidwcv, and rfokrfidwcv) that executed
the above methods in spm [34] were used to develop models to predict the spatial distribution of
seabed sediments. The default values of mtry, ntree, and node size in randomForest were often
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good options [23,48], which were also observed in studies in marine environmental sciences [8,42];
therefore, the default values were used for these parameters. The default values were used for relevant
parameters in gbmcv.

The optimal parameters for IDW, OK, RFOK, and RFIDW were selected using the corresponding
cross-validation functions (i.e., idwcv, okcv, rfokcv, and rfidwcv) in spm and summarized in Table 3.
Since the sand content was percentage data, arcsine transformation needed to be used to normalize
the data to meet the data normality requirement of OK. However, the implementation of arcsine
transformation in okcv reduced the predictive accuracy in comparison with the default option (i.e.,
‘none’ transformation), so the default option was used in this study. We also used the default parameters
in Geostatistical and Spatial Analyst extensions in ArcGIS for IDW and OK as controls for comparison.

Table 3. Parameters used for each predictive model in relevant functions in spm.

Distance Power (idp) Window Size (nmax) Variogram Model (vgm.args)

IDW default 2 12
IDW optimal 0.6 19
OK default 12 Sph
OK optimal 19 Sph

RFIDW 0.1 11
RFOK 17 Lin

2.5. Variable Selection for Random Forest (RF)

Variable selection was based on a procedure developed for RF in previous studies [10,29,36,41,42],
where the variables were selected based on variable importance and more importantly, on the accuracy
of the resultant predictive model. The final selection of a predictive variable was based on its
contribution to predictive accuracy (e.g., Figure 2a). That is, only those predictors that could improve
the predictive accuracy were selected.

Five feature selection methods were used to select predictors in this study: (1) averaged
variable importance (AVI), (2) Boruta, (3) knowledge-informed AVI (KIAVI) as detailed in previous
studies [29,35,42], (4) recursive feature selection (RFE) [49], and (5) variable selection using RF
(VSURF) [40]. The selection of these methods was based on previous studies [29,50]. Due to the
randomness associated with the variable importance generated by the RF algorithm, the least important
variable(s) may change with individual iterations; meanwhile correlated variables may also affect the
order of the least important variable(s). To address this issue, a function, avi, in spm that is based on
the R package ‘extendedForest’ [51], was used with 100 repetitions to stabilize the variable importance
and to generate the average values of variable importance that were used to select the predictors.
The process of variable selection using AVI and KIAVI2 are detailed in Table 4, with the resultant
predictive model containing the ‘important variable(s) based on the predictive accuracy (IVPA)’ by
identifying and excluding ‘unimportant variable based on the predictive accuracy (UVPA)’ [29,41]
(Figure 3). This application resulted in a variable selection method that was slightly different from
KIAVI [29], and the method was referred to as KIAVI2 in this study.

We used Boruta to search for the important predictors for RF. The default value (i.e., 100) and the
values of 2000, 3000, and 5000 were used for the maximal number of importance source runs (maxRuns)
in Boruta. The final model developed using Boruta used the default value for maxRuns. The default
values for RFE and VSURF were used to select the important predictors for RF.

2.6. Variable Selection for Generalized Boosted Regression Modelling (GBM)

The variable selection for GBM was based on relative variable influence (RVI); and the variable
selection procedure was similar to KIAVI by replacing AVI with RVI. This procedure was referred to as
knowledge-informed RVI (KIRVI) in this study. Similarly, a further variable selection, RVI, for GBM
could be used as in spm (see Table 4). We also tested the performance of RVI for the GBM model,
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but we found no improvement in predictive accuracy when compared to the full model. Since the
predictive accuracy of GBM was not as high as that of RF as detailed below, no further action was
taken to apply the hybrid methods of GBM and geostatistics in spm to the dataset.

Table 4. A procedure for identifying an optimal RF predictive model using RFcv in spm based on
variable selection methods AVI and KIAVI2.

