First Identification of Periodic Degassing Rhythms in Three Mineral Springs of the East Eifel Volcanic Field (EEVF, Germany)
Abstract
:1. Introduction
1.1. Geological Setting
1.2. Description of the Three Investigated Mineral Springs
2. Materials and Methods
- CO2, He, and Rn concentrations;
- temporal relations and degassing rhythms;
- meteorological conditions; and
- earthquakes.
2.1. Gas Sampling and Analytical Methods
2.2. Meteorological Parameters
2.3. Earthquake Events
2.4. Data Analysis
2.5. Data Availability
3. Results
3.1. Gas Composition
3.2. Time Series
3.2.1. Fluctuations in Gas Concentrations
3.2.2. Temporal Variations of Concentrations and Carrier-Trace-Gas Couples in Springs
3.2.3. Fourier Transform (FT)
3.3. External Factors
3.3.1. Meteorological Conditions
3.3.2. Earthquakes
4. Discussion
4.1. Gas Content in the Studied Waters
4.2. Time Series
4.2.1. Temporal Relations and Coupled Gas Systems
4.2.2. Degassing Rhythms
5. Conclusions
- First identification of periodic degassing rhythms of 1 day and 2–5 days for CO2, He, and Rn in mineral springs of the East Eifel Volcanic field (EEVF) that correspond to analyses of soil gasses were done in a parallel study.
- Cross-correlation analyses, CO2–He coupling, and CO2–Rn coupling together suggest that Nette and Kärlich are directly linked via previously unknown tectonic fault systems.
- The volcanic activity in the EEVF is dormant but not extinct. To understand and monitor its magmatic and degassing systems in relation to new developments in earthquake processes and to identify seasonal variation in gas flux, we recommend continuous monitoring of geogenic gases in all available springs taken at short temporal intervals.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
(a) 7-M | Nette | Kärlich | Kobern | (b) 4-W | Nette | Kärlich | Kobern |
---|---|---|---|---|---|---|---|
CO2 (Vol.%) | CO2 (Vol.%) | ||||||
Nette | 1 | Nette | 1 | ||||
Kärlich | 0.92 | 1 | Kärlich | 0.65 | 1 | ||
Kobern | 0.35 | 0.21 | 1 | Kobern | 0.12 | 0.35 | 1 |
He (ppb) | He (ppb) | ||||||
Nette | 1 | Nette | 1 | ||||
Kärlich | 0.75 | 1 | Kärlich | 0.76 | 1 | ||
Kobern | −0.59 | −0.53 | 1 | Kobern | 0.12 | 0.00 | 1 |
Rn (Bq/L) | Rn (Bq/L) | ||||||
Nette | 1 | Nette | 1 | ||||
Kärlich | 0.04 | 1 | Kärlich | 0.44 | 1 | ||
Kobern | 0.09 | 0.42 | 1 | Kobern | 0.19 | 0.52 | 1 |
Days | Cycles | CO2 Nette | CO2 Kärlich | CO2 Kobern | He Nette | He Kärlich | He Kobern | Rn Nette | Rn Kärlich | Rn Kobern |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.33 | |||||||||
0.66 | 7 | 11 | 14 | 76,846 | 2803 | 6528 | 32 | 43 | 37 | |
1.00 | 8 | 13 | 44 | 94,651 | 4032 | 7605 | 30 | 82 | 32 | |
2 | 1.33 | 6 | 20 | 31 | 92,905 | 5979 | 7864 | 29 | 82 | 46 |
1.66 | 13 | 16 | 28 | 94,394 | 4098 | 2581 | 32 | 81 | 36 | |
2.00 | 9 | 14 | 19 | 94,997 | 6743 | 5544 | 25 | 52 | 26 | |
3 | 2.33 | 9 | 11 | 34 | 78,069 | 2608 | 3975 | 21 | 48 | 25 |
2.66 | 7 | 2 | 26 | 55,541 | 1188 | 565 | 25 | 85 | 19 | |
3.00 | 11 | 19 | 20 | 48,987 | 2531 | 5596 | 26 | 85 | 27 | |
4 | 3.33 | 15 | 25 | 20 | 44,947 | 3720 | 8418 | 26 | 83 | 11 |
3.66 | 10 | 25 | 22 | 35,557 | 5889 | 7849 | 22 | 93 | 15 | |
4.00 | ||||||||||
5 | 5 | 10 | 15 | 59,780 | 4918 | 8054 | 16 | 56 | 12 | |
5.00 | 11 | 10 | 15 | 69,155 | 1777 | 4185 | 15 | 33 | 31 | |
6 | ||||||||||
6.00 | 7 | 24 | 26 | 49,106 | 3398 | 3773 | 12 | 62 | 52 | |
7 | ||||||||||
7.00 | ||||||||||
8 | 13 | 23 | 22 | 60,093 | 5166 | 4753 | 16 | 18 | 30 | |
8.00 | ||||||||||
9 | ||||||||||
9.00 | ||||||||||
