Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges
Abstract
:1. Introduction
2. Glaciers in the Tropics
2.1. Tropical Andes
2.2. East Africa
2.3. Australasia
3. Causes of Glacier Recession
4. Historical Observations of Glacier Extent
4.1. Tropical Andes
4.2. East Africa
4.3. Australasia
5. Remotely-Sensed Glacier Observations
5.1. Tropical Andes
5.2. East Africa
5.3. Australasia
6. Tropical Glaciers: Relevance and Challenges
6.1. Tropical Andes
6.1.1. Water Resources
6.1.2. Natural Hazards
6.1.3. Ecosystems
6.1.4. Human and Animal Health
6.1.5. Agriculture and Mining
6.1.6. Hydropower
6.1.7. Tourism
6.1.8. Traditions and Spirituality
6.1.9. Conflicts and Migrations
6.2. East Africa
6.2.1. Water Resources
6.2.2. Ecosystems
6.2.3. Human Health
6.2.4. Agriculture
6.2.5. Tourism
6.3. Australasia
7. Future “Darkened Peaks”?
8. Adaptation Strategies
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaser, G.; Osmaston, H. Tropical Glaciers; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Veettil, B.K.; Wang, S.; De Souza, S.F.; Bremer, U.F.; Simões, J.C. Glacier monitoring and glacier-climate interactions in the tropical Andes: A review. J. South Am. Earth Sci. 2017, 77, 218–246. [Google Scholar] [CrossRef]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Kronenberg, M.; Schauwecker, S.; Huggel, C.; Salzmann, N.; Drenkhan, F.; Frey, H.; Giráldez, C.; Gurguiser, W.; Kaser, G.; Juen, I.; et al. The projected precipitation reduction over the Central Andes may severely affect Peruvian glaciers and hydropower production. Energy Proced. 2016, 97, 270–277. [Google Scholar] [CrossRef]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.; Hoffmann, D. Glacier change and glacial lake outburst flood risk in the Bolivian Andes. The Cryosphere 2016, 10, 2399–2413. [Google Scholar] [CrossRef]
- Vuille, M.; Carey, M.; Huggel, C.; Buytaert, W.; Rabatel, A.; Jacobsen, D.; Soruco, A.; Villacís, M.; Yarlequé, C.; Timm, O.E.; et al. Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth-Sci. Rev. 2018, 176, 195–213. [Google Scholar] [CrossRef]
- Rabatel, A.; Francou, B.; Soruco, A.; Gómez, J.; Cáceres, B.; Ceballos, J.L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; et al. Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. The Cryosphere 2013, 7, 81–102. [Google Scholar] [CrossRef]
- Hastenrath, S.; Kruss, P.D. The dramatic retreat of Mount Kenya’s glaciers between 1963 and 1987: Greenhouse forcing. Ann. Glaciol. 1992, 16, 127–133. [Google Scholar] [CrossRef]
- Hastenrat, S.; Kruss, P.D. Greenhouse indicators in Kenya. Nature 1992, 355, 503–504. [Google Scholar] [CrossRef]
- Mölg, T.; Georges, C.; Kaser, G. The contribution of increased incoming shortwave radiation to the retreat of the Rwenzori Glaciers, East Africa, during the 20th century. Int. J. Clim. 2003, 23, 291–303. [Google Scholar] [CrossRef]
- Mölg, T.; Hardy, D.R.; Kaser, G. Solar-radiation-maintained glacier recession on Kilimanjaro drawn from combined ice-radiation geometry modeling. J. Geophys. Res. Biogeosciences 2003, 108, 4731. [Google Scholar] [CrossRef]
- Kaser, G.; Hardy, D.R.; Mölg, T.; Bradley, R.S.; Hyera, T.M. Modern glacier retreat on Kilimanjaro as evidence of climate change: observations and facts. Int. J. Clim. 2004, 24, 329–339. [Google Scholar] [CrossRef]
- Mölg, T.; Hardy, D.R. Ablation and associated energy balance of a horizontal glacier surface on Kilimanjaro. J. Geophys. Res. Biogeosciences 2004, 109. [Google Scholar] [CrossRef]
- Thompson, L.G.; Brecher, H.H.; Mosley-Thompson, E.; Hardy, D.R.; Mark, B.G. Glacier loss on Kilimanjaro continues unabated. Proc. Acad. Sci. 2009, 106, 19770–19775. [Google Scholar] [CrossRef] [PubMed]
- Allison, I. Morphology and dynamics of the tropical glaciers of Irian Jaya. Zeitschrift für Gletscherkunde und Glazialgeology 1974, 10, 129–152. [Google Scholar]
- Allison, I.; Kruss, P. Estimation of Recent Climate Change in Irian Jaya by Numerical Modeling of Its Tropical Glaciers. Arct. Alp. 1977, 9, 49. [Google Scholar] [CrossRef]
- Allison, I.; Peterson, J.A. Glaciers of Irian Jaya, Indonesia. In Satellite Image Atlas of Glaciers of the World; Williams, R.S., Jr., Ferrigno, J.G., Eds.; US Government Printing Office: US Geological Survey, Washington, DC, USA, 1998. [Google Scholar]
- Prentice, M.L.; Glidden, S. Glacier crippling and the rise of the snowline in the western New Guinea (Papua Provice, Indonesia) from 1972 to 2000. In Altered Ecologies: Fire, Climate and Human Influence on Terrestrial Landscapes; ANU Press: Canberra, Australia, 2000. [Google Scholar]
- Klein, A.G.; Kincaid, J.L. Retreat of glaciers on Puncak Jaya, Irian Jaya, determined from 2000 and 2002 IKONOS satellite images. J. Glaciol. 2006, 52, 65–79. [Google Scholar] [CrossRef]
- Kincaid, J.L. An Assessment of Regional Climate Trends and Changes to the Mt. Jaya Glaciers of Irian Jaya. Master’s Thesis, Texas A&M University, TX, USA, 2007. [Google Scholar]
- Veettil, B.K.; Wang, S.-S. State and fate of the remaining tropical mountain glaciers in australasia using satellite imagery. J. Sci. 2018, 15, 495–503. [Google Scholar] [CrossRef]
- Francou, B. New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0°28′S. J. Geophys. Res. Biogeosciences 2004, 109, D18. [Google Scholar] [CrossRef]
- Morales-Arnao, B. Glaciers of Peru. In Satellite Image Atlas of the World: Glaciers of South America; Williams, R.S., Jr., Ferrigno, J.G., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1999. [Google Scholar]
