Generation of Sub-Hourly Rainfall Events through a Point Stochastic Rainfall Model
Abstract
:1. Introduction
2. Stochastic Model of Rainfall
2.1. Overview
2.2. Rainfall Data
2.3. Derivation of Rainfall Events
2.4. Generation of Main Storm Characteristics
2.5. Generation of Rainfall Event Profile
3. Results
4. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acreman, M.C. A simple stochastic model of hourly rainfall for Farnborough, England. Hydrol. Sci. J. 1990, 35, 119–148. [Google Scholar] [CrossRef] [Green Version]
- Cameron, D.; Beven, K.; Tawn, J. An evaluation of three stochastic rainfall models. J. Hydrol. 2000, 228, 130–149. [Google Scholar] [CrossRef]
- Mendoza-Resendiz, A.; Arganis-Juarez, M.; Dominguez-Mora, R.; Echavarria, B. Method for generating spatial and temporal synthetic hourly rainfall in the Valley of Mexico. Atmos. Res. 2013, 132–133, 411–422. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Brigandì, G.; Aronica, G.T. Combining regional rainfall frequency analysis and rainfall-runoff modelling to derive frequency distributions of peak flows in ungauged basins: A proposal for Sicily region (Italy). Adv. Geosci. 2017, 44, 15–22. [Google Scholar] [CrossRef]
- Cowpertwait, P.S.P.; O’Connell, P.E.; Metcalfe, A.V.; Mawdsley, J.A. Stochastic point process modelling of rainfall. I. Single-site fitting and validation. J. Hydrol. 1996, 175, 17–46. [Google Scholar] [CrossRef]
- Cowpertwait, P.S.P.; O’Connell, P.E.; Metcalfe, A.V.; Mawdsley, J.A. Stochastic point process modelling of rainfall. II. Regionalisation and disaggregation. J. Hydrol. 1996, 175, 47–65. [Google Scholar] [CrossRef]
- Blazkova, S.; Beven, K.J. Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. J. Hydrol. 1997, 195, 256–278. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Mamassis, N. On the representation of hyetograph characteristics by stochastic rainfall models. J. Hydrol. 2001, 251, 65–87. [Google Scholar] [CrossRef]
- Candela, A.; Brigandì, G.; Aronica, G.T. Estimation of synthetic flood design hydrographs using a distributed rainfall-runoff model coupled with a copula-based single storm rainfall generator. Nat. Hazards Earth Syst. Sci. 2014, 14, 1819–1833. [Google Scholar] [CrossRef]
- Gao, C.; Xu, Y.P.; Zhu, Q.; Bai, Z.; Liu, L. Stochastic generation of daily rainfall events: A single-site rainfall model with Copula-based joint simulation of rainfall characteristics and classification and simulation of rainfall patterns. J. Hydrol. 2018, 564, 41–58. [Google Scholar] [CrossRef]
- Huff, F. Time Distribution Rainfall in Heavy Storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Eagleson, P.S. Dynamics of flood frequency. Water Resour. Res. 1972, 8, 878–898. [Google Scholar] [CrossRef]
- Garcia-Guzman, A.; Aranda-Oliver, E. A Stochastic model of dimensionless hyetograph. Water Resour. Res. 1993, 29, 2363–2370. [Google Scholar] [CrossRef]
- Robinson, J.S.; Silvapalan, M. Temporal scales and hydrological regimes: Implications for flood frequency scaling. Water Resour. Res. 1997, 33, 2981–2999. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Iturbe, I.; Febres de Power, B.; Valdes, J.B. Rectangular pulses point process models for rainfall: Analysis of empirical data. J. Geophys. Res. 1987, 92, 9645–9656. [Google Scholar] [CrossRef]