10 | ||||||||||
10.00 | 31 | 20 | 27 | 136,078 | 8928 | 7648 | 20 | 34 | 17 | |
11 | ||||||||||
11.00 | ||||||||||
12 | ||||||||||
12.00 | ||||||||||
13 | ||||||||||
13.00 | ||||||||||
14 | ||||||||||
14.00 | ||||||||||
15 | ||||||||||
15.00 | 42 | 8 | 18 | 153,949 | 6666 | 11,316 | 28 | 122 | 17 | |
30 | 30 | 76 | 25 | 16 | 90,588 | 4707 | 13,573 | 34 | 191 | 49 |
4-W Sampling | Nette | Kärlich | Kobern |
---|---|---|---|
CO2 (Vol.%) | |||
Air temperature | 0.11 | 0.17 | 0.20 |
Air pressure | −0.19 | −0.09 | −0.11 |
Humidity | 0.06 | −0.21 | −0.12 |
Wind speed | −0.07 | −0.19 | −0.22 |
He (ppb) | |||
Air temperature | −0.02 | 0.00 | 0.07 |
Air pressure | −0.03 | −0.16 | −0.09 |
Humidity | 0.01 | −0.01 | 0.03 |
Wind speed | −0.03 | −0.23 | −0.08 |
Rn (Bq/L) | |||
Air temperature | 0.04 | −0.01 | 0.13 |
Air pressure | 0.00 | −0.19 | −0.13 |
Humidity | −0.01 | −0.09 | −0.12 |
Wind speed | −0.18 | −0.06 | −0.05 |
References
- Hunt, J.A.; Zafu, A.; Mather, T.A.; Pyle, D.M.; Barry, P.H. Spatially Variable CO2 Degassing in the Main Ethiopian Rift: Implications for Magma Storage, Volatile Transport, and Rift-Related Emissions. Geochem. Geophys. Geosystems 2017, 18, 3714–3737. [Google Scholar] [CrossRef]
- Burton, M.R.; Sawyer, G.M.; Granieri, D. Deep Carbon Emissions from Volcanoes. Rev. Miner. Geochem. 2013, 75, 323–354. [Google Scholar] [CrossRef] [Green Version]
- Mörner, N.-A.; Etiope, G. Carbon degassing from the lithosphere. Planet. Chang. 2002, 33, 185–203. [Google Scholar] [CrossRef]
- Inguaggiato, S.; DiLiberto, I.S.; Federico, C.; Paonita, A.; Vita, F. Review of the evolution of geochemical monitoring, networks and methodologies applied to the volcanoes of the Aeolian Arc (Italy). Earth-Science Rev. 2018, 176, 241–276. [Google Scholar] [CrossRef]
- Marrero-Diaz, R.; López, D.; Pérez, N.M.; Custodio, E.; Sumino, H.; Melián, G.V.; Padrón, E.; Hernández, P.A.; Calvo, D.; Barrancos, J.; et al. Carbon dioxide and helium dissolved gases in groundwater at central Tenerife Island, Canary Islands: Chemical and isotopic characterization. Bull. Volcanol. 2015, 77. [Google Scholar] [CrossRef]
- Liotta, M.; D’Alessandro, W.; Bellomo, S.; Brusca, L. Volcanic plume fingerprint in the groundwater of a persistently degassing basaltic volcano: Mt. Etna. Chem. Geol. 2016, 433, 68–80. [Google Scholar] [CrossRef]
- Petrosino, S.; Cusano, P.; Madonia, P. Tidal and hydrological periodicities of seismicity reveal new risk scenarios at Campi Flegrei caldera. Sci. Rep. 2018, 8, 13808. [Google Scholar] [CrossRef] [PubMed]
- Flower, V.J.B.; Carn, S.A. Characterising volcanic cycles at Soufriere Hills Volcano, Montserrat: Time series analysis of multi-parameter satellite data. J. Vol. Geotherm. Res. 2014, 304, 82–93. [Google Scholar] [CrossRef]
- Bredemeyer, S.; Hansteen, T.H. Synchronous degassing patterns of the neighbouring volcanoes Llaima and Villarrica in south-central Chile: The influence of tidal forces. N.a. Diabetol. 2014, 103, 1999–2012. [Google Scholar]
- Ilanko, T.; Oppenheimer, C.; Burgisser, A.; Kyle, P. Cyclic degassing of Erebus volcano, Antarctica. Bull. Volcanol. 2015, 77, 56. [Google Scholar] [CrossRef]
- Lamb, O.D.; Varley, N.R.; Mather, T.A.; Pyle, D.M.; Smith, P.J.; Liu, E.J. Multiple timescales of cyclical behaviour observed at two dome-forming eruptions. J. Volcanol. Geotherm. 2014, 284, 106–121. [Google Scholar] [CrossRef]