Step Method Description

1.1 AVI Apply RFcv to all predictive variables and repeat it 100 times to
produce an averaged predictive accuracy (i.e., averaged VEcv).

1.2
Calculate the importance of each variable in the RF model and
repeat it 100 times to produce an averaged variable importance

(AVI) and find the variable with the lowest AVI.

1.3 Remove the variable with the lowest AVI and repeat step 1.1 by
applying RFcv to the remaining predictive variables.

1.4 Repeat step 1.2 and 1.3 until only one predictive variable is retained
in the model.

1.5
Calculate the contribution of each predictive variable removed to

predictive accuracy by sequentially subtracting the averaged VEcv
of the model with and without the variable for each variable.

1.6 Find the model with the highest averaged VEcv.

1.7 KIAVI2

Remove variables with negative contribution (i.e., unimportant
variable based on the predictive accuracy) derived in step 1.5 from

all available predictive variables and then repeat steps 1.1 to 1.6
using the remaining variables.

1.8

Repeat step 1.7 if the model with the highest averaged VEcv
identified in step 1.7 is more accurate than the model identified in

step 1.6 or previous repetition, until no further improvement in
accuracy can be achieved. Then select the model with the highest

averaged VEcv.

2.7. Model Validation

To evaluate the performance of the models developed using the above selection methods, a 10-fold
cross-validation was used [52,53]. To reduce the influence of randomness associated with the 10-fold
cross-validation, it was repeated 100 times [10,36,42]. The choice of this iteration number was based on
findings in previous studies [36,42]. Variance explained by predictive models (VEcv) [54] was used to
assess the predictive accuracy of all models tested.

2.8. Model Comparison and Generation of Spatial Predictions

The 100 VEcv values generated for each model were either not normally distributed based on the
Shapiro–Wilk normality test, with heterogeneous variance based on Fligner-Killeen test of homogeneity
of variances, or both. Thus, Mann–Whitney tests were used to compare the difference in accuracy
between the predictive models developed: (1) by using various variable selection methods for RF and
GBM and (2) for using various predictive methods.

The modelling was implemented in R 3.3.3 [55], using spm package [34]. This package was based
on gstat for geostatistical modelling [56], randomForest for RF [48], and gbm for GBM [57]. Finally,
the most accurate predictive models were used to predict sand content at each 10 m grid cell in the
study areas. Relevant maps were then produced using ArcGIS (ESRI®ArcMap TM 10.0).
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Figure 2. (a) Accuracy of 49 predictive models with the incremental removal of each corresponding
least important predictive variable for sand content based on the averages over 100 iterations of 10-
fold cross-validations, with variable elimination based on their averaged variable importance (over
100 simulations, see the avi function in spm for details). The remaining variable in the last model (i.e.,
the model corresponding to bs_o) is dist.coast. (b) Contribution of each predictive variable to
predictive accuracy of RF models. The contribution of dist.coast (i.e., 45.55%) can be obtained from 
Figure 2a as it is the only remaining predictor in the last model corresponding to bs_o. 

Figure 2. (a) Accuracy of 49 predictive models with the incremental removal of each corresponding
least important predictive variable for sand content based on the averages over 100 iterations of
10-fold cross-validations, with variable elimination based on their averaged variable importance (over
100 simulations, see the avi function in spm for details). The remaining variable in the last model
(i.e., the model corresponding to bs_o) is dist.coast. (b) Contribution of each predictive variable to
predictive accuracy of RF models. The contribution of dist.coast (i.e., 45.55%) can be obtained from
Figure 2a as it is the only remaining predictor in the last model corresponding to bs_o.
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Figure 3. (a) Accuracy of predictive models with the removal of each least important predictive
variable based on the averages over 100 iterations of 10-fold cross-validations for seabed sand content,
with variable elimination based on their averaged variable importance (over 100 simulations) using
KIAVI2. The remaining variable in the last model (i.e., the model corresponding to bs_o) is dist.coast.
(b) Contribution of each predictive variable to predictive accuracy of the final RF model. The contribution
of dist.coast (i.e., 45.55%) can be obtained from Figure 2a as it is the only remaining predictor in the
last model.