- Calenda, G.; Napolitano, F. Parameter estimation of Neyman-Scott processes for temporal point rainfall simulation. J. Hydrol. 1999, 225, 45–66. [Google Scholar] [CrossRef]
- Onof, C.; Wheater, H.S. Modelling of British rainfall using a random parameter Bartlett–Lewis rectangular pulse model. J. Hydrol. 1993, 149, 67–95. [Google Scholar] [CrossRef]
- Onof, C.; Wheater, H.S. Improvements to the modelling of British rainfall using a modified random parameter Bartlett–Lewis rectangular pulse model. J. Hydrol. 1994, 157, 177–195. [Google Scholar] [CrossRef]
- Onof, C.; Wheater, H.S. Improved fitting of the Bartlett–Lewis rectangular pulse model for hourly rainfall. Hydrol. Sci. J. 1994, 39, 663–680. [Google Scholar] [CrossRef]
- Khaliq, M.N.; Cunnane, C. Modelling point rainfall occurrences with the modified Bartlett-Lewis Rectangular Pulses Model. J. Hydrol. 1996, 180, 109–138. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Foufoula-Georgiou, E. A scaling model of a storm hyetograph. Water Resour. Res. 1993, 29, 2345–2361. [Google Scholar] [CrossRef]
- Heneker, T.M.; Lambert, M.F.; Kuczera, G. A point rainfall model for risk-based design. J. Hydrol. 2001, 247, 54–71. [Google Scholar] [CrossRef]
- Córdova, J.R.; Rodríguez-Iturbe, I. On the probabilistic structure of storm surface runoff. Water Resour. Res. 1985, 21, 755–763. [Google Scholar] [CrossRef]
- Singh, K.; Singh, V.P. Derivation of bivariate probability density functions with exponential margins. Stoch. Hydrol. Hydraul. 1991, 5, 55–687. [Google Scholar] [CrossRef]
- Bacchi, B.; Becciu, G.; Kottegoda, N.T. Bivariate exponential model applied to intensities and duration of extreme rainfall. J. Hydrol. 1994, 155, 225–236. [Google Scholar] [CrossRef]
- Kurothe, R.S.; Goel, N.K.; Mathur, B.S. Derived flood frequency distribution for negatively correlated rainfall intensity and duration. Water Resour. Res. 1997, 33, 2103–2107. [Google Scholar] [CrossRef] [Green Version]
- De Michele, C.; Salvadori, G. A Generalized Pareto intensity-duration model of storm rainfall exploiting 2-Copulas. J. Geophys. Res. 2003, 108, 4067. [Google Scholar] [CrossRef]
- Zhang, L.; Singh, V.P. Bivariate rainfall frequency distributions using Archimedean copulas. J. Hydrol. 2006, 332, 93–109. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C.; Kottegoda, N.T.; Rosso, R. Extremes in Nature. An Approach Using Copulas; Springer: Berlin, Germany, 2007. [Google Scholar]
- Favre, A.C.; El Adlouni, S.; Perreault, L.; Thiémonge, N.; Bobée, B. Multivariate hydrological frequency analysis using copulas. Water Resour. Res. 2004, 40, 1–12. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Frequency analysis via copulas: Theoretical aspects and applications to hydrological events. Water Resour. Res. 2004, 40, 1–17. [Google Scholar] [CrossRef]
- Genest, C.; Favre, A.C. Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. ASCE 2007, 12, 347–368. [Google Scholar] [CrossRef]
- Cantet, P.; Arnaud, P. Extreme rainfall analysis by a stochastic model: Impact of the copula choice on the sub-daily rainfall generation. Stoch. Environ. Res. Risk Assess. 2014, 28, 1479–1492. [Google Scholar] [CrossRef]