- Druitt, T.H.; Young, S.R.; Baptie, B.; Bonadonna, C.; Calder, E.S.; Clarke, A.B.; Cole, P.D.; Harford, C.L.; Herd, R.A.; Luckett, R.; et al. Episodes of cyclic Vulcanian explosive activity with fountain collapse at Soufrière Hills Volcano, Montserrat. Geol. Soc. London, Memoirs 2002, 21, 281–306. [Google Scholar] [CrossRef]
- Nicholson, E.J.; Mather, T.A.; Pyle, D.M.; Odbert, H.M.; Christopher, T. Cyclical patterns in volcanic degassing revealed by SO2 flux timeseries analysis: Anapplication to Soufrière Hills Volcano, Montserrat. Earth. Plan Sci. Let. 2013, 375, 209–221. [Google Scholar] [CrossRef]
- Loughlin, S.C.; Luckett, R.; Ryan, G.; Christopher, T.; Hards, V.; De Angelis, S.; Strutt, M. An overview of lava dome evolution, dome collapse and cyclicity at Soufrière Hills Volcano, Montserrat, 2005–2007. Geophys. Res. Lett. 2010, 37, 19. [Google Scholar] [CrossRef]
- Odbert, H.M.; Wadge, G. Time series analysis of lava flux. J. Volcanol. Geotherm. Res. 2009, 188, 305–314. [Google Scholar] [CrossRef]
- Jaquet, O.; Carniel, R.; Sparks, S.; Thompson, G.; Namar, R.; Di Cecca, M. DEVIN: Aforecasting approach using stochastic methods applied to the Soufriere Hills Volcano. J. Volcanol. Geotherm. Res. 2006, 153, 97–111. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Young, S.R. The eruption of Soufrière Hills Volcano, Montserrat (1995–1999): Overview of scientific results. Geol. Soc. London, Memoirs 2002, 21, 45–69. [Google Scholar] [CrossRef]
- Tilling, R.I. The critical role of volcano monitoring in risk reduction. Adv. Geosci. 2008, 14, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Achauer, U.; Ritter, J.R.; Jordan, M.; Christensen, U.R. A mantle plume below the Eifel volcanic fields, Germany. Earth Planet. Sci. Lett. 2001, 186, 7–14. [Google Scholar] [Green Version]
- Schmincke, H.U. The Quaternary volcanic fields of the East and the West Eifel (Germany). In Mantle Plumes: A Multidisciplinary Approach; Ritter, J.R.R., Christensen, U.R., Eds.; Springer: Berlin Heidelberg, 2007; pp. 241–322. [Google Scholar]
- Hensch, M.; Dahm, T.; Ritter, J.; Heimann, S.; Schmidt, B.; Stange, S.; Lehmann, K. Deep low-frequency earthquakes reveal ongoing magmatic recharge beneath Laacher See Volcano (Eifel, Germany). Geophys. J. Int. 2019, 216, 2025–2036. [Google Scholar] [CrossRef]
- Hinzen, K.-G. Stress field in the Northern Rhine area, Central Europe, from earthquake fault plane solutions. Tectonophysics 2003, 377, 325–356. [Google Scholar] [CrossRef]
- Griesshaber, E.; O’Nions, R.; Oxburgh, E. Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F.R.G. Chem. Geol. 1992, 99, 213–235. [Google Scholar] [CrossRef]
- Griesshaber, E. The distribution pattern of mantle derived volatiles in mineral waters of the Rhenish Massif. In Young Tectonics-Magmatism-Fluids, A Case Study of the Rhenish Massif; Neugebauer, H.J., Ed.; SFB 350: Wechselwirkungen kontinentaler Stoffsysteme und ihre Modellierung, Rheinische Friedrich-Wilhelm Universität: Bonn, Germany, 1998; Volume 74, pp. 51–59. [Google Scholar]
- Bräuer, K.; Kämpf, H.; Niedermann, S.; Strauch, G. Indications for the existence of different magmatic reservoirs beneath the Eifel area (Germany): A multi-isotope (C, N, He, Ne, Ar) approach. Chem. Geol. 2013, 356, 193–208. [Google Scholar] [CrossRef]
- May, F.; Hoernes, S.; Neugebauer, H.J. Genesis and distribution of mineral waters as a consequence of recent lithospheric dynamics: The Rhenish Massif, Central Europe. N.a. Diabetol. 1996, 85, 782–799. [Google Scholar] [CrossRef]
- May, F. Quantifizierung des CO2-Flusses zur Abbildung magmatischer Prozesse im Untergrund der Westeifel; Shaker Verlag: Aachen, Germany, 2002; p. 172. [Google Scholar]