- Young, J.A.T.; Hastenrath, S. Glaciers of Africa. In Satellite Image Atlas of the World: Glaciers of South America; Williams, R.S., Jr., Ferrigno, J.G., Eds.; U.S. Government Printing Office: Washington, DC, USA, 1999. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Intergovernmental Panel on Climate Change. Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ribstein, P.; Tiriau, E.; Francou, B.; Saravia, R. Tropical climate and glacier hydrology: a case study in Bolivia. J. Hydrol. 1995, 165, 221–234. [Google Scholar] [CrossRef]
- Arnaud, Y.; Muller, F.; Vuille, M.; Ribstein, P. El Niño-Southern Oscillation (ENSO) influence on a Sajama volcano glacier (Bolivia) from 1963 to 1998 as seen from Landsat data and aerial photography. J. Geophys. Res. 2001, 106, 773–784. [Google Scholar] [CrossRef]
- Veettil, B.K.; Maier, É.L.B.; Bremer, U.F.; De Souza, S.F. Combined influence of PDO and ENSO on northern Andean glaciers: A case study on the Cotopaxi ice-covered volcano, Ecuador. Clim. Dyn. 2014, 43, 3439–3448. [Google Scholar] [CrossRef]
- Veettil, B.K.; Bremer, U.F.; Souza, S.F.; Maier, É.L.B.; Simões, J.C. Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014). Geocarto Int. 2015, 31, 544–556. [Google Scholar] [CrossRef]
- Veettil, B.K.; Bremer, U.F.; Souza, S.F.; Maier, É.L.B.; Simões, J.C. Influence of ENSO and PDO on mountain glaciers in the outer tropics: case studies in Bolivia. Theor. Appl. Climatol. 2016, 125, 757–768. [Google Scholar] [CrossRef]
- Veettil, B.K.; Wang, S.; Bremer, U.F.; Souza, S.F.; Simões, J.C. Recent trends in annual snowline variations in the northern wet outer tropics: Case studies from southern Cordillera Blanca, Peru. Theor. Appl. Climatol. 2017, 129, 213–227. [Google Scholar] [CrossRef]
- Maussion, F.; Gurgiser, W.; Großhauser, M.; Kaser, G.; Marzeion, B. ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. The Cryosphere 2015, 9, 1663–1683. [Google Scholar] [CrossRef]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Bedoya-Soto, J.M.; Poveda, G.; Trenberth, K.E.; Velez-Upegui, J.J. Interannual hydroclimatic variability and the 2009–2011 extreme ENSO phases in Colombia: from Andean glaciers to Caribbean lowlands. Theor. Appl. Climatol. 2018, 135, 1531–1544. [Google Scholar] [CrossRef]
- Ebbesmeyer, C.C.; Cayan, D.R.; McLain, D.R.; Nichols, F.H.; Peterson, D.H.; Redmond, K.T. 1976 Step in the pacific climate: forty environmental changes between 1968–1975 and 1974–1984. In Proceedings of the Seventh Annual Pacific Climate Workshop, California Department of Water Resources, Interagency Ecological Studies Program, Asilomar, CA, USA, 10–13 April 1990. [Google Scholar]
- Ramaswamy, V.; Hurrel, J.W.; Meehl, G.A.; Philips, A.; Santer, B.D.; Schwarzkopf, M.D.; Seidel, D.J.; Sherwood, S.C.; Thorne, P.W. Why do temperatures vary vertically (from the surface to the stratosphere) and what do we understand about why they might vary and change over time? In Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences (SAP 1.1); Karl, T.R., Hassol, S.J., Miller, C., Murray, W., Eds.; US Climate Change Science Program: Washington, DC, USA, 2006. [Google Scholar]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate Models and Their Evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bradley, R.S.; Vuille, M.; Diaz, H.F.; Vergara, W. Threats to water supply in the tropical Andes. Science 2006, 312, 1755–1756. [Google Scholar] [CrossRef]
- Mountain Research Initiative EDW Working Group. Elevation-dependent warming in mountain regions of the world. Nature Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Correa, K.; Avalos, G.; Bazo, J.; Azorin-Molina, C.; Domínguez-Castro, F.; El Kenawy, A.; Gimeno, L.; Nieto, R.; et al. Recent changes in monthly surface air temperature over Peru, 1964–2014. Int. J. Clim. 2017, 38, 283–306. [Google Scholar] [CrossRef]
- Juřicová, A.; Fratianni, S. Climate change and its relation to the fluctuation in glacier mass balance in the Cordillera Blanca, Peru: A review. AUC Geogr. 2018, 53, 106–118. [Google Scholar] [CrossRef]
- Barr, I.D.; Lynch, C.M.; Mullan, D.; De Siena, L.; Spagnolo, M. Volcanic impacts on modern glaciers: A global synthesis. Earth-Sci. Rev. 2018, 182, 186–203. [Google Scholar] [CrossRef]
- Oerlemans, J.; Giesen, R.; Broeke, M.V.D. Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland). J. Glaciol. 2009, 55, 729–736. [Google Scholar] [CrossRef]
- Sievers, W. Uber Schneeverhaltnisse in der Cordillere Venezuelas (on snow conditions in the Venezuelan Cordillera). Jahresbericht der Geographischen Gesellschaft in Miinchen 1886, 10, 54–57. [Google Scholar]
- Sievers, W. Zur Vergletscherung der Cordilleren des tropischen Siidamerikas (glaciation of the cordillera of tropical South America). Zeitschrift fur Gletscherkunde 1908, 2, 271–284. [Google Scholar]
- Sievers, W. Die heutige und die fruhere Vergletscherung Siidamerikas (present-day and past glaciation in South America). F.C.W. Vogel 1911, 1–24. [Google Scholar]
- Jahn, A. La cordillera Venezolana de los Andes (The Andean Cordillera of Venezuela). Revista Técnica del Ministerio de Obras Publicas 1912, 1–40. [Google Scholar]
- Jahn, A. Mis ascensiones a la Sierra Nevada de Merida (My ascents to the Sierra Nevada de Merida). El Cojo Illustrado 1912, 497, 466–474. [Google Scholar]
- Jahn, A. El deshielo de la Sierra Nevada de Merida y sus causas (The deglaciation of the Sierra Nevada de Merida and its causes). Cultura Venezolana 1931, 110, 5–15. [Google Scholar]
