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Abstract: Sediment maps developed from categorical data are widely applied to support marine spatial
planning across various fields. However, deriving maps independently of sediment classification
potentially improves our understanding of environmental gradients and reduces issues of harmonising
data across jurisdictional boundaries. As the groundtruth samples are often measured for the fractions
of mud, sand and gravel, this data can be utilised more effectively to produce quantitative maps
of sediment composition. Using harmonised data products from a range of sources including the
European Marine Observation and Data Network (EMODnet), spatial predictions of these three
sediment fractions were generated for the north-west European continental shelf using the random
forest algorithm. Once modelled these sediment fraction maps were classified using a range of
schemes to show the versatility of such an approach, and spatial accuracy maps were generated to
support their interpretation. The maps produced in this study are to date the highest resolution
quantitative sediment composition maps that have been produced for a study area of this extent and
are likely to be of interest for a wide range of applications such as ecological and biophysical studies.

Keywords: Particle size analysis; random forest; accuracy; European continental shelf; mud;
sand; gravel

1. Introduction

Continental shelf seas cover only ≈9% of the global seafloor [1], but are biologically productive,
important for biogeochemical cycling [2], provide a wide range of resources and services to humanity,
while at the same time experiencing increased human impacts [3]. Although these shallow seas
(water depths generally less than 200 m) are relatively well researched, there is still a lack of detailed
maps of seafloor sediments, substrates, habitats or even bathymetry. In Europe, the European Marine
Observation and Data Network (EMODnet) was incepted in 2009 to provide a gateway to marine
data across seven discipline-based themes, including geology. The EMODnet-Geology theme aims
at providing harmonised information on marine geology in Europe. One of the central products is
a seabed substrate map of European maritime areas [4]. This map was compiled by harmonising
substrate information from more than 30 countries and consolidating the data into a single map product
with three unified substrate classification schemes based on a modification of the Folk classification [5].
The Folk scheme classifies the sediment based on the sediment fractions of mud (grain size d < 63
µm), sand (63 µm ≤ d < 2 mm) and gravel (d ≥ 2 mm). Simplifying this scheme from the original 15
sediment classes to six and four sediment classes has allowed harmonisation of the European seabed
substrate data into a unified substrate map. However, some differences cannot be resolved by nesting
multiple classes within a broader class. For example, Folk [5] suggested a trace amount of gravel
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could be 0.01%, whereas in the current interpretation of “trace” applied by the British Geological
Survey (BGS), a fraction of 1% gravel is applied [6]. Another example in the difference of sediment
classification schemes has been the interpretation of the boundary between muddy sand and sand.
The original definition of this boundary was based on a 9:1 ratio of sand to mud. This definition has
been widely used, for example this is the approach taken by the EMODnet-Geology harmonised seabed
substrate map. However, there have been other variations of this approach such as the BGS modified
Folk diagram described in Long [6]. Here the sediments with less than 5% gravel are separated at a
4:1 ratio of sand to mud into the classes sand and muddy sand and Mud and sandy mud. This BGS
modified Folk diagram has been widely adopted within the United Kingdom (UK), particularly in
projects such as the UK Marine Protected Areas Programme [7].

While there are issues with comparing or harmonising maps derived from different classification
schemes, the sediment data used to generate these maps often has more information about sediment
grain size than simply class type. Half phi (ϕ) grain size distribution or the sediment fractions of
mud, sand and gravel are commonly measured but rarely used for mapping. Information is lost in
the process of simplifying the relative abundance of the grain size components to a sediment class.
For example, within the Folk triangle the percentages of mud, sand and gravel vary within a sediment
class by between 1% and 50% depending on the specific class [5]. While this may be acceptable for
certain applications, benthic species assemblages do not fit neatly into different sediment classes [8] and
these classes would not necessarily be appropriate to inform certain human activities (e.g., engineering
work or aggregate extraction). Therefore, given the limitations of classified substrate maps, there is a
need for alternative approaches, for example to relate to species occurrence data.

Recently, methods have been developed to produce quantitative sediment maps that make better
use of the quantitative grain size data. Lark et al. [9] derived additive log-ratios of the three sediment
fractions that could then be modelled across the UK continental shelf. These additive log-ratios were
subsequently converted back into the relative sediment fractions thereby predicting the distribution of
mud, sand and gravel at the seabed. This geostatistical approach also allowed the authors to express the
local probability of each class. While those authors used cokriging, Stephens and Diesing [10] spatially
predicted sediment composition with the Random Forest [11] algorithm based on additive log-ratios.
Diesing [12] further highlighted the value of quantitative sediment maps by applying a similar method
at a fine scale (10 m resolution) to predict sediment fractions across a site of approximately 15,000 km2.
The layers produced by these models have already proved valuable in other work such as predicting
the spatial distribution of organic carbon in surficial shelf sediments [13], quantifying and valuing
organic carbon flows and stocks on the UK continental shelf [14], understanding variation in benthic
pH gradients [15] and assessing North Sea demersal fisheries in relation to benthic habitats [16].
To further support this desire by scientists for regional continuous variables that are suitable for a
range of applications, Wilson et al. [17] generated a range of layers including mud, sand and gravel
fractions for the north-west European shelf. However, the resolution of these data was coarse at a
spatial resolution of 0.125◦ by 0.125◦ (approximately 8 km by 13 km, although this varies with latitude),
and the methodology considered each sediment component in isolation, which is not suitable for
compositional data of this type [18].