- May, F. Säuerlinge der Vulkaneifel und der Südeifel. Mainzer. Geowiss. Mitt. 2002, 31, 7–57. [Google Scholar]
- Clauser, C.; Griesshaber, E.; Neugebauer, H.J. Decoupled thermal and mantle helium anomalies: Implications for the transport regime in continental rift zones. J. Geophys. Res. 2002, 107, 2269. [Google Scholar] [CrossRef]
- Gal, F.; Michel, B.; Gilles, B.; Frédéric, J.; Karine, M. CO2 escapes in the Laacher See region, East Eifel, Germany: Application of natural analogue onshore and offshore geochemical monitoring. Int. J. Greenh. Gas 2011, 5, 1099–1118. [Google Scholar] [CrossRef]
- Berberich, G.M.; Berberich, M.B.; Ellison, A.M.; Wöhler, C. Degassing Rhythms and Fluctuations of Geogenic Gases in A Red Wood-Ant Nest and in Soil in The Neuwied Basin (East Eifel Volcanic Field, Germany). Insects 2018, 9, 135. [Google Scholar] [CrossRef]
- Berberich, G.M.; Ellison, A.M.; Berberich, M.B.; Grumpe, A.; Becker, A.; Wöhler, C. Can a red wood-ant nest be associated with fault-related CH4 micro-seepage? A case study from continuous short-term in-situ sampling. Animals 2018, 8, 46. [Google Scholar] [CrossRef]
- Berberich, G.M.; Berberich, M.B.; Ellison, A.M.; Grumpe, A.; Becker, A.; Wöhler, C. First in Situ Identification of Ultradian and Infradian Rhythms, and Nocturnal Locomotion Activities of Four Colonies of Red Wood Ants (Formica rufa-Group). J. Biol. Rhythms 2019, 34, 19–38. [Google Scholar] [CrossRef]
- Tesauro, M.; Hollenstein, C.; Egli, R.; Geiger, A.; Kahle, H.-G. Analysis of central western Europe deformation using GPS and seismic data. J. Geodyn. 2006, 42, 194–209. [Google Scholar] [CrossRef]
- Campbell, J.; Kümpel, H.-J.; Fabian, M.; Fischer, D.; Görres, B.; Keysers, C.J.; Lehmann, K. Recent movement pattern of the Lower Rhine Basin from tilt, gravity and GPS data. Neth. J. Geosc. Geologie en Mijnbouw 2002, 81, 223–230. [Google Scholar]
- May, F. Alteration of Wall Rocks by CO 2 -Rich Water Ascending in Fault Zones: Natural Analogues for Reactions Induced by CO 2 Migrating Along Faults in Siliciclastic Reservoir and Cap Rocks. Oil Gas Sci. Technol. – d’IFP Energies Nouv. 2005, 60, 19–32. [Google Scholar] [CrossRef]
- Litt, T.; Brauer, A.; Goslar, T.; Merk, J.; Balaga, K.; Mueller, H.; Ralska-Jasiewiczowa, M.; Stebich, M.; Negendank, J.F.W. Correlation and synchronisation of Late glacial continental sequences in northern Central Europe based on annually laminated lacustrine sediments. Quat. Sci. Rev. 2001, 20, 1233–1249. [Google Scholar] [CrossRef]
- Wörner, G. Quaternary Eifel volcanism, its mantle sources and effect on the crust of the Rhenish Shield. In Young Tectonics-Magmatism-Fluids, A Case Study of the Rhenish Massif; Neugebauer, H.J., Ed.; SFB 350: Wechselwirkungen kontinentaler Stoffsysteme und ihre Modellierung, Rheinische Friedrich-Wilhelm Universität: Bonn, Germany, 1998; Volume 74, pp. 11–17. [Google Scholar]
- Puchelt, H. Carbon dioxide in the Rhenish Massif, Central Europe. In Plateau Uplift. The Rhenish Shield - A Case History; Fuchs, K., von Gehlen, K., Mälzer, H., Murawski, H., Semmel, A., Eds.; Springer: Berlin, Germany, 1983. [Google Scholar]
- Frechen, J.; Hopmann, M.; Knetsch, G. Die Vulkanische Eifel; Stollfuß Verlag: Bonn, Germany, 1967; p. 140. [Google Scholar]
- Imboden, D.M.; Aeschbach-Hertig, W.; Kipfer, R.; Hofer, M.; Wieler, R.; Signer, P. Quantification of gas fluxes from the subcontinental mantle: The example of Laacher See, a maar lake in Germany. Geochim, Cosmochim, Acta 1996, 60, 31–41. [Google Scholar]