- Jahn, A. Observaciones glaciologicas en los Andes venezolanos (Glaciological observations in the Venezuelan Andes). Cultura Venezolana 1925, 64, 265–280. [Google Scholar]
- Ancizar, M. Peregrinacion de Alpha (M. Ancizar) por las Provincias del Norte de la Nueva Granada, en 1850 i 51; Echeverria Hermanos: Bogota, Colombia, 1853; p. 1853. [Google Scholar]
- Reiss, W.; Stübel, A. Reisen in Sud-America; Geologische Studien in der Republik Colombia (Expeditions in South America; geological studies in the Republic of Colombia); A. Asher & Company: Berlin, Germany, 1893; p. 204. [Google Scholar]
- Stübel, A.; Wolf, T. Die Vulkanberge von Colombia (The volcanic mountains of Colombia); Wilhelm Baensch: Dresden, Germany, 1996; p. 154. [Google Scholar]
- Notestein, F.B.; King, R.E. The Sierra Nevada de Cocuy. Geogr. Rev. 1932, 22, 423. [Google Scholar] [CrossRef]
- Coleman, A.P. Pleistocene Glaciation in the Andes of Colombia. Geogr. J. 1935, 86, 330. [Google Scholar] [CrossRef]
- Cabot, T.D.; Wood, W.A.; Notestein, F.B. The Cabot Expedition to the Sierra Nevada de Santa Marta of Colombia. Geogr. Rev. 1939, 29, 587. [Google Scholar] [CrossRef]
- Wood, W.A. Mapping the Sierra Nevada de Santa Marta: The Work of the Cabot Colombian Expedition. Geogr. Rev. 1941, 31, 639. [Google Scholar] [CrossRef]
- Oppenheim, V. Pleistocene glaciations in Colombia, South America. In Proceedings of the Congreso Panamericano de Ingenieria de Minas y Geologia, 1st Anales, Santiago, Chile; 1942; pp. 834–848. [Google Scholar]
- Oppenheim, V.; Spann, H.J. Investigaciones glaciologicas en el Peru 1944–1945; Institute Geologico del Peru: Lima, Peru, 1946. [Google Scholar]
- Pritchett, G.J. Explorations in Ecuador in 1856-7. Proc. R. Geogr. Soc. Lond. 1858, 3, 93–98. [Google Scholar] [CrossRef]
- Whymper, E. A Journey among the Great Andes of the Equator. Proc. Geogr. Soc. Mon. Geogr. 1881, 3, 449. [Google Scholar] [CrossRef]
- Stabler, J.H. Travels in Ecuador. Geogr. J. 1917, 50, 241. [Google Scholar] [CrossRef]
- Sinclair, J.H. In the Land of Cinnamon: A Journey in Eastern Ecuador. Geogr. Rev. 1929, 19, 201. [Google Scholar] [CrossRef]
- Sinclair, J.H.; Wasson, T. Explorations in Eastern Ecuador. Geogr. Rev. 1923, 13, 190. [Google Scholar] [CrossRef]
- Sheppard, G. The Occidente of Ecuador: A Journey from Quito to the Pacific. Geogr. J. 1935, 86, 411. [Google Scholar] [CrossRef]
- Raimondi, A. El Departamento de Ancachs y sus Riquezas Minerales; Enrique Meiggs: Lima, Peru, 1873. [Google Scholar]
- Kinzl, H. Gegenwartige und eiseitliche Vergletscherung in der Cordillera Blanca (Peru). Verhandlungen des Deutschen Geographentages 1935, 41–56. [Google Scholar]
- Kinzl, H. La ruptura del lago glacial en la Quebrada de Ulta en el ano 1938. Javier Prado Boletin 1940, 4, 153–167. [Google Scholar]
- Kinzl, H. Gletscherkundliche Begleitworte zur Karte der Cordillera Blanca. Zeitschrift fur Gletscherkunde 1942, 28, 1–19. [Google Scholar]
- Kinzl, H. Die Vergletscherung in der Südhälfte der Cordillera Blanca (Peru). Zeitschrift fur Gletscherkunde und Glazialgeologie 1949, 1, 1–28. [Google Scholar]
- Kinzl, H.; Schneider, E.; Ebster, E. Die Karte der Kordillere von Huayhuash (Peru). Zeitschrift der Gesellschaft fiir Erdkunde zu Berlin 1942, 1–35. [Google Scholar]
- Broggi, J.A. La desglaciacion Andina y sus consecuencias. Revista de Ciencias 1943, 45, 159–173. [Google Scholar]
- Broggi, J.A. La desglaciacion actual de los Andes del Peru. "Javier Prado" Boletín 1945, 35, 222–248. [Google Scholar]
- Heim, A. Observaciones glaciologicas en la Cordillera Blanca-Peni (Glaciological observations in the Cordillera Blanca-Peru). Sociedad Geologica del Peru Boletin 1947, 20, 119–122. [Google Scholar]
- Szepessy, A. Contribución al conocimiento de las lagunas glaciares en la Cordillera Blanca. Sociedad Geologica del Peru Boletin 1949, 25, 5. [Google Scholar]
- Szepessy, A. Monografica Preliminar de la Cordillera Blanca; La Corporación Peruana del Santa fue: Lima, Peru, 1950; pp. 2–64. [Google Scholar]
- d’Orbigny, A. Voyage dans I’Amerique Meridionale (le Bresil, la Republique orientale de 1’Uruguay, la Republique Argentine, la Patagonie, la Republique du Chili, la Republique de Bolivia, la Republique du Perou), execute pendant les annees 1826, 1827, 1828, 1829, 1830, 1831, 1832 et 1833; Chez Pitois-Levrault et Cie: Paris, France, 1855. [Google Scholar]
- Conway, M. Notes on a Map of Part of the Cordillera Real of Bolivia. Geogr. J. 1900, 15, 528. [Google Scholar] [CrossRef]
- Hauthal, R.J.F. Reisen in Bolivien und Peru, ausgefuhrt 1908. Duneker and Humbolt 1911, 247. [Google Scholar]
- Herzog, T. Vom Urwald zu den Gletschern der Kordillere; 2 Forschungsreisen in Bolivien. Strecker and Schroder 1913, 270. [Google Scholar]
- Herzog, T. Beitrage zur Kenntnis von Tektonik und Glazial der bolivischen Ostkordillere. Geologische Rundschau 1915, 5, 353–371. [Google Scholar] [CrossRef]
- Troll, C. Büsserschnee (Nieve de los penitentes) in den Hochgebirgen der Erde. Ein Beitrag zur Geographie der Schneedecke und ihrer Ablationsformen; Justus Perthes: Gotha, Germany, 1942; p. 103. [Google Scholar]
- Troll, C.; Finsterwalder, R. Die Karten der Cordillera Real und des Talkessels von La Paz and die Diluvialgeschichte der zentralen Anden. Petermanns Geographische Mitteilungen 1935, 81, 393–399, 445–455. [Google Scholar]
- Ahlfeld, F. Geologia de Bolivia; Ministerio de Economia Nacional: La Plata, Argentina, 1946; p. 189.