3. Results

3.1. Variable Selection Methods for RF

3.1.1. Averaged Variable Importance (AVI)

The predictive accuracy (VEcv) of RF gradually increased from model 1 (i.e., the model
corresponding to plan_curv5) to model 34 (i.e., the model corresponding to bs23) in Figure 2a
and reached a maximum VEcv for model 34. Sixteen important predictors were identified based on
AVI (Table 5). The accuracy contributions of these variables varied from the most to the least in the
following order: dist.coast, bs_o, lat, prof_curv5, bs36, bathy, bs_var_o, tpi3, long, bs_lmi_o, tpi_o,
bs_entro7, bs25, bs15, bs_var5, and bs_entro5. However, the accuracy contributions of tpi_o, bs_entro7,
bs25, bs15, bs_var5, and bs_entro5 were negative (Figure 2b).

3.1.2. Knowledge-Informed AVI (KIAVI2)

The final RF model selected using KIAVI2 for sand content contained 11 predictive variables
(Figure 3, Table 5). The accuracy contributions of these variables ranked in the following order:
dist.coast > bs_o > tpi3 > bs36 > bathy > lat > long > plan_curv_o > bs_lmi_o > bs_var_o > prof_curv5
(Figure 3b). Of these, one variable (i.e., prof_curv5) had a negligible negative accuracy contribution.
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However, its exclusion using KIAVI2 would result in a model with less predictive accuracy, so no
further variable selection was conducted.

Rank order of AVI derived from RF changed with input predictors. For example, tpi3 was less
important than prof_curv5 when all variables were included in the model (Figure 2a), but was more
important than prof_curv5 in the final model (Figure 3a); and bs_var_o was more important than
prof_curv-o when all variables were included in the model (Figure 2b), but was less important than
prof_curv-o in the final model (Figure 3b).

Similarly, the initial input variables affected the accuracy contribution of predictive variables.
For example, the accuracy contribution of prof_curv5 was positive when all variables were included in
the model (Figure 2b), but was negative in the final model (Figure 3b).

Rank order of AVI of a variable and its accuracy contribution was not necessarily matched.
For example, long was the third most important variable and tpi3 was the eighth in terms of AVI
(Figure 2b), but the accuracy contribution of tpi was higher than that of long.

3.1.3. Boruta, Recursive Feature Selection (RFE), and Variable Selection Using RF (VSURF) and their
Comparisons with AVI and KIAVI2

Three models were developed for RF based on the variable selection approach of Boruta, RFE,
and VSURF. Thirty-one, four, and eleven variables were selected by using Boruta, RFE, and VSURF,
respectively (Table 5). The variables selected using various methods were different, with only two
variables (i.e., dist.coast and bs_o) selected by all five methods (Table 5). These two variables alone
explained 67.19% variance in terms of VEcv (i.e., 45.55% by dist.coast and 21.64% by bs_o) (Figure 3a).

The accuracy of the predictive models developed for RF using various variable selection methods
was compared in Figure 4 and Table 6. Among these variable selection methods, in terms of the accuracy
of the predictive models identified, KIAVI2 was the best, followed by AVI, VSURF, RFE, Boruta, and
the full model. The models developed by KIAVI2 were significantly more accurate than the models by
other methods based on the Mann–Whitney tests (with p values < 0.0001), and the differences in terms
of predictive accuracy were significant among all variable selection methods, with the exception of the
difference between RFE and VSURF that was not significant (with a p value = 0.0959).