- Meyer, W. Geologie der Eifel; E. Schweitbart’sche Verlagsbuchandlung: Stuttgart, Germany, 1994. [Google Scholar]
- Ahorner, L. Historical seismicity and present-day microearthquake activity of the Rhenish Massif, Central Europe. In Plateau Uplift, The Rhenish Shield—A Case History; Fuchs, K., Von Gehlen, K., Mälzer, M., Murawski, H., Semmel, A., Eds.; Springer: Berlin, Germany, 1983; pp. 198–221. [Google Scholar]
- Kemski, J.; Klingel, R.; Siehl, A.; Neznal, M.; Matolin, N. Erarbeitung Fachlicher Grundlagen zur Beurteilung der Vergleichbarkeit Unterschiedlicher Messmethoden zur Bestimmung der Radonbodenluftkonzentration—Vorhaben 3609S10003. Bd. 2 Sachstandsbericht “Radonmessungen in der Bodenluft -Einflussfaktoren, Messverfahren, Bewertung”; Urn:nbn:de:0221-201203237830; Bundesamt für Strahlenschutz (BfS): Salzgitter, Germany, 2012. [Google Scholar]
- LGB RLP. Radonpotentialkarte der Osteifel. Landesamt für Geologie und Bergbau Rheinland-Pfalz, 2017a. Available online: http://www.LGBRLP.de/karten-und-produkte/online-karten/online-karte-radonprognose.html (accessed on 1 August 2017).
- Liesenfeld, J. Cobern: Führer mit Beiträgen zu Seiner Ortsgeschichte; Verschönerungs- u. Altertumsverein: Cobern, Germany, 1926. [Google Scholar]
- LGB RLP. Geologie von Rheinland-Pfalz; Schweizbart’sche Verlagsbuchhandlung (Nägele u. Obermiller): Stuttgart, Germany, 2005. [Google Scholar]
- Schäfer, P.; Kadolsky, D. Neuwieder Becken. Available online: https://www.schweizerbart.de/papers/sdgg/detail/75/78648/Neuwieder_Becken (accessed on 14 February 2019).
- Landesamt für Geologie und Bergbau Rheinland-Pfalz (LGB RLP). Hydrogeologische Kartierung Neuwieder Becken, 1:25,000. Ed; Landesamt für Geologie und Bergbau Rheinland-Pfalz: Mainz, Germany, 2000. [Google Scholar]
- LGB RLP. Earthquake Catalogue. Landesamt für Geologie und Bergbau Rheinland-Pfalz. 2017. Available online: http://www.LGB RLP.de/erdbeben.htm (accessed on 5 January 2017).
- BNS. Earthquake Data Catalogue. Department of Earthquake Geology of Cologne University. 2017. Available online: www.seismo.uni-koeln.de/catalog/index.htm (accessed on 5 January 2017).
- Berberich, G. Identifikation Junger Gasführender Störungszonen in der West- und Hocheifel mit Hilfe von Bioindikatoren. Ph.D. Thesis, University of Duisburg-Essen, Duisburg, Germany, 2010. [Google Scholar]
- Rose, S.; Long, A. Monitoring Dissolved Oxygen in Ground Water: Some Basic Considerations. J. Recomm. Serv. 1988, 8, 93–97. [Google Scholar] [CrossRef]
- Berberich, G.M.; Schreiber, U. GeoBioScience: Red wood ants as bioindicators for active tectonic fault systems in the West Eifel (Germany). Animals 2013, 3, 475–498. [Google Scholar] [CrossRef]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Wadsworth Publishing: Belmont, CA, USA, 2009. [Google Scholar]
- Marsland, S. Machine Learning, an Algorithmic Perspective, 1st ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete-Time Signal Processing; Pearson Education India: Upper Saddle River, NJ, USA, 1999; pp. 468–471. [Google Scholar]
- Davidson, T.A.; Emerson, D.E. Direct determination of the helium 3 content of atmospheric air by mass spectrometry. J. Geophys. Res. Atmos. 1990, 95. [Google Scholar] [CrossRef]
- TrinkwV. Trinkwasserverordnung in der Fassung der Bekanntmachung vom 10. März 2016 (BGBl. I S. 459), die durch Artikel 2 des Gesetzes vom 17. Juli 2017 (BGBl. I S. 2615) geändert worden ist. Available online: www.juris.de (accessed on 15 September 2017).