In line with the efforts of EMODnet to unify outputs across Europe, and to apply state-of-the-art
methods for modelling the distribution of sediments this study investigates the application of
quantitative sediment composition models at the scale of a European sea-basin. Stephens and
Diesing [10] developed these techniques to predict the fractions of the three sediment components of
mud, sand and gravel for an area of UK and North Sea. While this approach was largely successful,
producing an overall accuracy of 0.83, this initial study was limited in geographic extent and spatial
resolution (500 m). Further, when considering the high groundtruth sample density in certain areas of
their study area, such as the North Sea, it is likely that some pixels were attributed to more than one
sample. As samples were randomly separated into training and testing datasets, this could have had
the effect of inflating the reported accuracy.
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Stephens and Diesing [10] also calculated prediction intervals to quantify the reliability of the
predictions. However, as these related to the two additive log ratios, they remained somewhat difficult
to interpret. Prediction error is likely to be concentrated in certain regions of a map, such as in
areas of high complexity [19,20] or around poorly sampled features [21]. A number of papers have
presented methods for representing the spatial distribution of map error [20,22], and incorporating
these types of maps have been advocated elsewhere [23,24]. Here we present spatial accuracy maps
to accompany the updated substrate maps, which will support the product’s use in future studies.
The presented methodology draws upon the work of Comber et al. [22] by applying a weighting
function to understand how accuracy varies across the study site. The objectives of this study are
therefore to provide high-resolution (7.5 arc seconds or approximately 130 m by 230 m) spatial models of
sediment composition in continuous and classified form, accompanied with maps of spatially-explicit
map accuracy/error and covering large parts of the north-west European continental shelf.

2. Materials and Methods

2.1. Study Area

The study area focusses on the north-west European continental shelf and includes the North
Sea, Irish Sea, Celtic Sea, English Channel and Skagerrak (Figure 1a). This includes areas within the
national maritime boundaries of Belgium, Denmark, France, Germany, Netherlands, Norway, Republic
of Ireland, Sweden and the United Kingdom and Channel Islands.
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Figure 1. Study area and variables used to predict the distribution of seabed sediments. (a) Bathymetry.
(b) BPI50 cells. (c) BPI434 cells. (d) Distance from coast. (e) Current speed. (f) Peak orbital velocity.
(g) Summer—suspended inorganic particulate matter. (h) Winter—suspended inorganic particulate
matter. See Table 1 for additional details.
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2.2. Substrate Observations

Seabed samples were collated from several sources including national marine and geological
institutes (Supplement S1). Some of these sources contained duplicate samples, but once these were
removed the sample data downloaded from various sources consisted of approximately 68,000 samples
where particle size distribution data existed. However, it was necessary to filter the data to remove
potentially problematic samples, such as those where the reported sum of the percentages of mud, sand
and gravel did not equal 100%. Samples collected prior to 1990 were also discarded, as these records
may have imprecise positioning prior to the adoption of Global Positioning System. Inadequately
recorded metadata meant that for many samples there was no information about how the grain size
percentages were measured. Based on the disproportionate number of samples that were recorded
with grain size percentages that were in round numbers (such as 50% sand/50% mud or 25% gravel/75%
sand) it is likely that the fractions reported for these samples were estimated rather than analysed
quantitatively. Commonly occurring fractions that were suspected of not being quantitatively measured
were also discarded from analysis.

The density of samples varied considerably across the study site. As would be expected, areas
near the coast were typically sampled at a higher density than those in deep environments and near the
edge of the continental shelf. In areas of high sample density, it was common to have more than one
sediment sample per unit of analysis (i.e., the spatial resolution of pixels used as predictor variables).
Where this occurred, an average of the percentages of mud, sand and gravel was calculated to produce
one set of fractions that was representative of that pixel. This resulted in a total sediment sample
dataset of 45,761 samples.

The mud, sand and gravel fractions are compositional data, i.e., the sum of these fractions must
equal 1 (or 100%) with each fraction constrained between 0 and 1. Therefore each component should
not be considered in isolation from the others. We follow the recommendations of Aitchinson [18]
and transform the data onto the additive log-ratio (ALR) scale where they can be analysed as two
continuous, unconstrained response variables which assume any value. ALR tranformations are
undefined if any observed value is zero. Therefore, we used the same rationale as Lark et al. [9], and
all zero fractions were changed to the lowest observed fraction in the groundtruth data (0.01). Here we
have selected to use the gravel fraction as the denominator of the log ratio, but it should be noted that
the choice of variable does not affect the final outcome of the analyses [25].

alrm = log
(

mud
gravel

)
= log(mud) − log(gravel) (1)

alrs = log
(

sand
gravel

)
= log(sand) − log(gravel) (2)

The two additive log-ratios alrm and alrs constitute two response variables and separate predictive
models can be built for each individually.

The data were then split randomly into training and testing datasets based on a 67/33% split
(i.e., 30,480 training observations and 15,281 testing observations).

2.3. Predictor Variables

Variables used in the model are summarised in Table 1 and displayed in Figure 1a–h. Predictor
variables were informed by Stephens and Diesing [10] and selected based on what was observed to be
important for explaining the distribution of sediments.
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Table 1. Predictor variables used to model the distribution of sediments.