- Helbling, R. Beiträge Zur Topographischen Erschliessung Der Cordillera De Los Andes Zwischen Aconcagua Und Tupungato; Akademischer Alpenclub Zürich: Zürich, Switzerland, 1919; p. 77. [Google Scholar]
- Helbling, R. The Origin of the Rio Plomo Ice-Dam. Geogr. J. 1935, 85, 41. [Google Scholar] [CrossRef]
- Krapf, J.L. Von der afrikanischen Ostküste. Zeitschrift der Deutschen Morgenländischen Gesellschaft 1849, 3, 310–321. [Google Scholar]
- Gregory, J.W. Contributions to the geology of British East Africa, part-1, The glacial geology of Mount Kenya. Q. J. Geol. Soc. Lond. 1894, 50, 515–530. [Google Scholar] [CrossRef]
- Gregory, J.W. The Great Rift Valley: Being the Narrative of a Journey to Mount Kenya and Lake Baringo: with Some Account of the Geology, Natural History, Anthropology and Future Prospects of British East Africa; John Murray: London, UK, 1896; p. 422. [Google Scholar]
- Mackinder, H.J. A Journey to the Summit of Mount Kenya, British East Africa. Geogr. J. 1900, 15, 453. [Google Scholar] [CrossRef]
- Dutton, E.A.T. Kenya Mountain; Jonathan Cape: London, UK, 1929; p. 218. [Google Scholar]
- Nilsson, E. Quaternary Glaciations and Pluvial Lakes in British East Africa. Geogr. Ann. 1931, 13, 249. [Google Scholar] [CrossRef]
- Rebmann, J. Narrative of a journey to Jagga, the snow country of East Africa. Church Missionary Rev. 1849, 1, 12–23. [Google Scholar]
- Johnston, H.H. The Kilimanjaro expedition. In Proceedings of the Royal Geographical Society and Monthly Record of Geography, 23 February 1985; 7, pp. 137–160. [Google Scholar]
- Klute, F. Ergebnisse der Forschungen am Kilimandscharo 1912; Dietrich Reimer: Berlin, Germany, 1920; p. 136. [Google Scholar]
- Stuhlmann, F. Mit Emin Pascha ins Herz von Afrika; Dietrich Reimer: Berlin, Germany, 1894; p. 901. [Google Scholar]
- Moore, J.E.S. To the Mountains of the Moon, Being An Account of the Modern Aspect of Central Africa, and of Some Little Known Regions Traversed by the Tanganyika Expedition in 1899 and 1900; Hurst and Blackett Ltd.: London, UK, 1901; p. 350. [Google Scholar]
- Abruzzi, H.R.H. The snows of the Nile. Being an account of the exploration of the peaks, passes, and glaciers of Ruwenzori. Geogr. J. 1907, 29, 121–147. [Google Scholar]
- Meyer, H. Die Besteigung des Kilimandscharo. Petermanns Mitteilungen 1890, 36, 15–22. [Google Scholar]
- Meyer, H. Ostafrikanische Gletscherfahrten Forschungsreisen im Kilimandscharo-Geibiet; Duncker and Humblot: Leipzig, Germany, 1890; p. 376. [Google Scholar]
- Meyer, H. Across East African Glaciers: An Account of the First Ascent of Kilimanjaro. George Philip and Son: London, UK, 1891; p. 404. [Google Scholar]
- Meyer, H. Der Kilimandjaro. Reisen und Studien; Dietrich Reimer: Berlin, Germany, 1900; p. 436. [Google Scholar]
- Busk, D. The Southern Glaciers of the Stanley Group of the Ruwenzori. Geogr. J. 1954, 120, 137. [Google Scholar] [CrossRef]
- Neill, W.T. Twentieth-Century Indonesia; Columbia University Press: New York, NY, USA, 1973; p. 413. [Google Scholar]
- Lorentz, H.A. Zwarte Menschen-Witte Bergen: Verhaal Van Den Tocht Naar Het Sneeuwgebergte Van Nieuw-Guinea; E.J. Brill: Leiden, The Netherlands, 1913. [Google Scholar]
- Veettil, B.K.; Kamp, U. Remote sensing of glaciers in the tropical Andes: a review. Int. J. Sens. 2017, 38, 7101–7137. [Google Scholar] [CrossRef]
- Sagredo, E.; Lowell, T.; Sagredo, E.; Lowell, T. Climatology of Andean glaciers: A framework to understand glacier response to climate change. Planet. Chang. 2012, 86, 101–109. [Google Scholar] [CrossRef]
- Ceballos, J.L.; Euscátegui, C.; Ramírez, J.; Cañon, M.; Huggel, C.; Haeberli, W.; Machguth, H. Fast shrinkage of tropical glaciers in Colombia. Ann. Glaciol. 2006, 43, 194–201. [Google Scholar] [CrossRef]
- Cáceres, B. Actualización del Inventario de Tres Casquetes Glaciares del Ecuador. Master’s Thesis, University of Nice, Nice, France, 2010. [Google Scholar]
- Braun, C.; Bezada, M. The history and disappearance of glaciers in venezuela. J. Lat. Am. Geogr. 2013, 12, 85–124. [Google Scholar] [CrossRef]
- Rekowsky, I.C. Variações de Área das Geleiras da Colômbia E da Venezuela Entre 1985 E 2015, Com Dados De Sensoriamento Remoto. Master’s Thesis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil, 2016. [Google Scholar]
- Morris, J.N.; Poole, A.J.; Klein, A.G. Retreat of tropical glaciers in Colombia and Venezuela from 1984 to 2004 as measured from ASTER and Landsat images. In Proceedings of the 63rd Eastern Snow Conference, Newark, NJ, USA, 7–9 June 2006; pp. 181–191. [Google Scholar]
- Jordan, E.; Geyer, K.; Linder, W.; Fernandez, B.; Florez, A.; Mojica, J.; Niño, O.; Torrez, C.; Guarnizo, F. The recent glaciation of the Colombian Andes. Zentralblatt für Geologie und Paläontologie 1989, 1, 1113–1117. [Google Scholar]
- Jordan, E.; Ungerechts, L.; Cáceres, B.; Penafiel, A.; Francou, B. Estimation by photogrammetry of the glacier recession on the Cotopaxi Volcano (Ecuador) between 1956 and 1997. Hydrol. Sci. J. 2005, 50, 949–961. [Google Scholar]
- Cáceres, B.; Ramirez, J.; Francou, B.; Eissen, J.P.; Taupin, J.D.; Jordan, E.; Ungerechts, L.; Maisincho, L.; Barba, D.; Cadier, E.; et al. Determinación del Volúmen del casquete de hielo del Volcán Cotopaxi; Biblioteca Virtual del Programa Hidrológico Internacional para América Latina y el Caribe de la UNESCO: Quito, Ecuador, 2004. [Google Scholar]
- Ames, A.; Hastenrath, S. Recession of Yanamarey Glacier in Cordillera Blanca, Peru, during the 20th century. J. Glaciol. 1995, 41, 191–196. [Google Scholar]
- Georges, C. The 20th century glacier fluctuations in the tropical Cordillera Blanca, Peru. Arct. Antarct. Alp. Res. 2004, 36, 100–107. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Arnaud, Y.; Williams, M.W.; Ordoñez, J. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J. Glaciol. 2008, 54, 499–510. [Google Scholar] [CrossRef]
- Burns, P.; Nolin, A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010. Remote. Sens. Environ. 2014, 140, 165–178. [Google Scholar] [CrossRef]
- Hanshaw, M.N.; Bookhagen, B. Glacial areas, lake areas, and snow lines from 1975 to 2012: Status of the Cordillera Vilcanota, including the Quelccaya Ice Cap, northern central Andes, Peru. The Cryosphere 2014, 8, 359–376. [Google Scholar] [CrossRef]