- Berberich, G.M.; Schreiber, U. (Landesamt für Geologie und Bergbau Rheinland-Pfalz, Mainz, Germany). Monitoring geogener Gase in der West-, Ost- und Südeifel sowie im Mittelrhein-/Lahngebiet. Unpublished Work. 2012; 37. [Google Scholar]
- Watson, Z.T.; Hana, W.S.; Keating, E.H.; Junga, N.H.; Luc, M. Eruption dynamics of CO2-driven cold-water geysers: Crystal, Tenmile geysers in Utah and Chimayó geyser in New Mexico. Earth Plan. Sci. Let. 2014, 408, 272–284. [Google Scholar] [CrossRef]
- Weinlich, F.H. Isotopically light carbon dioxide in nitrogen rich gases, The gas distribution pattern in the French Massif Central, the Eifel and the western Eger Rift. Ann. Geophys. 2005, 48, 19–31. [Google Scholar]
- Kirk, K. Natural CO2 Flux Literature Review for the QICS Project; Commissioned Report, CR/11/005; British Geological Survey, Energy Programme; Kexworth: Nottingham, UK, 2011; 38p. [Google Scholar]
- Collettini, C.; Cardellini, C.; Chiodini, G.; De Paola, N.; Holdsworth, R.E.; Smith, S.A.F. Fault weakening due to CO degassing in the Northern Apennines: Short- and long-term processes. Geo. Soc. 2008, 299, 175–194. [Google Scholar] [CrossRef]
- Baubron, J.C.; Rigo, A.; Toutain, J.-P. Soil gas profiles as a tool to characterize active tectonic areas: The Jaut Pass example (Pyrenees, France). Earth Planet. Sci. Lett. 2002, 196, 69–81. [Google Scholar] [CrossRef]
- Ciotoli, G.; Lombardi, S.; Morandi, S.; Zarlenga, F. A multidisciplinary statistical approach to study the relationships between helium leakage and neo-tectonic activity in a gas province: The Vasto Basin, Abruzzo-Molise (Central Italy). AAPG Bull. 2004, 88, 355–372. [Google Scholar] [CrossRef]
- Etiope, G.; Martinelli, G. Migration of carrier and trace gases in the geosphere: An overview. Phys. Earth Plan. Int. 2002, 129, 185–204. [Google Scholar] [CrossRef]
- Ciotoli, G.; Sciarra, A.; Ruggiero, L.; Annunziatellis, A.; Bigi, S. Soil gas geochemical behaviour across buried and exposed faults during the 24 August 2016 central Italy earthquake. Ann. Geophys. 2016, 59. [Google Scholar] [CrossRef]
- Crockett, R.G.M.; Gillmore, G.K.; Phillips, P.S.; Denman, A.R.; Groves-Kirkby, C.J. Tidal synchronicity of built-environment radon levels in the UK. Geophys. Res. Let. 2006, 33, L05308. [Google Scholar] [CrossRef]
- Council Directive 2013/51/EURATOM of 22 October 2013 Laying down Requirements for the Protection of the Health of the General Public with Regard to Radioactive Substances in Water Intended for Human Consumption. OJ L 296/12, 7.11.2013. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:296:0012:0021:EN:PDF (accessed on 15 September 2017).
- Girona, T.; Costa, F.; Schubert, G. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions. Sci. Rep. 2015, 5, 18212. [Google Scholar] [CrossRef] [Green Version]
- Birdsell, D.T.; Rajaram, H.; Dempsey, D.; Viswanathan, H.S. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. Water Resour. Res. 2015, 51, 7159–7188. [Google Scholar] [CrossRef] [Green Version]
- LGB RLP. Messnetz des Erdbebendienstes Südwest Misst Erstmals Mikrobeben in der Unterkruste unter der Osteifel. Landesamt für Geologie und Bergbau Rheinland-Pfalz, 2017. Available online: http://www.LGB RLP.de/aktuelles/detail/news/detail/News/ (accessed on 1 August 2017).