- Vandenberghe, S.; Verhoest, N.E.C.; Buyse, E.; De Baets, B. A stochastic design rainfall generator based on copulas and mass curves. Hydrol. Earth. Syst. Sci. 2010, 14, 2429–2442. [Google Scholar] [CrossRef] [Green Version]
- Cannarozzo, M.; D’asaro, F.; Ferro, V. Regional rainfall and flood frequency analysis for Sicily using the two component extreme value distribution. Hydrol. Sci. J. 1995, 40, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Weinmann, P.E.; Hoang, T.M.T.; Laurenson, E.M. Monte Carlo simulation of flood frequency curves from rainfall. J. Hydrol. 2002, 256, 196–210. [Google Scholar] [CrossRef]
- Rossi, F.; Fiorentino, M.; Versace, P. Two-Component Extreme Value Distribution for Flood Frequency Analysis. Water Resour. Res. 1984, 20, 847–856. [Google Scholar] [CrossRef]
- Nelsen, R.B. An Introduction to Copulas. Lecture Notes in Statistics; Springer: New York, NY, USA, 1999. [Google Scholar]
- Genest, C.; Rivest, L. Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 1993, 88, 1034–1043. [Google Scholar] [CrossRef]
- Genest, C.; Quessy, J.F.; Remillard, B. Goodness-of-fit Procedures for Copula Models Based on the Probability Integral Transformation. Scand. J. Stat. 2006, 33, 337–366. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill International: New York, NY, USA, 1998. [Google Scholar]
- Maidment, D.R. Handbook of Hydrology; McGraw-Hill International: New York, NY, USA, 1992. [Google Scholar]
- Kottegoda, N.T.; Rosso, R. Applied Statistics for Civil and Environmental Engineers; Blackwell Publishing Ltd.: Oxford, UK, 2008. [Google Scholar]
- Salvadori, G.; De Michele, C. Statistical characterization of temporal structure of storms. Adv. Water Res. 2006, 29, 827–842. [Google Scholar] [CrossRef]
- Aronica, G.T.; Candela, A. Derivation of flood frequency curves in poorly gauged catchments using a simple stochastic hydrological rainfall-runoff model. J. Hydrol. 2007, 347, 132–142. [Google Scholar] [CrossRef]
- De Michele, C.; Salvadori, G.; Canossi, M.; Petaccia, A.; Rosso, R. Bivariate Statistical Approach to Check Adequacy of Dam Spillway. J. Hydrol. Eng. ASCE 2005, 10, 50–57. [Google Scholar] [CrossRef]
- Bonaccorso, B.; Aronica, G.T. Estimating Temporal Changes in Extreme Rainfall in Sicily Region (Italy). Water Resour. Manag. 2016, 30, 5651–5670. [Google Scholar] [CrossRef]
- Arnone, E.; Pumo, D.; Viola, F.; Noto, L.V.; La Loggia, G. Rainfall statistics changes in Sicily. Hydrol. Earth Syst. Sci. 2013, 17, 2449–2458. [Google Scholar] [CrossRef] [Green Version]
Intensity (mm/h) | Volume (mm) | Duration (min) | |
---|---|---|---|
Monreale | |||
Length of record | 7 (2003–2009) | ||
Number of events | 105 | ||
Max | 16 | 148.6 | 3600 |
Min | 1.25 | 7.8 | 30 |
Mean | 4.37 | 31.45 | 657.14 |
Standard deviation | 3.12 | 23.70 | 611.34 |
Palazzolo Acreide | |||
Length of record | 6 (2002–2007) | ||
Number of events | 83 | ||
Max | 24.67 | 259.2 | 5430 |
Min | 0.63 | 7 | 30 |
Mean | 6.38 | 41.40 | 775.42 |
Standard deviation | 5.53 | 47.91 | 965.54 |
Intensity versus Duration | ||
---|---|---|
Monreale | Palazzolo Acreide | |
Kendall | −0.663 | −0.625 |
Pearson | −0.521 | −0.466 |
Spearman | −0.838 | −0.810 |
Average Intensity | a | b | AIC | BIC | RRMSE | χ2 | χ2υ,0.05 |
Exponential | 4.37 | - | 521.71 | 524.37 | 0.62 | 60.52 | 28.9 |