- Veettil, B.K.; De Souza, S.F.; Simões, J.C.; Pereira, S.F.R. Decadal evolution of glaciers and glacial lakes in the Apolobamba–Carabaya region, tropical Andes (Bolivia–Peru). Geogr. Ann. Ser. A, Phys. Geogr. 2017, 99, 193–206. [Google Scholar] [CrossRef]
- Aubry-Wake, C.; Zephir, D.; Naraer, M.; McKenzie, J.M.; Mark, B.G. Importance of longwave emissions from adjacent terrain on patterns of tropical glacier melt and recession. J. Glaciol. 2018, 64, 49–60. [Google Scholar] [CrossRef]
- Yarleque, C.; Vuille, M.; Hardy, D.R.; Timm, O.E.; De La Cruz, J.; Ramos, H.; Rabatel, A. Projections of the future disappearance of the Quelccaya Ice Cap in the Central Andes. Sci. Rep. 2018, 8, 15564. [Google Scholar] [CrossRef]
- Kochtitzky, W.H.; Edwards, B.R.; Enderlin, E.M.; Mariño, J.; Marinque, N. Improved estimates of glacier change rates at Nevado Coropuna Ice Cap, Peru. J. Glaciol. 2018, 64, 175–184. [Google Scholar] [CrossRef]
- Ramirez, E.; Francou, B.; Ribstein, P.; Descloitres, M.; Guérin, R.; Mendoza, J.; Gallaire, R.; Pouyaud, B.; Jordan, E. Small glaciers disappearing in the tropical Andes: A case study in Bolivia—The Chacaltaya glacier, 16° S. J. Glaciol. 2001, 47, 187–194. [Google Scholar] [CrossRef]
- Bicca, C.E. Variações nas geleiras da porção norte da Cordilheira Real durante o período de 1984 a 2010 através do sensoriamento remoto. Master’s Thesis, State University of Rio Grande do Sul, Porto Alegre, Brazil, 2012. [Google Scholar]
- Kruss, P. Climatic change in East Africa: numerical modelling from the 100 years terminus record of Lewis Glacier, Mount Kenya. Zeitschrift fur Gletscherkunde und Glazialgeologie 1983, 19, 43–60. [Google Scholar]
- Hastenrath, S. The Glaciers of Equatorial East Africa; Springer Nature, 1984; p. 353. [Google Scholar]
- Kaser, G. A review of the modern fluctuations of tropical glaciers. Planet. Chang. 1999, 22, 93–103. [Google Scholar] [CrossRef]
- Chen, A.; Wang, N.; Guo, Z.; Wu, Y.; Wu, H. Glacier variations and rising temperature in the Mt. Kenya since the Last Glacial Maximum. J. Mt. Sci. 2018, 15, 1268–1282. [Google Scholar] [CrossRef]
- Hastenrath, S.; Caukwell, R.A. Variations of Lewis Glacier, Mount Kenya, 1974-78. Erdkunde 1979, 33, 292–297. [Google Scholar] [CrossRef]
- Prinz, R.; Fischer, A.; Nicholson, L.; Kaser, G. Seventy-six years of mean mass balance rates derived from recent and re-evaluated ice volume measurements on tropical Lewis Glacier, Mount Kenya. Geophys. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Prinz, R.; Heller, A.; Ladner, M.; Nicholson, L.I.; Kaser, G. Mapping the loss of Mt. Kenya’s glaciers: An example of the challenges of satellite monitoring of very small glaciers. Geosciences 2018, 8, 174. [Google Scholar] [CrossRef]
- Hastenrath, S. Diagnosing the decaying glaciers of equatorial East Africa. Meteorol. Z. 2006, 15, 265–271. [Google Scholar] [CrossRef]
- Hastenrath, S.; Greischar, L. Glacier recession on KiliIl1.anjaro, East Africa, 1912-89. J. Glaciol. 1997, 43, 455–459. [Google Scholar] [CrossRef]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.E.; Henderson, K.A.; Brecher, H.H.; Zagorodnov, V.S.; Mashiotta, T.A.; Lin, P.-N.; Mikhalenko, V.N.; Hardy, D.R.; et al. Kilimanjaro ice core records: Evidence of Holocene climate change in Tropical Africa. Science 2002, 298, 589–593. [Google Scholar] [CrossRef]
- Cullen, N.J.; Mölg, T.; Kaser, G.; Hussein, K.; Steffen, K.; Hardy, D.R. Kilimanjaro Glaciers: Recent areal extent from satellite data and new interpretation of observed 20th century retreat rates. Geophys. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Bohleber, P.; Sold, L.; Hardy, D.R.; Schwikowski, M.; Klenk, P.; Fischer, A.; Sirguey, P.; Cullen, N.J.; Potocki, M.; Hoffmann, H.; et al. Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro’s Northern Ice Field. The Cryosphere 2017, 11, 469–482. [Google Scholar] [CrossRef]
- WWF (World Wide Fund for Nature). Climate Change Impacts on East Africa. Review of Scientific Literature. Available online: https://www.wwf.or.jp/activities/lib/pdf_climate/environment/east_africa_ climate_change_impacts_final.pdf (accessed on 7 September 2017).
- Unmüßig, B.; Crame, S. Climate change in Africa; GIGA Focus: Hamburg, Germany, 2008. [Google Scholar]
- Whittow, J.B.; Temple, P.H.; Shepherd, A.; Goldthorpe, J.E. Observations on the Glaciers of the Ruwenzori. J. Glaciol. 1963, 4, 581–616. [Google Scholar] [CrossRef]
- Temple, P.H. Further Observations on the Glaciers of the Ruwenzori. Geogr. Ann. Ser. A, Phys. Geogr. 1968, 50, 136. [Google Scholar] [CrossRef]
- Noggler, B.; Kaser, G. Observations on Speke Glacier, Ruwenzori Range, Uganda. J. Glaciol. 1991, 37, 313–318. [Google Scholar]
- Taylor, R.G.; Mileham, L.; Tindimugaya, C.; Majugu, A.; Muwanga, A.; Nakileza, B. Recent glacial recession in the Rwenzori Mountains of East Africa due to rising air temperature. Geophys. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nat. Cell Boil. 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Taylor, R.G.; Mileham, L.; Tindimugaya, C.; Mwebembezi, L. Recent glacial recession and its impact on alpine riverflow in the Rwenzori Mountains of Uganda. J. Afr. Earth Sci. 2009, 55, 205–213. [Google Scholar] [CrossRef]
- Huss, M.; Bookhagen, B.; Huggel, C.; Jacobsen, D.; Bradley, R.; Clague, J.; Vuille, M.; Buytaert, W.; Cayan, D.; Greenwood, G.; et al. Toward mountains without permanent snow and ice. Earth’s Futur. 2017, 5, 418–435. [Google Scholar] [CrossRef]
- Vuille, M. Climate Change and Water Resources in the Tropical Andes; Inter-American Development Bank Technical Note No. IDB-TN-515; Inter-American Development Bank: Washington, DC, USA, 2013. [Google Scholar]
- Mark, B.G.; McKenzie, J.M. Tracing Increasing Tropical Andean Glacier Melt with Stable Isotopes in Water. Environ. Sci. Technol. 2007, 41, 6955–6960. [Google Scholar] [CrossRef]
- Bury, J.T.; Mark, B.G.; Mckenzie, J.M.; French, A.; Baraer, M.; Huh, K.I.; Zapata, M.A.; Gomez, R.J. Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim. Change 2011, 105, 179–206. [Google Scholar] [CrossRef]
- IDEAM. Glaciares De Colombia – Más Que Montañas Con Hielo; Instituto de Hidrologia, meteorología y Estudios Ambientales: Bogotá, Colombia, 2012; p. 346.