3.2. Variable Selection Methods for GBM

The final GBM model selected using KIRVI contained 13 predictive variables (Table 5, Figure 5).
The accuracy contributions of these variables varied from the most to the least in the following order:
relief7, prof_curv5, lat, bs36, slope7, bs_lmi5, prof_curv3, relief3, bs15, bs_entro_o, slope5, dist.coast,
and bs_homo_o. Of these, the two most important variables (i.e., relief7 and prof_curv5) contributed
42.46% to the accuracy (Figure 5a), two variables (i.e., bs_homo_o and dist.coast) contributed negatively
to the accuracy, and three variables (i.e., bs15, bs_entro_o, and slope5) had zero accuracy contribution.
The rank order of RVI of a variable (Figure 5a) and the rank order of its accuracy contribution (Figure 5b)
were not matched. However, the exclusion of these five variables using KIRVI resulted in a model with
less predictive accuracy. The accuracy of the predictive models developed for GBM was compared in
Table 7. The models developed by KIRVI were not significantly more accurate than the model using all
available predictive variables based on the Mann–Whitney tests (with a p value = 0.1199).
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Table 5. Predictive variables selected for sand content using various variable selection methods for RF
and GBM.

RF GBM

Predictive variable AVI Boruta KIAVI2 RFE VSURF No. of selection KIRVI
long 4 4 4 4 4
lat 4 4 4 4 4 4

bs25 4 4 4 4 4
bs_entro_o3 4 4 2
bs_entro_o5 4 4 2
bs_entro_o7 4 4 2
bs_homo3 4 1
bs_homo5 4 1
bs_homo7 4 1

bs_var3 4 4 2
bs_var5 4 4 2
bs_var7 4 1
bs_lmi5 4 1 4

bathy 4 4 4 3
plan_curv3 4 1
prof_curv3 4 1 4

prof_curv5 4 4 2 4

relief3 0 4

relief5 4 1
relief7 0 4

rugosity7 4 1
slope5 0 4

slope7 0 4

tpi3 4 4 4 3
tpi5 4 1
bs12 4 1
bs15 4 4 2 4

bs23 4 1
bs28 4 1
bs36 4 4 4 3 4

dist.coast 4 4 4 4 4 5 4

bs_o 4 4 4 4 4 5
bs_entro_o 0 4

bs_homo_o 4 1 4

bs_var_o 4 4 2
bs_lmi_o 4 4 4 4 4

lim_o 4 1
tpi_o 4 4 2

slope_o 4 4 2
plan_curv_o 4 1

relief_o 4 1
rugosity_o 4 1

No. of variables
selected 16 31 11 4 11 13
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Figure 4. The VEcv (%) of the most accurate predictive models based on the averages over 100
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selection methods.

Table 6. Comparison of VEcv (%) of predictive models developed for sand content using various
variable selection methods for RF based on the averages over 100 iterations of 10-fold cross-validations.
The differences between these comparisons based on the Mann–Whitney tests (n = 100 for each model).

Variable Selection Method VEcv (%)
p-Value

All Variables AVI Boruta KIAVI2 RFE

All variables 66.86
AVI 70.63 0.0000

Boruta 67.30 0.0000 0.0000
KIAVI2 71.75 0.0000 0.0000 0.0000

RFE 67.93 0.0000 0.0000 0.0000 0.0000
VSURF 68.14 0.0000 0.0000 0.0000 0.0000 0.0959

3.3. Comparison of Predictive Methods in Spm

The accuracy of predictive models developed for IDW, OK, GBM, RF, RFIDW, RFOK, and
RFOKRFIDW is summarized in Figure 6 and compared in Table 7. The models developed for RFOK,
RFIDW, and RFOKRFIDW were significantly more accurate than the models for all other methods
based on the Mann–Whitney tests (with p values < 0.001). Among the models for RFOK, RFIDW, and
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RFOKRFIDW, the differences were not significant in terms of the Mann–Whitney tests. RFOKRFIDW
had slightly increased the accuracy, although such improvement was marginal in comparison with
RFOK and RFIDW in terms of the Mann–Whitney tests (with p values = 0.9795 and 0.6294). As a result,
the predictive model developed using RFOKRFIDW was the most accurate model.
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sand content, with variable elimination based on their relative variable influence using KIRVI. The 
remaining variables in the last model (i.e., the model corresponding to relief3) are relief7 and 
prof_curv5. (b) Contribution of each predictive variable to predictive accuracy of the final GBM
model, with an exception of relief7 and prof_curv5 (their combined accuracy contribution is 42.46%).