- Toutain, J.P.; Baubron, J.C. Gas geochemistry and seismotectonics: A review. Tectonophysics 1999, 304, 1–27. [Google Scholar] [CrossRef]
- Oliveira, S.; Viveiros, F.; Silva, C.; Pacheco, J.E. Automatic Filtering of Soil CO2 Flux Data: Different Statistical Approaches Applied to Long Time Series. Front. Earth Sci. 2018, 6, 208. [Google Scholar] [CrossRef]
- Rinaldi, A.P.; Vandemeulebrouck, J.; Todesco, M.; Viveiros, F. Effects of atmospheric conditions on surface diffuse degassing. J Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Granieri, D.; Chiodini, G.; Marzocchi, W.; Avino, R. Continuous monitoring of CO2 soil diffuse degassing at Phlegraean Fields (Italy): Influence of environmental and volcanic parameters. Earth Plan. Sci. Let. 2003, 212, 167–179. [Google Scholar] [CrossRef]
- Padilla, G.D.; Hernández, P.A.; Padrón, E.; Barrancos, J.; Pérez, N.M.; Melián, G.; Nolasco, D.; Dionis, S.; Rodríguez, F.; Calvo, D.; et al. Soil gas radon emissions and volcanic activity at El Hierro (Canary Islands): The 2011–2012 submarine Eruption. Geochem. Geophys. Geosyst. 2013, 14, 432–447. [Google Scholar] [CrossRef]
- Beaubien, S.; Jones, D.; Gal, F.; Barkwith, A.; Braibant, G.; Baubron, J.-C.; Ciotoli, G.; Graziani, S.; Lister, T.; Lombardi, S. Monitoring of near-surface gasgeochemistry at the Weyburn, Canada, CO2-EOR site, 2001–2011. Int. J. Greenh. Gas Control. 2013, 16, 236–262. [Google Scholar] [CrossRef]
- Longo, A.; Papale, P.; Vassalli, M.; Saccoroti, G.; Montagna, C.P.; Cassioli, A.; Guidice, S.; Boschi, E. Magma convection and mixing dynamics as a source of Ultra-Long-Period oscillations. J. Volcanol. Geoth. Res. 2012, 74, 873–880. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Lomakina, A.S.; Kyle, P.R.; Kingsbury, N.G.; Boichu, M. Pulsatory magma supply to a phonolite lava lake. Earth Planet Sci. Lett. 2009, 284, 392–398. [Google Scholar] [CrossRef]
Location | Data Type | Cyclic Period | Reference |
---|---|---|---|
Campi Flegrei caldera, Italy | Volcano–tectonic earthquakes, Earth tides, rainfall and atmospheric pressure | 0.4–366 days | [7] |
Erebus volcano, Antarctica | Spectroscopic data of H2O, CO2, CO, SO2, HF, HCl, and OCS | ≈1.4–≈2.8 days for H2O, CO2 | [10] |
Llaima and Villarrica volcanoes, Chile | SO2 flux, tidal forces | 28–33 days 13–16 days 6–9 days 1 day 0.5 day ≈7 days (maxima) | [9] |
Soufriere Hills Volcano, Montserrat | Ozone monitoring | 7–8 days | [8] |
Earthquakes | ≈200 days ≈100 days ≈50 days | [11] | |
Time series of absorption spectra (2002–2009) of long-term SO2 flux | 2–3 y; ≈50 days 10–14 days | [13] | |
Discharge pulse and rockfall events | 2–6 weeks 11–16 days | [14] | |
Lava flux and deformation data | 10 h ≈2 days | [15] | |
Coupled seismic and model data | 40 days | [16] | |
Deformation and seismic | 2.5 h–2.6 days | [12] | |
Observed resurgence of lava extrusion (1997) | 36–52 days | [17] |
Parameters | 7-M (bi-weekly; 1 March–30 September 2016) (a) | 4-W (8-h; 12 July–11 August 2016) (b) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Median | SD | CV | Min | Max | Mean | Median | SD | CV | |
Temperature (°C) | −0.60 | 33.50 | 14.62 | 15.10 | 6.13 | 0.42 | 5.70 | 33.50 | 18.03 | 17.70 | 4.38 | 0.24 |