- Harden, C.P. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 2006, 79, 249–263. [Google Scholar] [CrossRef]
- Juen, I.; Kaser, G.; Georges, C. Modelling observed and future runoff from a glacierized tropical catchment (Cordillera Blanca, Perú). Planet. Chang. 2007, 59, 37–48. [Google Scholar] [CrossRef]
- Baraer, M.; Mark, B.G.; McKenzie, J.M.; Condom, T.; Bury, J.; Huh, K.-I.; Portocarrero, C.; Gómez, J.; Rathay, S. Glacier recession and water resources in Peru’s Cordillera Blanca. J. Glaciol. 2012, 58, 134–150. [Google Scholar] [CrossRef]
- Baraer, M.; McKenzie, J.; Mark, B.G.; Gordon, R.; Bury, J.; Condom, T.; Gomez, J.; Knox, S.; Fortner, S.K. Contribution of groundwater to the outflow from ungauged glaciarized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol. Process 2015, 29, 2561–2581. [Google Scholar] [CrossRef]
- Somers, L.D.; Gordon, R.P.; McKenzie, J.M.; Lautz, L.K.; Wigmore, O.; Glose, A.M.; Glas, R.; Aubry-Wake, C.; Mark, B.; Baraer, M.; et al. Quantifying groundwater-surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol. Process. 2016, 30, 2915–2929. [Google Scholar] [CrossRef]
- Coudrain, A.; Francou, B.; Kundzewicz, Z.W. Glacier shrinkage in the Andes and consequences for water resources. Hydrol. Sci. J. 2005, 50, 925–932. [Google Scholar]
- Soruco, A.; Vincent, C.; Rabatel, A.; Francou, B.; Thibert, E.; Sicart, J.E.; Condom, T. Contribution of glacier runoff to water resources of La Paz city, Bolivia (16° S). Ann. Glaciol. 2015, 56, 147–154. [Google Scholar] [CrossRef]
- Vergara, W.; Deeb, A.; Valencia, A.; Bradley, R.; Francou, B.; Zarzar, A.; Grunwaldt, A.; Haeussling, S. Economic impacts of rapid glacier retreat in the Andes. Eos Trans. AGU 2007, 88, 261–264. [Google Scholar] [CrossRef]
- Rangecroft, S.; Harrison, S.; Anderson, K.; Magrath, J.; Castel, A.P.; Pacheco, P. Climate Change and Water Resources in Arid Mountains: An Example from the Bolivian Andes. AMBIO 2013, 42, 852–863. [Google Scholar] [CrossRef]
- Palmer, J. The Dangers of Glacial Lake Floods: Pioneering and Capitulation. Available online: https://eos.org/features/the-dangers-of-glacial-lake-floods-pioneering-and-capitulation (accessed on 15 December 2018).
- Chevallier, P.; Pouyaud, B.; Suarez, W.; Condom, T. Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg. Environ. Change 2011, 11, 179–187. [Google Scholar] [CrossRef]
- Vilímek, V.; Zapata, M.L.; Klimeš, J.; Patzelt, Z.; Santillán, N. Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2005, 2, 107–115. [Google Scholar] [CrossRef]
- Haeberli, W.; Schaub, Y.; Huggel, C. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 2017, 293, 405–417. [Google Scholar] [CrossRef]
- Huggel, C.; Clague, J.J.; Korup, O. Is climate change responsible for changing landslide activity in high mountains? Earth Surf. Process. Landf. 2012, 37, 77–91. [Google Scholar] [CrossRef]
- Vilímek, V.; Klimeš, J.; Emmer, A.; Benešová, M. Geomorphologic impacts of the glacial lake outburst flood from Lake No. 513 (Peru). Environ. Earth Sci. 2015, 73, 5233–5244. [Google Scholar] [CrossRef]
- Carey, M.; Huggel, C.; Bury, J.; Portocarrero, C.; Haeberli, W. An integrated socio-environmental framework for glacier hazard management and climate change adaptation: Lessons from Lake 513, Cordillera Blanca, Peru. Clim. Change 2012, 112, 733–767. [Google Scholar] [CrossRef]
- Anderson, E.P.; Marengo, J.; Villalba, R.; Halloy, S.; Young, B.; Cordero, D.; Gast, F.; Jaimes, E.; Ruiz, D. Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In Climate Change and Biodiversity in the Tropical Andes; Herzog, S.K., Martínez, R., Eds.; Inter-American Institute for Global Change Research: São José dos Campos, Brazil, 2011. [Google Scholar]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth-Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Buytaert, W.; Cuesta-Camacho, F.; Tobon, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 2011, 20, 19–33. [Google Scholar] [CrossRef]
- Buytaert, W.; De Bièvre, B. Water for cities: The impact of climate change and demographic growth in the tropical Andes. N.a. Resour. 2012, 48, 08503. [Google Scholar] [CrossRef]
- Villacis, M. Ressources En Eau Glaciaire Dans Les Andes D’equateur En Relation Avec Les Variations Du Climat: Le Cas Du Volcan Antisana. Ph.D. Thesis, Université Montpellier II, Montpellier, France, 2008. [Google Scholar]
- Rhoades, R. A vanishing Andean glacier: History, local perceptions, and societal impacts of climate change in Cotacachi, Ecuador. In Proceedings of the conference on Global Change in Mountain Regions, Perth, UK, 2–6 October 2005. [Google Scholar]
- Polk, M.H.; Young, K.R.; Baraer, M.; Mark, B.G.; McKenzie, J.M.; Bury, J.; Carey, M. Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Appl. Geogr. 2017, 78, 94–103. [Google Scholar] [CrossRef]
- Dangles, O.; Rabatel, A.; Kraemer, M.; Zeballos, G.; Soruco, A.; Jacobsen, D.; Anthelme, F. Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLOS ONE 2017, 12, e0175814. [Google Scholar] [CrossRef] [PubMed]
- Seimon, T.A.; Seimon, A.; Daszak, P.; Halloy, S.R.; Schloegel, L.M.; Aguilar, C.A.; Sowell, P.; Hyatt, A.D.; Konecky, B.; E Simmons, J. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Chang. Boil. 2007, 13, 288–299. [Google Scholar] [CrossRef]