Figure 5. (a) Accuracy of predictive models with the incremental removal of each least important
predictive variable based on the averages over 100 iterations of 10-fold cross-validations for seabed
sand content, with variable elimination based on their relative variable influence using KIRVI. The
remaining variables in the last model (i.e., the model corresponding to relief3) are relief7 and prof_curv5.
(b) Contribution of each predictive variable to predictive accuracy of the final GBM model, with an
exception of relief7 and prof_curv5 (their combined accuracy contribution is 42.46%).
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3.4. Predictions of Seabed Sand Content

Predictions of seabed sand content were generated using the most accurate predictive model
based on RFOKRFIDW. The relationships of sand content with the selected predictors were non-linear
(Figure 7). For example, sand content was relatively high and stable when dist.coast was less than
150 km, and then it sharply declined and remained low when dist.coast exceeded 150 km; an opposite
pattern was observed for bs_o at −35 dB.

Sand content predictions are illustrated in Figure 8 for a portion of Area A. This area was chosen as
an example because it contained highly contrasting geomorphic features and predictions. The predicted
sand content was found to be relatively low on banks and deep valleys but high on the terraces
and ridges.



Geosciences 2019, 9, 180 19 of 28Geosciences 2019, 9, x FOR PEER REVIEW 19 of 28 

Figure 7. Partial plot of the most accurate RF model based on the order of their contributions in terms 
of VEcv, indicating the relationships of seabed sand content to the 11 predictive variables in the RF 
model. 

Figure 7. Partial plot of the most accurate RF model based on the order of their contributions in terms of
VEcv, indicating the relationships of seabed sand content to the 11 predictive variables in the RF model.



Geosciences 2019, 9, 180 20 of 28

Table 7. Comparison of VEcv (%) of predictive models developed for sand content using various spatial predictive methods. The VEcv based on the averages over 100
iterations of 10-fold cross-validations. The differences between these comparisons based on the Mann–Whitney tests (n = 100 for each model).

Model VEcv (%)
p-Value

IDW Default IDW Optimal OK Default OK Optimal GBM Full GBM Optimal RF Full RF Optimal RFOK RFIDW

IDW default 45.89
IDW optimal 51.19 0.0000
OK default 49.12 0.0000 0.0000
OK optimal 50.10 0.0000 0.0000 0.0000

GBM full 62.79 0.0000 0.0000 0.0000 0.0000
GBM optimal 62.95 0.0000 0.0000 0.0000 0.0000 0.1199

RF full 66.86 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RF optimal 71.75 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

RFOK 72.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
RFIDW 72.12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.6433

RFOKRFIDW 72.16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9795 0.6294
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4. Discussion

4.1. Bathymetry-Related Variables vs Backscatter-Related Variables for Predictions of Seabed Sand Content

Among the 11 predictive variables used in the final predictive model for sand content, dist.coast
was the most important predictor in terms of its accuracy contribution. Although the underpinning
mechanism is unknown and it is likely to be a proxy for water depth, dist.coast has been found to be a
useful predictor for seabed sediments in Australia at national and regional scales [8,10,37,58] as well as
for biodiversity at national and local scales [29,59].