Feature Description Unit Initial Resolution Source

Bathymetry Bathymetry (water depth). m 7.5”
http:

//www.emodnet-
bathymetry.eu/ [26]

BPI50 Bathymetric position index at 50—pixel radii. m 7.5” Calculated from
bathymetry

BPI434 Bathymetric position index at 434—pixel
radii (approximately 100 km). m 7.5” Calculated from

bathymetry
Distance from coast Euclidean distance to coast. m 7.5” Calculated

Current Speed Mean tidal current velocity. m/s 0.5–10 km Supplement S2
Orbital velocity at

the seabed Peak orbital velocity of waves at the seabed. m/s 11 km Supplement S2

Suspended inorganic
particulate

matter-Summer

Satellite derived estimate of the amount of
inorganic particulate matter suspended in the
water column. Mean of from the months of

June, July and August.

g/m3 4 km http://marine.
copernicus.eu/

Suspended inorganic
particulate

matter—Winter

Satellite derived estimate of the amount of
inorganic particulate matter suspended in the
water column. Mean of from the months of

December, January and February.

g/m3 4 km http://marine.
copernicus.eu/

A bathymetry Digital Terrain Model (DTM) was downloaded from the EMODnet-bathymetry
portal (http://www.emodnet-bathymetry.eu/) for the study area [26]. The EMODnet-bathymetry is
available in the World Geodetic System 1984 and has a gridsize of 1/8 arc minutes * 1/8 arc minutes
(equal to 7.5 arc seconds). This equates to approximately 155 m * 230 m (x * y) in the south of the study
area and 116 m * 230 m in the north of the study area. All other predictor variables (see below) were
resampled onto this same 7.5 arc seconds grid. Bathymetric position indices [27] were calculated from
the bathymetry DTM at two neighbourhood sizes that were thought to capture the local and regional
variation and were sufficiently distinct to have limited correlation.

Two components of the hydrodynamic regime acting on the seabed were modelled and included
for analysis. These were the average current speed and the wave peak orbital velocity at the seabed.
Current speeds were derived from a purpose-built TELEMAC2D model with a mesh spacing ranging
from 0.5 km to 10.0 km depending on the proximity to coast. This was then interpolated to the same
7.5 arc seconds grid as the other data layers. Peak orbital velocity of waves at the seabed were derived
from a European continental shelf model of peak wave height and period from 2001–2010. This was
based on a grid spacing of approximately 11 km. Using the method of Soulsby [28], this peak wave
height and period were combined with depth and interpolated to the bathymetric grid (further details
for current speed and peak wave velocity in Supplement S2 in the supplementary material).

Suspended inorganic particulate matter [29] derived from satellite imagery were downloaded from
the Copernicus marine portal (OCEANCOLOUR_GLO_OPTICS_L4_REP_OBSERVATIONS_009_081).
Data were downloaded at a 4 km resolution as monthly averages between January 2003 and December
2017. Data were averaged across the 15 years for the summer months (June, July and August) and
winter months (December, January and February) to produce two separate rasters. Pixels obscured by
cloud cover were ignored from analysis so there is the potential for some bias introduced as turbidity
may be associated with increased cloud cover and therefore underrepresented in the dataset. Values
represent g/m3. Rasters were then interpolated to the same 7.5 arc seconds grid as the other data layers.

Euclidean distance to coast was calculated in ArcGIS and was expected to be an indicator of
distance to sediment source. Stephens and Diesing [10] observed the importance of this layer as a
predictor variable.

2.4. Modelling

The random forest prediction algorithm [11] was selected as the model for this analysis as it
showed a high level of predictive accuracy in similar studies [10,12], and is commonly applied to
various modelling domains [30,31]. Random forests can be used without extensive parameter tuning,
can handle many predictor variables and are insensitive to the inclusion of noisy or irrelevant features.

http://www.emodnet-bathymetry.eu/
http://www.emodnet-bathymetry.eu/
http://www.emodnet-bathymetry.eu/
http://marine.copernicus.eu/
http://marine.copernicus.eu/
http://marine.copernicus.eu/
http://marine.copernicus.eu/
http://www.emodnet-bathymetry.eu/
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Random forest models were implemented with the randomForest package [32] in R [33]. Forests had
500 trees and all other model parameters were kept as default.

Fitted models were applied to predict two response variables (alrm and alrs) as rasters, based on the
available predictor variables. To generate the raster predictions of the three sediment fractions (mud,
sand and gravel), the two response variables were back-transformed using the additive log-ratios:

mud =
exp(alrm)

exp(alrm) + exp(alrs) + 1
(3)

sand =
exp(alrs)

exp(alrm) + exp(alrs) + 1
(4)

gravel = 1− (mud + sand) (5)

Using the abundance of the three sediment fractions, any classification scheme based on mud, sand
and gravel fractions can be applied to create a classified map. These include commonly used schemes
such as the Folk 5, Folk 7 and Folk 16 classes (where the number reflects the total number of classes
in the classification scheme including one class for hard substrate) used in EMODnet Geology [34]
and the EUNIS Level 3 classification for broadscale sedimentary habitats based on the simplified Folk
triangle [6].

2.5. Model Validation

The random forest algorithm implicitly carries out a form of cross-validation using the ‘out-of-bag’
(OOB) observations (i.e., the observations not included in each tree). In addition, the models are
validated against the test set of observations. The performance is assessed by calculating the mean of
the squared prediction error:

MSEŷ =
1
n

n∑
i=1

(yi − ŷi)
2 (6)

where y are observed and ŷ are predicted values. The ‘variance explained’ (VE) by the model is then
calculated by taking the ratio of the MSE to the variance (σ2) of the observed values:

VE = 1−
MSEŷ

σ2
y

(7)

Using the test sample data set, classification accuracy was measured based on the predicted
sediment type versus the original sediment type using the EUNIS Level 3 broadscale sediment classes,
Folk 5 and Folk 16 maps. From this the overall accuracy, user’s and producer’s accuracy were calculated
from the confusion matrix.

