Tracing the Relationship between Precipitation and River Water in the Northern Carpathians Base on the Evaluation of Water Isotope Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Samples Collection and Stable Isotope Measurements
2.3. Climate Data
3. Results and Discussion
3.1. Basic Characteristics of δ2H and δ18O in Precipitation and River Water
3.2. Local Meteoric Water Line
3.3. Stable Isotopes in Precipitations–Climate Relationship
3.4. Deuterium Excess (d-) in Precipitation and Large-scale Atmospheric Circulation
3.5. Precipitation-River Relationships
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bowen, G.J.; Wilkinson, B. Spatial distribution of δ18O in meteoric precipitation. Geology 2002, 30, 315. [Google Scholar] [CrossRef]
- Dutton, A.; Wilkinson, B.H.; Welker, J.M.; Bowen, G.J.; Lohmann, K.C. Spatial distribution and seasonal variation in18O/16O of modern precipitation and river water across the conterminous USA. Hydrol. Process. 2005, 19, 4121–4146. [Google Scholar] [CrossRef]
- Hager, B.; Foelsche, U. Stable isotope composition of precipitation in Austria. Austrian J. Earth Sci. 2015, 108, 2–14. [Google Scholar] [CrossRef]
- Le Duy, N.; Heidbüchel, I.; Meyer, H.; Merz, B.; Apel, H. What controls the stable isotope composition of precipitation in the Mekong Delta? A model-based statistical approach. Hydrol. Earth Sci. 2018, 22, 1239–1262. [Google Scholar] [CrossRef] [Green Version]
- Sodemann, H.; Schwierz, C.; Vinther, B.M.; Wernli, H.; Masson-Delmotte, V.; Masson-Delmotte, V.; Masson-Delmotte, V. Interannual variability of Greenland winter precipitation sources: 2. Effects of North Atlantic Oscillation variability on stable isotopes in precipitation. J. Geophys. Res. Biogeosci. 2008, 113, 1–21. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Sharp, Z. Principles of Stable Isotope Geochemistry, 1st ed.; Rapp, C., Ed.; Pearson Education: Upper Saddle River, NJ, USA, 2007. [Google Scholar]
- Ala-Aho, P.; Soulsby, C.; Pokrovsky, O.; Kirpotin, S.; Karlsson, J.; Serikova, S.; Vorobyev, S.; Manasypov, R.; Loiko, S.; Tetzlaff, D. Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. J. Hydrol. 2018, 556, 279–293. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Li, L. Entropy analysis of stable isotopes in precipitation: Tracing the monsoon systems in China. Sci. Rep. 2016, 6, 30389. [Google Scholar] [CrossRef]
- Yu, W.; Yao, T.; Tian, L.; Ma, Y.; Kurita, N.; Ichiyanagi, K.; Wang, Y.; Sun, W. Stable Isotope Variations in Precipitation and Moisture Trajectories on the Western Tibetan Plateau, China. Arctic, Antarct. Alp. 2007, 39, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R. Environmental Isotopes in the Hydrological Cycle, Principles and Applications (Atmospheric Water). Available online: http://www.hydrology.nl/ihppublications/149-environmental-isotopes-in-the-hydrological-cycle-principles-and-applications.html (accessed on 18 October 2018).
- Sánchez-Murillo, R.; Esquivel-Hernández, G.; Welsh, K.; Brooks, E.S.; Boll, J.; Alfaro-Solís, R.; Valdés-González, J. Spatial and temporal variation of stable isotopes in precipitation across Costa Rica: An analysis of historic GNIP records. Open J. Hydrol. 2013, 3, 226–240. [Google Scholar] [CrossRef]
- Miljevic, N.R.; Golobocanin, D.D.; Nadeždic, M.L.; Ogrinc, N. Distribution of stable isotopes in the River Sava in Serbia. Nukleonika 2008, 53, S129–S135. [Google Scholar]
- Reckerth, A.; Stichler, W.; Schmidt, A.; Stumpp, C. Long-term data set analysis of stable isotopic composition in German rivers. J. Hydrol. 2017, 552, 718–731. [Google Scholar] [CrossRef]
- Rank, D.; Wyhlidal, S.; Schott, K.; Weigand, S.; Oblin, A. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers. Isot. Environ. Heal. Stud. 2017, 54, 115–136. [Google Scholar] [CrossRef]
- Theakstone, W.H. Oxygen isotopes in glacier-river water, Austre Okstindbreen, Okstindan, Norway. J. Glaciol. 2003, 49, 282–298. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kanduč, T.; Stichler, W.; Vreca, P. Spatial and seasonal variations in δ18O and δD values in the River Sava in Slovenia. J. Hydrol. 2008, 359, 303–312. [Google Scholar] [CrossRef]