- Zimmer, A.; Meneses, R.I.; Rabatel, A.; Soruco, A.; Dangles, O.; Anthelme, F.; Zimmer, A. Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect. N.a. Ecol. Evol. Syst. 2018, 30, 89–102. [Google Scholar] [CrossRef]
- Young, K.R.; Ponette-Gonzalez, A.G.; Polk, M.H.; Lipton, J.K. Snowlines and treelines in the Tropical Andes. Ann. Am. Assoc. Geogr. 2017, 107, 429–440. [Google Scholar] [CrossRef]
- Young, K.R. Ecology of land cover change in glaciated tropical mountains. Revista Peruana de Biologia 2014, 21, 259–270. [Google Scholar]
- Hardy, S.P.; Hardy, D.R.; Gil, K.C. Avian nesting and roosting on glaciers at high elevation, Cordillera Vilcanota, Peru. Wilson J. Ornithol. 2018, 130, 940–958. [Google Scholar] [CrossRef]
- Sophie, C.F.; Patricio, A.; Rodrigo, A.; Roger, C.; Fabien, A.; Dean, J.; Olivier, D. Glacial flood pulse effects on benthic fauna in equatorial high-Andean streams. Hydrol. Process. 2013, 28, 3008–3017. [Google Scholar]
- Van Colen, W.; Portilla, K.; Oña, T.; Wyseure, G.; Goethals, P.; Velarde, E.; Muylaert, K. Limnology of the neotropical high elevation shallow lake Yahuarcocha (Ecuador) and challenges for managing eutrophication using biomanipulation. Limnol. Ecol. Manag. Inland Waters 2017, 67, 37–44. [Google Scholar] [CrossRef]
- Michelutti, N.; Wolfe, A.P.; Cooke, C.A.; Hobbs, W.O.; Vuille, M.; Smol, J.P. Climate change forces new ecological states in tropical andean lakes. PloS One 2015, 10, e0115338. [Google Scholar] [CrossRef]
- Epstein, P.R.; Diaz, H.F.; Elias, S.; Grabherr, G.; Graham, N.E.; Martens, W.J.M.; Mosley-Thompson, E.; Susskind, J. Biological and Physical Signs of Climate Change: Focus on Mosquito-borne Diseases. Am. Meteorol. Soc. 1998, 79, 409–417. [Google Scholar] [CrossRef]
- Poveda, G.; Rojas, W.; Quinones, M.L.; Velez, I.D.; Mantilla, R.I.; Ruiz, D.; Zuluaga, J.S.; Rua, G.L. Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ. Heal. Perspect. 2001, 109, 489–493. [Google Scholar]
- Martin, B. Peru: Zika Virus. Available online: http://digitalcommons.augustana.edu/pubh100global/11 (accessed on 25 March 2018).
- Rhoades, R.; Zapata, X.; Arangundy, J. Climate change in Cotacachi. In Development With Identity: Community, Culture and Sustainability in the Andes; Rhoades, R., Ed.; CAB eBooks: UK, 2006; p. 64. [Google Scholar]
- Instituto Nacional de Estadística e Informática. The 2007 National Census: XI of Population and VI of Houses; Institute of National Statistics and Information: Lima, Peru, 2007.
- Mark, B.G.; Bury, J.; McKenzie, J.M.; French, A.; Baraer, M. Climate Change and Tropical Andean Glacier Recession: Evaluating Hydrologic Changes and Livelihood Vulnerability in the Cordillera Blanca, Peru. Ann. Assoc. Am. Geogr. 2010, 100, 794–805. [Google Scholar] [CrossRef]
- Brown, K.W. Workers’ Health and Colonial Mercury Mining at Huancavelica, Peru. The Americas 2001, 57, 467–496. [Google Scholar] [CrossRef]
- Guittard, A.; Baraer, M.; McKenzie, J.M.; Mark, B.G.; Wigmore, O.; Fernandez, A.; Rapre, A.C.; Walsh, E.; Bury, J.; Carey, M.; et al. Trace-metal contamination in the glacierized Rio Santa watershed, Peru. Environ. Monit. Assess. 2017, 189, 649. [Google Scholar] [CrossRef]
- Célleri, R.; Feyen, J. The Hydrology of Tropical Andean Ecosystems: Importance, Knowledge Status, and Perspectives. Mt. Res. Dev. 2009, 29, 350–355. [Google Scholar] [CrossRef]
- Liniger, H.; Weingarten, R.; Grosjean, M. Mountains of the World: Water Towers for the 21st Century. Mountain Agenda, Center for Development and Environment; University of Bern: Bern, The Switzerland, 1998; pp. 1–24. [Google Scholar]
- Soruco, A.; Vincent, C.; Francou, B.; Ribstein, P.; Berger, T.; Sicart, J.; Wagnon, P.; Arnaud, Y.; Favier, V.; Lejeune, Y. Mass balance of Glaciar Zongo, Bolivia, between 1956 and 2006, using glaciological, hydrological and geodetic methods. Ann. Glaciol. 2009, 50, 1–8. [Google Scholar] [CrossRef]
- Kaenzig, R.; Rebetez, M.; Serquet, G. Climate change adaptation of the tourism sector in the Bolivian Andes. Tour. Geogr. 2016, 18, 1–18. [Google Scholar] [CrossRef]
- Wright, S.K. Melting Marvels: Tourist Responses to Climate Change and Glacial Melt in the Peruvian Andes. MSc Thesis, Ohio State University, Columbus, OH, USA, 2009. [Google Scholar]
- Byers, A.C. Contemporary Landscape Change in the Huascarán National Park and Buffer Zone, Cordillera Blanca, Peru. Mt. Res. Dev. 2000, 20, 52–63. [Google Scholar] [CrossRef]
- The Circulation of People – A Critical Discussion on the Impact of Glacier Shrinkage Upon Population Mobility in the Bolivian Andes. Available online: https://www2.unine.ch/files/content/sites/maps/files/ shared/documents/wp/WP7_Kae_2013.pdf (accessed on 18 January 2019).
- Barros, A.; Monz, C.; Pickering, C. Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research. Ambio 2015, 44, 82–98. [Google Scholar] [PubMed]
- Casado, M.A. Case method application in tourism education: Bolivia’s sustainable tourism plan? Int. J. Case Method Res. Appl. 2005, 17, 1–7. [Google Scholar]
- Pilgrims Crowd Peru’s Snow Star Festival Fearing for A Sacred Glacier. Available online: https://www.smh.com.au/world/pilgrims-crowd-perus-snow-star-festival-fearing-for-a-sacred-glacier-20160604-gpbjcz.html (accessed on 29 August 2018).