Bathymetry, backscatter, and their derived variables all contributed to the predictive model.
Bathymetry-related variables were bathy, tpi3, plan_curv_o, and prof_curv5, and backscatter-related
variables were bs_o, bs36, bs_lmi_o, and bs_var_o) (Figure 3b). Backscatter-related variables contributed
more than bathymetry-related variables to the predictive accuracy, and bs_o was identified as the
second most important IVPA (Figure 3). In previous studies, backscatter and its derived variables
were not used for seabed sediment predictions at national and regional scales because of their
unavailability [7,8,10]. This study demonstrated the importance of backscatter-related variables to
sediment predictive modelling. A similar finding was also evident in a previous study for predicting
sponge species richness in this study region [29]. The importance of backscatter-related variables
to sediment predictive modelling at local scales has been documented for other regions [4,14,60,61].
The importance of backscatter-related variables to predicting other environmental variables has also
been documented previously in this study area [29,35]. All these findings highlight the importance of
backscatter-related variables for improving the quality of sediment predictions.

4.2. Highly Correlated Predictive Variables

The inclusion of highly correlated predictors can improve predictive accuracy for RF (i.e., ρ = 0.96
for bs_o and bs36) (Figure 3b) and for GBM (i.e., ρ = 0.96 for slope5 and slope7) (Figure 5b). This is
consistent with previous findings in other studies [8,29,35,36,42]. As discussed previously, correlated
variables may be able to compensate for the small number of predictors as well as for the unavailability
or unknown of causal variables in environmental sciences [29]. This finding further supports the
recommendation that highly correlated variables should not be excluded in the preselecting predictors
using correlation methods for machine learning methods such as RF and GBM [29]. The usefulness
and selection of highly correlated variables should be determined by using variable selection methods,
as discussed in Section 4.5.

4.3. Variable Importance and Initial Input Predictive Variables for RF

Rank order of AVI derived from RF changes with input predictors in the model for RF in this study,
which is consistent with previous findings [10,29,35]. This change suggests that if the least important
variable is removed from the model, the relative importance of the remaining variables may change.
This may explain why the model developed by using methods like RFE is less accurate than the model
by AVI and KIAVI2 (Figure 4, Table 6). This is because in RFE the variable importance of all predictive
variables was based on only the full model, and then subsequent variable removal was based on this
information, but it failed to consider the above observed fact that the variable importance derived
from RF may change with input predictors in the model. The dependence of AVI on the existing
variables in the model may alter the order of the variable’s AVI, thus resulting in the exclusion of some
variables that may be more important than the remaining ones in terms of their accuracy contribution,
as discussed below.
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Figure 8. Spatial distribution of seabed sand content and relevant predictive variables for a portion
of area A in Timor Sea: (a) sand content at 10 m resolution (this study), (b) sand content at 250 m
resolution from a previous study [12], (c) sand content at 1000 m resolution from a previous study [11],
(d) bs_o (since bs36 showed a similar pattern as bs_o, it is not displayed here), (e) tpi3, (f) bathy, (g)
plan_curv_o, (h) bs_lmi_o, (i) bs_var_o, and (j) prof_curv5.
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4.4. Accuracy Contribution and Initial Input Predictive Variables for RF

The rank order of accuracy contribution changed with the input predictors for RF in this study.
This finding suggests that the status of IVPA changes with the initial input predictors, and unimportant
variables can be identified as important variables if certain unimportant variables exist. This indicates
that the accuracy contribution of a variable depends on the variable(s) already included in the model.
This phenomenon was also found in previous studies [10,29,35]. It was also found that the inclusion of
noisy or irrelevant predictors may reduce the possibility of the selection of important variables at each
node split for each individual tree and, thus, reduce the predictive accuracy [9,37]. This suggests that
preselection of predictors is important for predictive modelling using RF. However, this presents a
challenge for preselection because in environmental sciences, the causal predictive variables are often
unknown or unavailable, and proxy variables are used instead [29]. Apparently, this is an area worth
further investigation in the future.