To represent the spatial distribution of error for each of the three sediment fractions the local
Root-Mean-Squared-Error (RMSE) was calculated across the site. To do this, the squared error of each
test sample was calculated based on the difference between the observed and predicted sediment
fraction. A smoothed surface of local RMSE was then generated using the Inverse Distance Weighted
(IDW) technique in ArcGIS. Each pixels’ RMSE was determined based on the closest 50 points (up to a
maximum distance of 200 km). A weighting power function was applied in the IDW tool (set at 0.3) so
nearer points contributed more to the pixel than distant points. The number and maximum distance
were selected to produce an error map that had full spatial coverage but was locally constrained where
sufficient samples were present. This IDW function was applied using a 1000 m * 1000 m grid to
simplify computer processing.

For the classified predictions spatial accuracy was calculated using a locally constrained confusion
matrix. Here test samples were converted to a Boolean value based on whether they were correctly
classified. The IDW technique was applied to calculate a local thematic accuracy value. As above,
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this was applied based on the closest 50 points (maximum distance of 200 km) with a weighting
power function of 0.3. This IDW function was applied using a 1000 m * 1000 m grid to simplify
computer processing.

A comparison of classified model outputs with the sediment classification map from Stephens
and Diesing [10] was also performed. As the maps had different extents and resolutions, a fishnet grid
of 1000 * 1000 points was overlaid on the study side. Points outside the shared map extent or over land
were removed and the prediction from both maps were extracted at the location of each remaining
point. The results of the comparison were reported as a confusion matrix and overall agreement
between maps was also calculated. Both maps would contain error, so the purpose of a comparison
was to understand to what degree the changes to input data affected the final predictions.

3. Results

3.1. Features Importance

For both the alrm and alrs models the most important predictor variables were peak orbital wave
velocity and mean tidal currents (Figure 2). All other variables were observed to contribute to the
model, however, the relative importance changed for the alrm and alrs log-ratios.
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3.2. Model Validation

The model validation statistics (Table 2) indicate that the variance explained by the predictive
models were approximately 63% for alrm and 68% for alrs. Figure 3 shows the observed versus
predicted values for a random subset of the test samples for alrm and alrs. The plots show that there is
considerable variation that was not explained by the models.
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Table 2. Model performance measured using out-of-the-box cross-validation and independent test
data set.

alrm alrs

Cross validation (OOB)
MSE 17.86 10.91

Variance explained 63.31% 68.09%

Test set
MSE 18.19 10.93

Variance explained 62.98% 68.00%
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Of the three classification schemes applied the EUNIS Level 3 map was the most accurate with an
overall accuracy of 77.5%, as opposed to 74.1% and 58.8% accuracy for Folk 5 and Folk 16 respectively
(Table 3). The three confusion matrices show how the class accuracy is highly variable between classes.
For example, in the EUNIS Level 3 map ‘Sand/muddy sand’ was the most widespread sediment type
and was the most accurately mapped, with a user’s accuracy of 79.2%. For the same map the lowest
classification accuracy was the class ‘mixed sediments’ (user’s accuracy of 49.6%) which was also the
least sampled class. By comparison, the user’s accuracy values for the Folk 16 map were relatively low.
Of the 15 sediment classes only four achieved a user’s accuracy of >50%. Yet, because this included the
three most sampled classes, ‘muddy sand’, ‘sand’ and ‘sandy mud’ which totalled 73.8% of the samples
this contributed to the overall accuracy being 58.8%. This sampling bias towards sandy sediments
was further highlighted by comparing the producer’s and user’s accuracies within each classification
scheme. The producer’s accuracy was higher than the user’s accuracy for the most sampled class in all
three classification schemes (i.e., ‘sand/muddy sand’ within EUNIS Level 3 and Folk 5, and ‘sand’ in
Folk 16), but for all other classes the producer’s accuracy was lower than the user’s accuracy (with the
exception of the Folk 16 classes ‘gravelly sand’ and slightly gravelly muddy sand’).
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Table 3. Confusion matrices for the three classification schemes against the test sample set. (a) EUNIS
level 3. (b) Folk 5. (c) Folk 16. Correctly classified samples are highlighted in grey.

(a) EUNIS Level 3
Observed User’s

AccuracyCoarse sediment Mixed sediments Mud/sandy mud Sand/muddy sand

Pr
ed

ic
te

d Coarse sediment 1871 312 40 386 71.7%
Mixed sediments 36 63 13 15 49.6%
Mud/sandy mud 15 36 533 124 75.3%

Sand/muddy sand 1197 350 913 9377 79.2%

Producer’s Accuracy 60.0% 8.3% 35.6% 94.6% Overall
77.5%

(b) Folk 5
Observed User’s

AccuracyCoarse sediment Mixed sediments Mud/sandy mud Sand/muddy sand

Pr
ed

ic
te

d Coarse sediment 1871 312 70 356 71.7%
Mixed sediments 36 63 18 10 49.6%
Mud/sandy mud 60 80 1186 317 72.2%

Sand/muddy sand 1152 306 1247 8197 75.2%

Producer’s Accuracy 60.0% 8.3% 47.0% 92.3% Overall
74.1%

(c) Folk 16
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Gravel 10 - - 1 - 1 - - - 20 - - - - - 31.3%
Gravelly mud - - - - - 1 1 - - - - - - - - 0.0%

Gravelly muddy sand 1 9 13 10 2 4 4 27 4 14 3 - 5 5 2 12.6%
Gravelly sand 64 10 83 442 3 9 33 126 162 673 4 - 22 159 3 24.7%

Mud - - 2 - 69 - 4 - 1 - 7 2 - - 3 78.4%
Muddy gravel - - - - - 1 - 1 - 1 - - 1 - - 25.0%
Muddy sand 5 11 24 24 34 5 730 11 276 14 184 - 27 16 2 53.6%