Atm. Press. (hPa) | 965.20 | 998.30 | 981.88 | 982.30 | 6.06 | 0.01 | 978.20 | 994.20 | 984.98 | 984.80 | 3.80 | 0.00 |
Dew-point (°C) | −6.30 | 22.30 | 9.27 | 10.60 | 5.43 | 0.59 | 5.00 | 21.40 | 13.15 | 13.40 | 3.04 | 0.23 |
Rel. humidity (%) | 20.00 | 99.00 | 72.70 | 74.00 | 17.66 | 0.24 | 30.00 | 99.00 | 75.15 | 77.00 | 16.36 | 0.22 |
Rainfall (mm) | 0.00 | 66.90 | 0.05 | 0.00 | 0.65 | 13.32 | 0.00 | 3.30 | 0.03 | 0.00 | 0.17 | 6.06 |
Windspeed (km/h) | 0.00 | 23.40 | 2.09 | 1.10 | 2.12 | 1.02 | 0.00 | 12.20 | 1.48 | 1.10 | 1.71 | 1.16 |
Parameters | PC1 | PC2 | PC3 |
---|---|---|---|
Loadings (>|0.3|) | |||
Air pressure | −0.59 | ||
Temperature | −0.68 | ||
Dew Point | −0.51 | 0.34 | 0.45 |
Relative Humidity | 0.34 | 0.64 | |
Rainfall | 0.50 | ||
Windspeed | −0.57 | 0.31 | |
Cumulative Variance Explained (%) | 31 | 56 | 79 |
Geogenic Gases | 7-M (bi-weekly; 01 March–30 September 2016) (a) | 4-W (8-h; 12 July–11 August 2016) (b) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | Mean | Median | Min | Max | SD | N | Mean | Median | Min | Max | SD | ||
Nette | He (ppm) | 16 | 47.06 | 49.74 | 17.37 | 58.17 | 10.91 | 79 | 49.20 | 50.29 | 20.83 | 110.40 | 13.24 |
Rn (Bq/L) | 16 | 6.47 | 6.26 | 2.62 | 9.46 | 1.88 | 79 | 8.01 | 6.58 | 0.56 | 59.90 | 8.08 | |
CO2 (Vol.%) | 16 | 89.88 | 90.00 | 82.00 | 96.00 | 3.96 | 76 | 84.79 | 88.00 | 62.00 | 94.00 | 6.34 | |
Kärlich | He (ppm) | 16 | 7.77 | 7.80 | 6.21 | 9.03 | 0.84 | 79 | 7.84 | 7.77 | 6.02 | 10.95 | 0.82 |
Rn (Bq/L) | 16 | 72.44 | 73.69 | 38.32 | 114.02 | 15.22 | 79 | 73.73 | 78.11 | 4.91 | 92.33 | 15.58 | |
CO2 (Vol.%) | 16 | 91.07 | 92.00 | 86.00 | 96.00 | 3.61 | 76 | 86.34 | 86.00 | 74.00 | 96.00 | 3.95 | |
Kobern | He (ppm) | 16 | 2.97 | 2.02 | 0.98 | 1.11 | 2.55 | 79 | 4.38 | 4.48 | 1.00 | 7.50 | 1.24 |
Rn (Bq/L) | 16 | 45.78 | 46.63 | 16.90 | 64.84 | 11.41 | 79 | 48.66 | 49.97 | 7.82 | 79.78 | 9.67 | |
CO2 (Vol.%) | 16 | 78.13 | 79.00 | 50.00 | 92.00 | 10.42 | 76 | 74.61 | 74.00 | 64.00 | 88.00 | 4.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berberich, G.M.; Berberich, M.B.; Ellison, A.M.; Wöhler, C. First Identification of Periodic Degassing Rhythms in Three Mineral Springs of the East Eifel Volcanic Field (EEVF, Germany). Geosciences 2019, 9, 189. https://doi.org/10.3390/geosciences9040189
Berberich GM, Berberich MB, Ellison AM, Wöhler C. First Identification of Periodic Degassing Rhythms in Three Mineral Springs of the East Eifel Volcanic Field (EEVF, Germany). Geosciences. 2019; 9(4):189. https://doi.org/10.3390/geosciences9040189
Chicago/Turabian StyleBerberich, Gabriele M., Martin B. Berberich, Aaron M. Ellison, and Christian Wöhler. 2019. "First Identification of Periodic Degassing Rhythms in Three Mineral Springs of the East Eifel Volcanic Field (EEVF, Germany)" Geosciences 9, no. 4: 189. https://doi.org/10.3390/geosciences9040189
APA StyleBerberich, G. M., Berberich, M. B., Ellison, A. M., & Wöhler, C. (2019). First Identification of Periodic Degassing Rhythms in Three Mineral Springs of the East Eifel Volcanic Field (EEVF, Germany). Geosciences, 9(4), 189. https://doi.org/10.3390/geosciences9040189