- Kang, S.; Kreutz, K.J.; Mayewski, P.A.; Qin, D.; Yao, T. Stable-isotopic composition of precipitation over the northern slope of the central Himalaya. J. Glaciol. 2002, 48, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Baisden, W.T.; Keller, E.D.; Van Hale, R.; Frew, R.D.; Wassenaar, L.I. Precipitation isoscapes for New Zealand: enhanced temporal detail using precipitation-weighted daily climatology. Isot. Environ. Heal. Stud. 2016, 52, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, G.; Song, X.; Charles, S.P.; Zhang, Y.; Han, D.; Wang, S. Stable isotopic compositions in Australian precipitation. J. Geophys. Res. Biogeosci. 2010, 115, 1–16. [Google Scholar] [CrossRef]
- Sandu, I.; Pescaru, V.I.; Poiana, I. Clima Romaniei; Editura Academiei Române: Bucureşti (in Romanian); Romanian Academy: Bucharest, Romania, 2008; ISBN 973-27-1674-8. [Google Scholar]
- Cornes, R.C.; Van Der Schrier, G.; Besselaar, E.J.M.V.D.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef]
- Bădăluță, C.-A.; Perșoiu, A.; Ionita, M.; Nagavciuc, V.; Bistricean, P.-I. Stable H and O isotope-based investigation of moisture sources and their role in river and groundwater recharge in the NE Carpathian Mountains, East-Central Europe. Isot. Environ. Heal. Stud. 2019, 55, 161–178. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 4, 436–468. [Google Scholar]
- Pfahl, S.; Sodemann, H. What controls deuterium excess in global precipitation? Clim. Past 2014, 10, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, R.; Deavean, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG; Version 6; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, Co, USA.
- Holko, L.; Dóša, M.; Michalko, J.; Kostka, Z.; Šanda, M. Isotopes of oxygen-18 and Deuterium in precipitation in Slovakia. J. Hydrol. Hydromech. 2012, 60, 265–276. [Google Scholar] [CrossRef]
- Christner, E.; Aemisegger, F.; Pfahl, S.; Werner, M.; Cauquoin, A.; Schneider, M.; Hase, F.; Barthlott, S.; Schädler, G. The climatological impacts of continental surface evaporation, rainout, and subcloud processes on δ D of water vapor and precipitation in Europe. J. Geophys. Res. Atmos. 2018, 123, 4390–4409. [Google Scholar] [CrossRef]
- Bojar, A.V.; Halas, S.; Bojar, H.P.; Chmiel, S. Stable isotope hydrology of precipitation and groundwater of a region with high continentality, South Carpathians, Romania. Carpath. J. Earth Environ. Sci. 2017, 12, 513–524. [Google Scholar] [CrossRef]
- Hussain, S.; Xianfang, S.; Jianrong, L.; Mei, H.D.; Hu, Y.L.; Huang, W. Controlling factors of the stable isotope composition in the precipitation of Islamabad, Pakistan. Adv. Meteorol. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Tappa, D.J.; Kohn, M.J.; McNamara, J.P.; Benner, S.G.; Flores, A.N. Isotopic composition of precipitation in a topographically steep, seasonally snow-dominated watershed and implications of variations from the global meteoric water line. Hydrol. Process. 2016, 30, 4582–4592. [Google Scholar] [CrossRef]
- Ersek, V.; Onac, B.P.; Perșoiu, A. Kinetic processes and stable isotopes in cave dripwaters as indicators of winter severity. Hydrol. Process. 2018, 32, 2856–2862. [Google Scholar] [CrossRef]
- Kern, Z.; Fórizs, I.; Perșoiu, A.; Nagy, B. Stable isotope study of water sources and of an ice core from the Borţig Ice Cave, Romania. Data Glaciol. Stud. 2009, 107, 175–182. [Google Scholar]
- Perşoiu, A.; Bojar, A.-V.; Onac, B.P. Stable isotopes in cave ice: what do they tell us? Studia UBB Geol. 2007, 52, 59–62. [Google Scholar]
- Vodila, G.; Palcsu, L.; Futó, I.; Szántó, Z. A 9-year record of stable isotope ratios of precipitation in Eastern Hungary: Implications on isotope hydrology and regional palaeoclimatology. J. Hydrol. 2011, 400, 144–153. [Google Scholar] [CrossRef]
- Gat, J.R.; Mook, W.G.; Meijer, H.A.J. Environmental Isotopes in the Hydrological Cycle: Atmospheric Water; IHP-V, Technical Documents in Hydrology; UNESCO: Paris, France, 2001. [Google Scholar]
- Campins, J.; Genovés, A.; Picornell, M.A.; Jansà, A. Climatology of Mediterranean cyclones using the ERA-40 dataset. Int. J. Climatol. 2011, 31, 1596–1614. [Google Scholar] [CrossRef]
- Gat, J.R.; Klein, B.; Kushnir, Y.; Roether, W.; Wernli, H.; Yam, R.; Shemesh, A. Isotope composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern. Tellus B: Chem. Phys. Meteorol. 2003, 55, 953–965. [Google Scholar] [CrossRef]
- IAEA Isotopic Composition Of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; Final report of a coordinated research project 2000–2004, Isotope Hydrology Section; International Atomic Energy Agency: Vienna, Austria, 2005.