Muddy sandy gravel 2 - 1 1 - - - 6 1 7 - - - - - 33.3%
Sand 22 25 69 380 42 13 836 48 7155 183 165 - 54 480 22 75.4%

Sandy gravel 70 1 9 122 - 5 1 68 9 469 1 - 2 26 1 59.8%
Sandy mud 1 1 5 - 25 2 16 2 6 1 57 1 1 1 2 47.1%

Slightly gravelly mud - 4 8 7 1 - 4 3 13 8 11 - 3 4 1 0.0%
Slightly gravelly muddy sand 20 14 69 314 6 9 65 59 339 233 25 - 31 223 1 2.2%

Slightly gravelly sand - - - - 1 2 - - - - 1 - - - - 0.0%
Slightly gravelly sandy mud - - - - - - - - - - - - - - - NA

Producer’s
Accuracy 5.1% 0.0% 4.6% 34.0% 37.7% 1.9% 43.1% 1.7% 89.8% 28.9% 12.4% 0.0% 21.2% 0.0% 0.0% Overall

Accuracy
58.8%Total number of samples 195 75 283 1301 183 52 1694 351 7966 1623 458 3 146 914 37

Comparison of the classified outputs with previous work from Stephens and Diesing [10] indicate
a high level of agreement between the predictions. Comparing the EUNIS Level 3 maps, which were the
most accurate, where the two studies shared a similar extent the overall agreement between the maps
was 78.1% (Table 4). However, map agreement was not consistent between the classes. Of the points
classed as ‘sand/muddy sand’ in the updated sediment map 81.1% were given the same classification
in the Stephens and Diesing [10] map. This compares with only 1.8% agreement for points classed as
‘mixed sediments’, which was the least widespread class.
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Table 4. Comparison of high-resolution map with sediment map from Stephens and Diesing [10]. Cells
indicating map agreement are highlighted in grey.

High Resolution

Sum
Within Class
Agreement

Coarse
Sediment

Mixed
Sediments

Mud/Sandy
Mud

Sand/Muddy
Sand

St
ep

he
ns

an
d

D
ie

si
ng

[1
0]

Coarse
sediment 25,894 1446 1072 36,560 64,972 40.0%

Mixed
sediments 366 67 5 725 1163 5.8%

Mud/sandy
mud 858 1210 9479 14,210 25,757 36.8%

Sand/muddy
sand 11,408 948 2992 221,143 236,491 93.5%

Sum 38,526 3671 13,548 272,638
Overall Agreement

78.1%Within class
agreement 67.2% 1.8% 70.0% 81.1%

3.3. Sediment Composition

The predicted spatial distribution of the sediment fractions (mud, sand and gravel) are shown
in Figures 4–6 alongside the local RMSE for each sediment fraction. Sand was the most widespread
sediment type. The mud fraction was prevalent in deeper areas such as the Norwegian Trough and, to
a lesser extent, intra-shelf basins. Areas of high gravel fraction were predicted in the English Channel
and other areas that experience high current speeds. For each sediment fraction the error associated
with that prediction varied spatially across the study site. For example, while the predicted fraction of
sand was high across most of the study site, error was particularly concentrated around the Irish sea
and near the coast (Figure 5). The distribution of map error, as measured by local RMSE, is different for
the three sediment fractions, however, they all indicate that the North Sea is an area of higher accuracy.
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Figure 6. Predicted distribution of gravel and spatial distribution of error, represented as local RMSE.

The classified maps, presented in Figures 7–9, simplify these fractions into three commonly used
classification schemes. The EUNIS Level 3 and Folk 5 predictions are generally similar, with the only
difference being that Mud/sandy mud is more extensive in the Folk 5 classified map. These differences
are most evident in the Fladen Grounds off eastern Scotland, the Oyster Ground north of the Netherlands
and the Irish Sea. However, there is variation in local accuracy between the two schemes, most notably
around the Fladen Grounds where the Folk 5 map has higher accuracy. The Folk 16 map is more
detailed, with sand, muddy sand and sandy mud the most widespread sediment classes. However,
the increased specificity resulted in lower local accuracies around the majority of the study area.
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4. Discussion

The maps produced in this study are to date the highest resolution (7.5 arc seconds) quantitative
sediment maps that have been produced at the scale of a sea-basin. Previous studies by Stephens
and Diesing [10] and Wilson et al. [17] generated sediment predictions at 500 m and 0.125◦ resolution
respectively. Increased resolution was possible due to improvements in the resolution of predictive
layers available such as the tidal currents TELEMAC2D model and bathymetry layers available through
the EMODnet project. Not only did an increased resolution bathymetry layer result in more detailed
derivative layers but also, peak orbital velocity of waves at the seabed improved as the formula to
calculate this from peak wave height and period requires depth to be known for each pixel. The two
most important variables in both the alrm and alrs models were mean tidal current velocity and peak
orbital velocity of waves at the seabed (Figure 2), both of which were modelled from new data that had
a finer resolution. The extent of the study was also increased compared to Stephens and Diesing [10],
including areas of the continental shelf around Ireland, northern Scotland, the Norwegian Trough and
the Skagerrak. Regional maps such as these avoid the inevitable artefacts that occur at the borders
between different datasets, national boundaries or study area [4,35]. These are typically a result of maps
derived from different datasets or under different methods. Where the response variable is categorical
only, as is generally the case, map users have few options with how to dissolve these boundaries so
as to reflect reality. However, continuous response variables like the mud, sand and gravel fractions
produced using this method may provide a useful tool to resolve these border issues. For example,
areas of overlap could inform some degree of calibration factor to apply to one dataset or the other.