4.5. Variable Selection Methods for RF

Among several variable selection methods compared for RF in this study, the application of
KIAVI2 leads to the most accurate predictive model for sand content. Thus, KIAVI2 is recommended
for the future studies. It should be noted that in the process of variable selection, this method removes
the variable with the lowest AVI by assuming that a variable with the lowest AVI also has the least
accuracy contribution. However, in this study, the rank order of AVI of a variable and its accuracy
contribution was found to be unmatched for RF, thus, the assumption does not hold true. This can
cause difficulty for selecting predictive variables using KIAVI and KIAVI2 because a variable could be
removed, due to its least AVI, despite its accuracy contribution may not be the least, even though the
AVI was calculated for each newly formed dataset after removing the variable with the least AVI (see
Table 4). This presents a challenge for variable selection for RF, although KIAVI2 was demonstrated
to be the most accurate variable selection method in this study. It has been suggested that repeating
the selection procedure based on IVPA and UVPA by using KIAVI may help to resolve this issue [29].
However, no further effort was taken to test and confirm this, so we recommend future studies test this
or develop more reliable variable selection methods for RF, which is particularly important when the
number of predictive variables is large [29,35].

4.6. Issues with Model Valuation and Selection Criteria for GBM

The rank order of RVI of a variable and the rank order of its accuracy contribution are not necessarily
matched for GBM. This suggests that RVI of a variable is not consistent with its accuracy contribution.
A similar phenomenon was also observed for RF in terms of AVI and accuracy contribution, as
discussed in 4.3. The relevant discussion about the implications of such phenomenon for RF is also
relevant for GBM. Although GBM is outperformed by RF in this study, it was found that GBM was
more accurate than RF previously [32]. This may suggest that the performance of these methods
is data-dependent.

The improvement to predictive accuracy by applying KIRVI to GBM model is minimal. This
may suggest that for GBM modelling, variable selection may be either redundant or essential, but
the improvement in accuracy is data-dependent. However, previous studies suggest that accuracy
improvement is data-dependent because a GBM model based on a selected set of predictors [62] is
more accurate than a GBM model based on a full dataset [29]. Hence, variable selection methods for
GBM are necessary for identifying an optimal predictive model, and they need to be developed in the
future. Variable selection methods for RF may provide a useful reference point for such development.

4.7. Predictive Accuracy of Seabed Sand Content

The hybrid methods applied in this study significantly improved predictive accuracy in comparison
with other methods including RF and GBM (Table 7). This is consistent with previous findings in
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other studies [29,30,36,58]. The hybrid methods of machine learning with geostatistical methods were
developed and have been applied to marine sediment data since 2008 with proven high predictive
accuracy [7–9,37], but their applications to other data types or terrestrial data are still rare [30,32,33,63,64].
GBM was outperformed by RF in this study, but it performed similarly to RF for the sponge dataset
in spm [62]. RFOKRFIDW only marginally improved the accuracy in comparison with the hybrid
methods (i.e., RFOK and RFIDW). The possible reasons for such marginal effects by model averaging
have been discussed previously [10]. These hybrid methods and their averaging are recommended for
predicting environmental variables in the future.

The prediction accuracy (VEcv) of the most accurate model for RFOKRFIDW is 72.16%, which is
higher than the average accuracy of predictive models published in environmental sciences [8,29,54].
The high performance of the hybrid methods can be attributed to features of RF and the ability to deal
with both global trends, either spatially and/or environmentally, and local variations [10,29,37,58] as
well as the use of backscatter-related predictive variables, despite the fact that the predictors used in
this study are proxies instead of causal variables. This may further demonstrate the capability of the
hybrid methods and highlights the importance of backscatter-related predictive variables, as discussed
in 4.1.