- Drăgușin, V.; Balan, S.; Blamart, D.; Forray, F.L.; Marin, C.; Mirea, I.; Nagavciuc, V.; Perșoiu, A.; Tîrlă, L.; Tudorache, A.; et al. Transfer of environmental signals from surface to the underground at Ascunsă Cave, Romania. Hydrol. Earth Sci. Discuss. 2017, 21, 1–23. [Google Scholar]
- Vystavna, Y.; Diadin, D.; Huneau, F. Defining a stable water isotope framework for isotope hydrology application in a large trans-boundary watershed (Russian Federation/Ukraine). Isot. Environ. Health Stud. 2018, 54, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Halder, J.; Terzer, S.; Wassenaar, L.I.; Araguas-Araguas, L.J.; Aggarwal, P.K. The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrol. Earth Sci. 2015, 19, 3419–3431. [Google Scholar] [CrossRef] [Green Version]
- Ogrinc, N.; Kocman, D.; Miljević, N.; Vreča, P.; Vrzel, J.; Povinec, P. Distribution of H and O stable isotopes in the surface waters of the Sava River, the major tributary of the Danube River. J. Hydrol. 2018, 565, 365–373. [Google Scholar] [CrossRef]
Nr. | Station Name | Abbreviation | Latitude | Longitude | Elevation (m.a.s.l.) | Sampling Period | Number of Samples |
---|---|---|---|---|---|---|---|
1 | Bistrița-Năsaud | BN | 47°7′ N | 24°29′ E | 380 | March 2012–January 2014 and January 2015–November 2015 | 45 |
2 | Gura Haiti | GH | 47°11′ N | 25°16′ E | 1200 | October 2014–July 2015 | 8 |
3 | Vatra Dornei | VD | 47°20′ N | 25°21′ E | 800 | October 2014–July 2015 | 7 |
4 | Rarău | RA | 47°27′ N | 25°34′ E | 1600 | May 2013–January 2017 | 27 |
5 | Câmpulung Moldovenesc | CM | 47°31′ N | 25°34′ E | 700 | October 2014–February 2016 | 12 |
6 | Suceava | SV | 47°37′ N | 26°14′ E | 350 | December 2012–November 2017 | 49 |
7 | Suceava River | SVr | 47°39′ N | 26°15′ E | 275 | July 2014–March 2017 | 33 |
8 | Bistrița River | BNr | 47° 7’ N | 24°29′ E | 340 | December 2014–March 2017 | 24 |
9 | Moldova River | Mr | 47°31′ N | 25°34′ E | 660 | October 2014–February 2016 | 14 |
CM | VD | GH | RA | SV | BN | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | |
Mean | −11.1 | −85 | −12.1 | −89 | −11.4 | −85 | −11.6 | −82 | −9.9 | −71 | −9.7 | −69 |
Max | −5.7 | −37 | −7.0 | −45 | −6.8 | −43 | −4.3 | −33 | 1.1 | −2 | −3.5 | −23 |
Min | −18.7 | −151 | −16.7 | −129 | −15.7 | −121 | −21.7 | −163 | −27.1 | −205 | −21.4 | −158 |
SVr | Mr | BNr | ||||
---|---|---|---|---|---|---|
δ18O | δ2H | δ18O | δ2H | δ18O | δ2H | |
mean | −9.6 | −67.4 | −10.1 | −70.8 | −9.9 | −68.4 |
min | −10.8 | −74.6 | −10.6 | −74.2 | −10.5 | −72.1 |
max | −8.8 | −62.7 | −9.5 | −66.1 | −8.9 | −64.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagavciuc, V.; Bădăluță, C.-A.; Ionita, M. Tracing the Relationship between Precipitation and River Water in the Northern Carpathians Base on the Evaluation of Water Isotope Data. Geosciences 2019, 9, 198. https://doi.org/10.3390/geosciences9050198
Nagavciuc V, Bădăluță C-A, Ionita M. Tracing the Relationship between Precipitation and River Water in the Northern Carpathians Base on the Evaluation of Water Isotope Data. Geosciences. 2019; 9(5):198. https://doi.org/10.3390/geosciences9050198
Chicago/Turabian StyleNagavciuc, Viorica, Carmen-Andreea Bădăluță, and Monica Ionita. 2019. "Tracing the Relationship between Precipitation and River Water in the Northern Carpathians Base on the Evaluation of Water Isotope Data" Geosciences 9, no. 5: 198. https://doi.org/10.3390/geosciences9050198
APA StyleNagavciuc, V., Bădăluță, C. -A., & Ionita, M. (2019). Tracing the Relationship between Precipitation and River Water in the Northern Carpathians Base on the Evaluation of Water Isotope Data. Geosciences, 9(5), 198. https://doi.org/10.3390/geosciences9050198