Increasing the resolution resulted in an overall accuracy of 78% for the EUNIS Level 3 map,
which is less than the accuracy of 83% Stephens and Diesing [10] reported for their equivalent model.
The independent test data indicated that approximately 60% and 63% of the variability was explained
for the alrm and alrs respectively, which is also less than the 66% and 71% explained by Stephens
and Diesing’s models. However, based on the number of sediment samples used by Stephens and
Diesing [10] and the resolution of their study it appears that there may have been instances with
multiple samples per pixel. This might have had the effect of artificially inflating the reported accuracy.
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As seen in Table 4, there was a high level of agreement between the two studies, but this was primarily
for the ‘sand/muddy sand’ class, and caution should be taken when interpreting the extent of the other
classes, in particular the ‘mixed sediments’ class.

This study benefited from recent attempts to compile multiple sources into large datasets
(e.g., [36,37]). However, some sources of data had limited or no metadata. Therefore, it was impossible
to know which methods were used to measure the quantity of sediment components. For example,
samples collected using a standardised methodology [38] would have provided the most suitable
samples for this process. However, methods such as laser grain size analysis can produce differences
compared with more traditional sieving techniques [39]. As a minimum requirement to be included,
samples needed to have the quantities of mud, sand and gravel recorded and be collected post-1990.
Further attempts were made to filter the data by removing samples that contained some commonly
occurring rounded fractions (e.g., 25%, 50% and 100%). However, it is likely that some imprecisely
measured samples were still retained. Further, other sources of groundtruth error such as locational
error [40], changes to sediment type through time and differences in sampling gear may have also
increased map error but are unknown without adequate metadata. This paper therefore highlights the
value of analysing sediment samples using robust quantitative techniques and the need for adequate
metadata to be recorded so data can be appropriately utilised in future studies. However, the mapped
outputs are still of value, as they portray sediment composition quantitatively and with increased
resolution. Further, as they are supported with spatially-explicit maps of error, the level of reliance on
the maps can be varied depending on the local accuracy.

Should a certain level of generalisation be required we would suggest incorporating object-based
image analysis [41] into the workflow. This was displayed in Diesing [12] where ‘noisy’ pixel-based
predictions were generalised using a process of segmentation, into areas of homogenous attributes,
and then averaging the prediction between pixels within that segment. While generalised maps may
be simpler for end users to interpret, they may also conceal some of the variability of a prediction.
‘Noisy’ areas within a map, where neighbouring pixels have a high degree of variation, may be an
accurate reflection of the environment (e.g., high heterogeneity) or may be an artefact of the model
(e.g., missing predictor variables or an overfitted model). Therefore, model generalisation may not
always be desirable. For example, sediment fractions have proven more valuable than classified maps
for understanding biologically meaningful species assemblages [8], and individual fractions may
be particularly valuable for understanding certain sediment gradients, such as the organic carbon
stocks [13].

It has been demonstrated that bedrock outcropping at the seabed can be reliably predicted [42–44].
Incorporating such information into basin-scale substrate maps would be a desirable goal in the future.
However, several challenges must be met to make this happen: To our knowledge, maps of predicted
bedrock occurrence do only exist for the UK continental shelf. Also, the existing maps have a much
higher resolution (25 m) than the sediment predictions presented here. Finally, a framework must be
developed that allows for expressing map accuracy or confidence when predictions have been made in
different ways.

Increasing amounts and types of measured, modelled and remotely-sensed data have become
available from the EMODnet and Copernicus data portals. At the same time, methods for quantitative
spatial prediction and spatially-explicit error assessment continue to evolve. For example, a generic
framework for predictive modelling of spatial and spatio-temporal variables using random forest has
recently been presented [45]. We expect that similar products as those showcased here will ultimately
become available for other sea areas within Europe. These will likely be of use for research as well as
various applications such as habitat suitability modelling, nature conservation and marine planning
among others.



Geosciences 2019, 9, 182 15 of 17

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/9/4/182/s1.
Supplement S1: Table summarizing sources of seabed sediment groundtruth data prior to filtering out problematic
samples. Supplement S2: Further details on the preparation of mean tidal currents and peak wave velocities data
for the UK continental shelf.

Author Contributions: Conceptualization, P.M. and M.D.; Methodology, P.M. and M.D.; Formal Analysis, P.M.;
Data Curation, P.M. and J.A.; Writing—Original Draft, P.M., J.A. and M.D.; Funding Acquisition, M.D.

Funding: This study is part of the EU-funded EMODnet Geology project (EASME/EMFF/20I6/1.3.1.2—
Lot 1/SI2.750862).

Acknowledgments: Thanks to the EMODnet-Geology partners who provided sediment sample data within the
study area. Sediment sample data were also downloaded from the MOD web portal (https://mod.dnvgl.com/) in
January 2018. This portal makes available monitoring data from the Norwegian continental shelf. The development
of MOD is financed by Norsk Olje & Gass on behalf of the oil & gas industry in Norway. We would also like to
thank David Haverson (Cefas) for providing access to tidal currents data for the European continental shelf.

Conflicts of Interest: The authors declare no conflict of interest.

Data Availability: Sediment observations and predictor variables are available from https://doi.org/10.14466/
CefasDataHub.62. Data products presented in this study are available from https://doi.org/10.14466/CefasDataHub.63.