4.8. Predictions of Seabed Sand Content and their Application

Predictions of seabed sand content were generally high (>50%) across study area A (Figure 8a).
The contribution of the most important variable in the model (‘distance to coast’) to this result is
accounted for by the location of area A within 140 km from the coast, with the RF model predicting that
sand content is relatively high when the distance to coast was less than 150 km (Figure 7). However,
the influence of this variable was largely unnoticeable spatially within area A, as it only covered a
short range of dist.coast (i.e., 103–140 km), and other variables clearly played a more significant (and
logical) role in the model (Figures 7 and 8).

Highest sand content was mostly predicted on the terraces and ridges and was mainly due to
the intermediate values of backscatter-derived variables bs_o and bs36 (ranging from −35 to −20 dB)
(Figures 7 and 8d). In contrast, the relatively low predicted sand content in deep valleys (Figures 1bA
and 8a) was mainly due to their associated low backscatter values (<−35 dB). Predicted sand content
for shallower banks was also low but associated with higher backscatter values ((approximately 15 dB).
This pattern is consistent with this area comprising a complex terrain of carbonate banks and shoals
where sand is locally-sourced biogenic material from a range of producers (bivalves, gastropods,
calcareous algae, and hard corals) [65] (Figure 7). For the shallow banks of area A, gravel content is
known to be high [15,16], which accounts for the lower predicted sand content. The patterns of the
predictions may also reflect the local variations associated with the remaining predictors, but their
influences were barely noticeable. The non-linear relationships of sand content with the predictors
were expected, as they have been also observed in previous studies for other environmental variables
in this study area [29].

Although the major patterns were largely captured in the previously released sand predictions at
250 m [12] and 1000 m resolutions [11] (Figure 8b,c), more detailed patterns were revealed by these
new predictions at 10 m resolution (Figure 8a). For example, sand content was previously predicted as
low for the scarp feature along the flanks of the valley in area A, in comparison to the new model that
utilized backscatter data. This suggests that the availability of backscatter-derived data for this study
enables the model to generate more accurate predictions of sand content across diverse and complex
seabed topography.

These findings provide important baseline information for the management and monitoring of
seabed environments in the Timor Sea region, northern Australia. A key application of modelling
sediment texture at such high spatial resolution lies in the association with potential seabed habitats,
whereby sediment type is considered a surrogate for benthic biodiversity [5]. Thus, in predicting
the likely distribution of broad sediment classes and linking this to seabed geomorphology provides
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greater insight into the potential occurrence of habitats. Examples include soft sediment (infaunal)
biota that may concentrate in fine-grained (mud) sediment areas of marine plains and valleys, sessile
biota (e.g., sponges) that might colonize coarse (gravel) sediment deposits on shallower banks and
terraces, and areas of active sand bedforms where benthic communities may be sparse to absent.
On this basis, these fine spatial-scale sediment predictions can support the design of monitoring
programs that need to focus on specific biodiversity values of a given area, and they can contribute to
more strategic management of Australia’s marine estate.

5. Conclusions

This is the first combined application of RF, its hybrid methods with OK and IDW, and GBM to
seabed sediment predictions integrating bathymetry- and backscatter-derived data at fine resolution
and a local scale. Backscatter-derived variables proved to be more important than bathymetry-derived
variables for the modelling. The inclusion of highly correlated predictors can improve predictive
accuracy. KIAVI2 is recommended for future RF modelling. The rank order of AVI of a variable
and the rank order of its accuracy contribution are not necessarily matched for RF, which can cause
difficulty for selecting predictive variables using KIAVI and KIAVI2 and presents a challenge for
variable selection for RF that is worthy of further investigation. Furthermore, variable importance and
accuracy contribution are dependent on the initial set of input predictors. Variable selection methods
for GBM need to be developed in the future, and variable selection methods for RF may provide useful
references for such development. The hybrid methods of RF, geostatistics, and their averaging can
significantly improve predictive accuracy in comparison to other methods, including RF and GBM,
and are recommended for predicting environmental variables in the future. Moreover, the non-linear
relationships revealed and improved sand content predictions provide important baseline information
for the management and monitoring of priority marine environments.
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