- Ceruti, C. Sacred ice melting away: lessons from the impact of climate change on Andean cultural heritage. J. Sustain. Educ. 2013, 4, 1–9. [Google Scholar]
- Bebbington, A.; Williams, M. Water and mining conflicts in Peru. Mt. Res. Dev. 2008, 28, 190–195. [Google Scholar] [CrossRef]
- Carey, M.; French, A.; O’Brien, E. Unintended effects of technology on climate change adaptation: an historical analysis of water conflicts below Andean Glaciers. J. Hist. Geogr. 2012, 38, 181–191. [Google Scholar] [CrossRef]
- Warn, E.; Adamo, S.B. The impact of climate change: Migration and cities in South America. Bull. World Meteorol. Organ. 2014, 63. Available online: https://public.wmo.int/en/resources/bulletin/impact-of-climate-change-migration-and-cities-south-america (accessed on 18 January 2019).
- World Bank. Turn Down the Heat: Confronting the New Climate Normal; World Bank Group: Washington, DC, USA, 2014. [Google Scholar]
- Tacoli, C. Crisis or adaptation? Migration and climate change in a context of high mobility. Environ. Urban. 2009, 21, 513–525. [Google Scholar] [CrossRef]
- World Bank. Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics; World Bank Group: Washington, DC, USA, 2013. [Google Scholar]
- Bolin, I. The glaciers of the Andes are melting: indigenous and anthropological knowledge merge in restoring water resources. In Anthropology and Climate Change: From Encounters to Actions; Crate, S.A., Nuttall, M., Eds.; Left Coast Press: Walnut Creek, CA, USA, 2009; pp. 228–239. [Google Scholar]
- Sebastien, L. Quand le climat invite à réintégrer le “non-humain” dans le champ de l’action publique. Le cas des Chagga sur les pentes du Kilimandjaro, Tanzanie. In Le Changement Climatique. Quand le Climat Nous Pousse à Changer D’ère; Scarwell, H.-J., Roussel, I., Eds.; Universitaires du Septentrion: Villeneuve d’Ascq, France, 2010; pp. 65–120. [Google Scholar]
- Gagné, K.; Rasmussen, M.B.; Orlove, B. Glaciers and society: attributions, perceptions, and valuations. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 793–808. [Google Scholar] [CrossRef]
- MWE. Uganda Water and Environment Sector Performance Report 2011; Ministry of Water, Lands and Environment: Kampala, Uganda, 2011. [Google Scholar]
- Mizuno, K. Vegetation succession in relation to glacial fluctuation in the high mountains of Africa. Mt. Res. Dev. 2005, 25, 68–75. [Google Scholar] [CrossRef]
- Zawierucha, K.; Gąsiorek, P.; Buda, J.; Uetake, J.; Janko, K.; Fontaneto, D. Tardigrada and Rotifera from moss microhabitats on a disappearing Ugandan glacier, with the description of a new species of water bear. Zootaxa 2018, 4392, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Epstein, P.R. Climate change and emerging infectious diseases. Microbes Infect. 2001, 3, 747–754. [Google Scholar] [CrossRef]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: a review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Mulangu, F.; Kraybill, D. Climate change and the future of mountain farming on Mt. Kilimanjaro. In The Future of Mountain Agriculture; Mann, S., Ed.; Springer: Berlin/Heidelberg, Germany; pp. 73–88.
- Mitchell, J.; Keane, J.; Laidlaw, J. Making Success Work for the Poor: Package Tourism in Northern Tanzania. Final Report; Overseas Development Institute: London, UK, 2009; p. 14. [Google Scholar]
- GWP. Integrated Water Resources Managemen; Global Water Partnership (GWP): Stockholm, Sweden, 2000. [Google Scholar]
- Thompson, L.G.; Mosley-Thompson, E.; Davis, M.E.; Brecher, H.H. Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Ann. Glaciol. 2011, 52, 23–34. [Google Scholar] [CrossRef]
- Mark, B.G.; Fernández, A. The significance of mountain glaciers as sentinels of climate and environmental change. Geogr. N.a. 2017, 11, 1–16. [Google Scholar] [CrossRef]
- Veettil, B.K.; Wang, S.; Simões, J.C.; Pereira, S.F.R.; De Souza, S.F. Regional climate forcing and topographic influence on glacier shrinkage: eastern cordilleras of Peru. Int. J. Clim. 2017, 38, 979–995. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L., Jr.; Chen, Z.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Chen, Y.; Zhai, P. Persisting and strong warming hiatus over eastern China during the past two decades. Environ. Lett. 2017, 12, 104010. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V. Review Article: Lake and breach hazard assessment for moraine-dammed lakes: an example from the Cordillera Blanca (Peru). Hazards Earth Sci. 2013, 13, 1551–1565. [Google Scholar] [CrossRef]
- Emmer, A.; Vilímek, V. New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru. Hydrol. Earth Sci. 2014, 18, 3461–3479. [Google Scholar] [CrossRef]
- World Bank Group. Bolivia, Ecuador, and Peru – Adaptation to the Impact of Rapid Glacier Retreat in the Tropical Andes Project; World Bank: Washington, DC, USA, 2014. [Google Scholar]
- Buytaert, W.; Beven, K. Models as multiple working hypotheses: Hydrological simulation of tropical alpine wetlands. Hydrol. Processes 2011, 25, 1784–1799. [Google Scholar] [CrossRef]
- Reynard, E.; Panizza, M. Geomorphosites: definition, assessment and mapping. An introduction. Géomorphologie: relief, processus, environnement 2005, 11, 177–180. [Google Scholar] [CrossRef]
Region | Country | Area (km2) |
---|---|---|
South America | Venezuela | 0.79 |
Colombia | 66.19 | |
Ecuador | 123.9 | |
Peru | 1602.96 | |
Bolivia | 531.58 | |
Northern Chile | 11.81 | |
Northern Argentina | 0.32 | |
Total | 2337.55 | |
Africa | Kenya | 0.40 |
Tanzania | 2.87 | |
Uganda-Democratic Republic of Congo | 1.14 | |
Total | 4.41 | |
Irian Jaya | Indonesia | 2.14 |
Entire Tropics | 2344.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veettil, B.K.; Kamp, U. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences 2019, 9, 196. https://doi.org/10.3390/geosciences9050196
Veettil BK, Kamp U. Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences. 2019; 9(5):196. https://doi.org/10.3390/geosciences9050196
Chicago/Turabian StyleVeettil, Bijeesh Kozhikkodan, and Ulrich Kamp. 2019. "Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges" Geosciences 9, no. 5: 196. https://doi.org/10.3390/geosciences9050196
APA StyleVeettil, B. K., & Kamp, U. (2019). Global Disappearance of Tropical Mountain Glaciers: Observations, Causes, and Challenges. Geosciences, 9(5), 196. https://doi.org/10.3390/geosciences9050196