Gamma | 2.77 | 1.58 | 477.03 | 482.34 | 0.32 | 27.38 | 27.6 |
Weibull | 4.92 | 1.58 | 490.54 | 495.85 | 0.38 | 40.71 | 27.6 |
Lognormal | 1.28 | 0.59 | 461.26 | 466.57 | 0.22 | 20.52 | 27.6 |
Duration | a | b | AIC | BIC | RRMSE | χ2 | χ2υ,0.05 |
Exponential | 657.14 | - | 1574.46 | 1577.11 | 3.03 | 30.43 | 28.87 |
Gamma | 1.36 | 483.91 | 1570.91 | 1576.22 | 2.34 | 19.38 | 27.59 |
Weibull | 695.16 | 1.16 | 1572.57 | 1577.88 | 2.48 | 31.19 | 27.59 |
Lognormal | 6.08 | 0.98 | 1572.69 | 1578.00 | 4.64 | 26.24 | 27.59 |
Average Intensity | a | b | AIC | BIC | RRMSE | χ2 | χ2υ,0.05 |
Exponential | 6.38 | - | 475.55 | 477.97 | 0.44 | 30.93 | 23.7 |
Gamma | 1.65 | 3.86 | 466.64 | 471.48 | 0.39 | 29.39 | 22.4 |
Weibull | 6.92 | 1.27 | 470.20 | 475.04 | 0.40 | 28.61 | 22.4 |
Lognormal | 1.52 | 0.82 | 458.36 | 463.20 | 0.34 | 18.59 | 22.4 |
Duration | a | b | AIC | BIC | RRMSE | χ2 | χ2υ,0.05 |
Exponential | 775.42 | - | 1272.47 | 1274.88 | 6.64 | 20.52 | 23.7 |
Gamma | 0.82 | 945.80 | 1272.15 | 1276.99 | 4.43 | 13.58 | 22.4 |
Weibull | 709.21 | 0.85 | 1270.55 | 1275.39 | 3.43 | 23.60 | 22.4 |
Lognormal | 5.93 | 1.28 | 1264.28 | 1269.12 | 7.10 | 9.34 | 22.4 |
Monreale | ||||||||||||
d | 0.04 | 0.08 | 0.12 | 0.16 | 0.20 | 0.24 | 0.28 | 0.32 | 0.36 | 0.40 | 0.44 | 0.48 |
α | 1.113 | 1.120 | 1.070 | 1.070 | 1.185 | 1.296 | 1.410 | 1.622 | 1.869 | 2.079 | 2.214 | 2.327 |
β | 30.562 | 15.247 | 8.741 | 6.029 | 4.938 | 4.057 | 3.474 | 3.218 | 3.032 | 2.805 | 2.509 | 2.227 |
d | 0.52 | 0.56 | 0.6 | 0.64 | 0.68 | 0.72 | 0.76 | 0.8 | 0.84 | 0.88 | 0.92 | 0.96 |
α | 2.585 | 2.940 | 3.468 | 4.028 | 4.435 | 5.097 | 5.879 | 8.219 | 10.976 | 13.691 | 19.830 | 45.558 |
β | 2.068 | 1.931 | 1.790 | 1.648 | 1.447 | 1.363 | 1.276 | 1.330 | 1.309 | 1.187 | 1.080 | 1.121 |
Palazzolo Acreide | ||||||||||||
d | 0.04 | 0.08 | 0.12 | 0.16 | 0.20 | 0.24 | 0.28 | 0.32 | 0.36 | 0.40 | 0.44 | 0.48 |
α | 0.792 | 0.749 | 0.737 | 0.778 | 0.789 | 0.830 | 0.877 | 0.955 | 1.035 | 1.150 | 1.243 | 1.344 |
β | 16.766 | 7.010 | 4.063 | 3.001 | 2.290 | 1.845 | 1.515 | 1.301 | 1.158 | 1.072 | 1.000 | 0.934 |
d | 0.52 | 0.56 | 0.6 | 0.64 | 0.68 | 0.72 | 0.76 | 0.8 | 0.84 | 0.88 | 0.92 | 0.96 |
α | 1.616 | 1.922 | 2.111 | 2.440 | 3.225 | 3.681 | 4.456 | 5.884 | 9.340 | 12.947 | 21.020 | 54.655 |
β | 0.931 | 0.905 | 0.814 | 0.754 | 0.770 | 0.730 | 0.734 | 0.765 | 0.843 | 0.846 | 0.842 | 0.970 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brigandì, G.; Aronica, G.T. Generation of Sub-Hourly Rainfall Events through a Point Stochastic Rainfall Model. Geosciences 2019, 9, 226. https://doi.org/10.3390/geosciences9050226
Brigandì G, Aronica GT. Generation of Sub-Hourly Rainfall Events through a Point Stochastic Rainfall Model. Geosciences. 2019; 9(5):226. https://doi.org/10.3390/geosciences9050226
Chicago/Turabian StyleBrigandì, Giuseppina, and Giuseppe T. Aronica. 2019. "Generation of Sub-Hourly Rainfall Events through a Point Stochastic Rainfall Model" Geosciences 9, no. 5: 226. https://doi.org/10.3390/geosciences9050226
APA StyleBrigandì, G., & Aronica, G. T. (2019). Generation of Sub-Hourly Rainfall Events through a Point Stochastic Rainfall Model. Geosciences, 9(5), 226. https://doi.org/10.3390/geosciences9050226