References

1. Harris, P.T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.K. Geomorphology of the oceans. Mar. Geol. 2014, 352,
4–24. [CrossRef]

2. Bauer, J.E.; Cai, W.-J.; Raymond, P.A.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A.G. The changing carbon
cycle of the coastal ocean. Nature 2013, 504, 61–70. [CrossRef]

3. Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.;
Ebert, C.; Fox, H.E.; et al. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952.
[CrossRef]

4. Kaskela, A.M.; Kotilainen, A.T.; Alanen, U.; Cooper, R.; Green, S.; Guinan, J.; Van Heteren, S.; Kihlman, S.;
Van Lancker, V.; Stevenson, A.; et al. Picking up the pieces—Harmonising and collating seabed substrate
data for European maritime areas. Geosciences 2019, 9, 84. [CrossRef]

5. Folk, R.L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature.
J. Geol. 1954, 62, 344–359. [CrossRef]

6. Long, D. BGS Detailed Explanation of Seabed Sediment Modified Folk Classification; MESH report; Joint Nature
Conservation Committee: Peterborough, UK, 2006.

7. Parry, M.E. Marine Habitat Classification for Britain and Ireland: Overview of User Issues; JNCC Report No. 529;
Joint Nature Conservation Committee: Peterborough, UK, 2014.

8. Cooper, K.M.; Bolam, S.G.; Downie, A.-L.; Barry, J. Biological-based habitat classification approaches promote
cost-efficient monitoring: An example using seabed assemblages. J. Appl. Ecol. 2019. [CrossRef]

9. Lark, R.M.; Dove, D.; Green, S.L.; Richardson, A.E.; Stewart, H.A.; Stevenson, A. Spatial prediction of seabed
sediment texture classes by cokriging from a legacy database of point observations. Sediment. Geol. 2012,
281, 35–49. [CrossRef]

10. Stephens, D.; Diesing, M. Towards quantitative spatial models of seabed sediment composition. PLoS ONE
2015. [CrossRef]

11. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
12. Diesing, M. Case Study: Quantitative Spatial Prediction of Seabed Sediment Composition; Cefas: Lowestoft,

UK, 2015.
13. Diesing, M.; Kröger, S.; Parker, R.; Jenkins, C.M.; Mason, C.; Weston, K. Predicting the standing stock of

organic carbon in surface sediments of the North–West European continental shelf. Biogeochemistry 2017, 135,
183–200. [CrossRef]

14. Luisetti, T.; Turner, R.K.; Andrews, J.E.; Jickells, T.D.; Kröger, S.; Diesing, M.; Paltriguera, L.; Johnson, M.T.;
Parker, E.R.; Bakker, D.C.E.; et al. Quantifying and valuing carbon flows and stores in coastal and shelf
ecosystems in the UK. Ecosyst. Serv. 2019, 35, 67–76. [CrossRef]

15. Silburn, B.; Kröger, S.; Parker, E.R.; Sivyer, D.B.; Hicks, N.; Powell, C.F.; Johnson, M.; Greenwood, N. Benthic
pH gradients across a range of shelf sea sediment types linked to sediment characteristics and seasonal
variability. Biogeochemistry 2017, 135, 69–88. [CrossRef]

http://www.mdpi.com/2076-3263/9/4/182/s1
https://mod.dnvgl.com/
https://doi.org/10.14466/CefasDataHub.62
https://doi.org/10.14466/CefasDataHub.62
https://doi.org/10.14466/CefasDataHub.63
http://dx.doi.org/10.1016/j.margeo.2014.01.011
http://dx.doi.org/10.1038/nature12857
http://dx.doi.org/10.1126/science.1149345
http://dx.doi.org/10.3390/geosciences9020084
http://dx.doi.org/10.1086/626171
http://dx.doi.org/10.1111/1365-2664.13381
http://dx.doi.org/10.1016/j.sedgeo.2012.07.009
http://dx.doi.org/10.1371/journal.pone.0142502
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s10533-017-0310-4
http://dx.doi.org/10.1016/j.ecoser.2018.10.013
http://dx.doi.org/10.1007/s10533-017-0323-z


Geosciences 2019, 9, 182 16 of 17

16. van der Reijden, K.J.; Hintzen, N.T.; Govers, L.L.; Rijnsdorp, A.D.; Olff, H. North Sea demersal fisheries
prefer specific benthic habitats. PLoS ONE 2018, 13, e0208338. [CrossRef]

17. Wilson, R.J.; Speirs, D.C.; Sabatino, A.; Heath, M.R. A synthetic map of the northwest European Shelf
sedimentary environment for applications in marine science. Earth Syst. Sci. Data Discuss. 2018, 10, 109–130.
[CrossRef]

18. Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986; Volume 44,
ISBN 00359246.

19. Lucieer, V.L.; Lucieer, A. Fuzzy clustering for seafloor classification. Mar. Geol. 2009, 264, 230–241. [CrossRef]
20. Foody, G.M. Local characterization of thematic classification accuracy through spatially constrained confusion

matrices. Int. J. Remote Sens. 2005, 26, 1217–1228. [CrossRef]
21. Mitchell, P.J.; Downie, A.-L.; Diesing, M. How good is my map? A tool for semi-automated thematic mapping

and spatially explicit confidence assessment. Env. Model. Softw. 2018, 108, 111–122. [CrossRef]
22. Comber, A.J.; Fisher, P.F.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification

accuracy. Remote Sens. Environ. 2012, 127, 237–246. [CrossRef]
23. Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201.

[CrossRef]
24. Diesing, M.; Mitchell, P.J.; Stephens, D. Image-based seabed classification: What can we learn from terrestrial

remote sensing? ICES J. Mar. Sci. 2016, 73, 2425–2441. [CrossRef]
25. Pawlowsky-Glahn, V.; Olea, R.A. Geostatistical Analysis of Compositional Data; Oxford University Press:

New York, NY, USA, 2004.
26. EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM 2016). Available online:

http://portal.emodnet-bathymetry.eu/ (accessed on 30 March 2018).
27. Lundblad, E.R.; Wright, D.J.; Miller, J.; Larkin, E.M.; Rinehart, R.; Naar, D.F.; Donahue, B.T.; Anderson, S.M.;

Battista, T.A. A Benthic terrain classification scheme for American Samoa. Mar. Geod. 2006, 29, 89–111.
[CrossRef]

28. Soulsby, R.L. Simplified Calculation of Wave Orbital Velocities; HR Wallingford Ltd.: Wallingford, Oxfordshire,
UK, 2006.

29. Gohin, F.; Bryère, P.; Griffiths, J.W. The exceptional surface turbidity of the North-West European shelf
seas during the stormy 2013-2014 winter: Consequences for the initiation of the phytoplankton blooms?
J. Mar. Syst. 2015, 148, 70–85. [CrossRef]

30. Zhi, H.; Siwabessy, P.J.W.; Nichol, S.L.; Brooke, B.P. Predictive mapping of seabed substrata using
high-resolution multibeam sonar data: A case study from a shelf with complex geomorphology. Mar. Geol.
2014, 357, 37–52. [CrossRef]

31. Hasan, R.C.; Ierodiaconou, D.; Laurenson, L.; Schimel, A.C.G. Integrating multibeam backscatter angular
response, mosaic and bathymetry data for benthic habitat mapping. PLoS ONE 2014, 9, e97339.

32. Liaw, A.; Wiener, M. Breiman and Cutler’s Random Forests for Classification and Regression, R package version
4.6–14. 2015; 29.

33. R Development Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical
Computing: Vienna, Austria, 2017.

34. Populus, J.; Vasquez, M.; Albrecht, J.; Manca, E.; Agnesi, S.; Al Hamdani, Z.; Andersen, J.; Annunziatellis, A.;
Bekkby, T.; Bruschi, A.; et al. EUSeaMap, a European Broad-Scale Seabed Habitat Map, EMODnet. 2017.

35. Lacharité, M.; Brown, C.J.; Gazzola, V. Multisource multibeam backscatter data: Developing a strategy for the
production of benthic habitat maps using semi-automated seafloor classification methods. Mar. Geophys. Res.
2017, 39, 307–322. [CrossRef]

36. Cooper, K.M.; Barry, J. A big data approach to macrofaunal baseline assessment, monitoring and sustainable
exploitation of the seabed. Sci. Rep. 2017, 7, 12431. [CrossRef]

37. Valerius, J.; van Lancker, V.; van Heteren, S.; Leth, J.; Zeiler, M. Trans-National Database of North Sea Sediment
Data; Federal Maritime and Hydrographic Agency (Germany): Hamburg, Germany; Royal Belgian Institute
of Natural Sciences (Belgium): Brussels, Belgium; TNO (Netherlands): The Hague, The Netherlands;
Geological Survey of Denmark and Greenland (Denmark): Copenhagen, Denmark, 2014.

38. Mason, C. NMBAQC’s Best Practice Guidance. Particle Size Analysis (PSA) for Supporting Biological Analysis;
National Marine Biological AQC Coordinating Committee, 2016.

http://dx.doi.org/10.1371/journal.pone.0208338
http://dx.doi.org/10.5194/essd-10-109-2018
http://dx.doi.org/10.1016/j.margeo.2009.06.006
http://dx.doi.org/10.1080/01431160512331326521
http://dx.doi.org/10.1016/j.envsoft.2018.07.014
http://dx.doi.org/10.1016/j.rse.2012.09.005
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.1093/icesjms/fsw118
http://portal.emodnet-bathymetry.eu/
http://dx.doi.org/10.1080/01490410600738021
http://dx.doi.org/10.1016/j.jmarsys.2015.02.001
http://dx.doi.org/10.1016/j.margeo.2014.07.012
http://dx.doi.org/10.1007/s11001-017-9331-6
http://dx.doi.org/10.1038/s41598-017-11377-9


Geosciences 2019, 9, 182 17 of 17

39. Konert, M.; Vandenberghe, J. Comparison of laser grain size analysis with pipette and sieve analysis:
A solution for the underestimation of the clay fraction. Sedimentology 1997, 44, 523–535. [CrossRef]

40. Mitchell, P.J.; Monk, J.; Laurenson, L. Sensitivity of fine-scale species distribution models to locational
uncertainty in occurrence data across multiple sample sizes. Methods Ecol. Evol. 2017, 8, 12–21. [CrossRef]

41. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65,
2–16. [CrossRef]

42. Diesing, M.; Green, S.L.; Stephens, D.; Cooper, R.; Mellett, C.L.L. Semi-Automated Mapping of Rock in the
English Channel and Celtic Sea; JNCC: Peterborough, UK, 2015; Volume 569.

43. Downie, A.L.; Dove, D.; Westhead, R.K.; Diesing, M.; Green, S.L.; Cooper, R. Semi-Automated Mapping of Rock
in the North Sea; JNCC: Peterborough, UK, 2016.

44. Brown, L.S.; Green, S.L.; Stewart, H.A.; Diesing, M.; Downie, A.-L.; Cooper, R.; Lillis, H. Semi-Automated
Mapping of Rock in the Irish Sea, Minches, Western Scotland and Scottish Continental Shelf ; JNCC Report; JNCC:
Peterborough, UK, 2017; p. 609.

45. Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random forest as a generic framework
for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1046/j.1365-3091.1997.d01-38.x
http://dx.doi.org/10.1111/2041-210X.12645
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
http://dx.doi.org/10.7717/peerj.5518
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Substrate Observations 
	Predictor Variables 
	Modelling 
	Model Validation 

	Results 
	Features Importance 
	Model Validation 
	Sediment Composition 

	Discussion 
	References

