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Abstract: The aim of this paper is to present a stochastic model to generate sub-hourly rainfall events
at a given point. Historical events used as the input have been extracted by the sub-hourly rainfall
series available for a defined rain gauge station based on a fixed inter-event time and selected if their
average intensity was larger than a critical fixed one. The sub-hourly events generated by applying the
proposed methodology are completely stochastic and their main characteristics, i.e., shape, duration
and average intensity, have been derived as a function of the statistics of the historical events analyzed.
In order to characterize the shape, dimensionless hyetographs have been derived. They have been
statistically modelled by using the Beta cumulative distribution. Average intensity and duration of
the historical events were first modelled separately by fitting several probability distributions and
selecting the best one using the more common statistical criteria. Then, their correlation was modelled
using the Frank’s copula. In order to test the methodology, two sites in Sicily, Italy, where 10 min’
recorded rainfall data were available, were analyzed. Finally, comparison between the statistics of the
simulated events and those of the measured data demonstrates the good performance of the model.
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1. Introduction

The simulation of sub-hourly rainfall events is an important field of hydrological research [1,2],
being mainly useful for, e.g., designing water control structures in urban areas or urban drainage
systems, and for flood frequency evaluations in small natural catchments, characterized by rapid
hydrological response [3,4].

For these purposes, the availability of a long sample of high temporal-resolution rainfall events
(shorter than 1 h) is necessary. However, unfortunately, long series of recorded rainfall characterized
by high temporal resolution are not available in most of the rain gauge stations in Sicily. Usually,
if long series of rainfall data are available, their temporal resolution is often unfortunately lower
than that required for the application of a statistical model; in contrast, if high-resolution rainfall
data are available, their sample is often not sufficiently long to perform reliable statistical analyses.
In these cases, the synthetic generation of long series of high-resolution rainfall events using stochastic
point process representations of rainfall (e.g., through Monte Carlo approach) [5–10] can be a very
practical alternative.

In the literature, there are two main groups of rainfall stochastic generation models: profile-based
and pulse-based.

A profile-based model [7,11–14], i.e., those proposed by Eagleson [12], Blazkova and Beven [7] or
Robinson and Sivapalan [14], is focused on a single rainfall event. These models generally characterize
the rainfall event through the identification of the inter-event time and adopt joint or separate statistical
distributions to describe the main characteristics of a storm event (duration and rainfall depth or,
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alternatively, duration and average intensity). The total volume of the considered rainfall event is then
divided into discrete depth values at a specified time-step (e.g., 10 min) via i.e., mass curve [11–13].

The second type of model (pulse-based) characterizes storm occurrences as localized events
distributed randomly in time and whose occurrences follow a Poisson process. Each rainfall event
causes a cluster of rain cells, and every cell can be assumed as a pulse with a random duration
and random intensity generally supposed to be constant throughout the cell duration. Cells are
distributed in time according either to the Neyman–Scott cluster model [5,6,15,16] or Bartlett–Lewis
cluster model [17–20]. Because of their ability to offer an accurate representation of continuous rainfall
series, they can be very useful for several purposes in hydrology.

However, for their application, many parameters have to be estimated and a considerable size
of historical rainfall data records has to be available in a continuous form. Moreover, as highlighted
by Cameron et al. [2], although these models are able to reproduce with high accuracy the observed
inter-arrival times characteristics at different timescales, their performance to simulate the extreme
statistics at short timescales is less accurate. Consequently, several authors [1,7] suggested the possibility
of using profile-based models for their case studies.

Following this latter type of models, we developed a methodology to derive stochastic sub-hourly
rainfall events at a given point, easily applicable in several situations. The main advantage of the
rainfall model here presented is that, for its implementation, it does not need of the availability of
a considerable size of rainfall data. A few years of high-resolution rainfall data, non-necessarily
continuous, are sufficient to calibrate the model.

Rainfall events, in terms of their main characteristics, i.e., duration and average intensity,
are stochastically generated using a bivariate copula-based model, while in order to characterize
the shape, dimensionless events (mass curves) have been considered. As highlighted by several
authors [11,13,21,22], for a particular location or within a meteorologically homogeneous regions,
temporal structure of storms is expected to exhibit similarities despite their different durations and
total storm depth [22].

For those concerning duration and average intensity, Cordova and Rodriguez-Iturbe [23]
demonstrated how for each location, a well-defined correlation structure exists between the main
characteristics of an event, i.e., storm duration and rainfall intensity. Based on this study, many other
authors have analyzed this correlation structure [24–26] by applying several bivariate distributions,
thereby demonstrating that to assume these characteristics to be independent of each other is an
unrealistic hypothesis [27].

In this context, the application of copula theory to analyze the statistical dependence between
storm duration and rainfall intensity represents an effective choice [27–29]. The main advantage in
the use of copulas is that the considered variables do not need to be independent of each other or
to be modelled by the same kind of marginal distributions. In order to generate pairs of duration
and average intensity, it is necessary to model these characteristics by using a statistical probability
distribution, and then to link them by using a joint probability distribution, and in particular by using
copulas [28,30–33].

A first version of the proposed methodology was already presented in a previous work by the
authors [9]; that version, however, in the validation phase, showed some limitations, especially for the
one concerning the historic events definition and separation, and for the rainfall’s temporal pattern
characterization. Consequently, the model has been partially redesigned and it has been validated in
order to overcome some of its shortcomings.

The model has been calibrated using the rainfall data collected in two different sites in Sicily, Italy.
In both cases, recorded available rainfall series have been divided into wet and dry periods in function
of a fixed inter-event time. Of all the historical rainfall events thus derived, only those that had average
intensities larger than a fixed critical value were considered as input to the stochastic model of rainfall.



Geosciences 2019, 9, 226 3 of 18

2. Stochastic Model of Rainfall

2.1. Overview

This section presents the layout of the proposed rainfall model structure. Following Vandenberghe
et al. approach [34], the model consists of two main sections: after the statistical analysis of the main
characteristics of the historical records, the first section performs the generation of pairs of duration and
rainfall average intensity by using a bivariate copula model. The second one performs the generation
of temporal patterns of rainfall through the statistical analysis of historical dimensionless hyetographs.

2.2. Rainfall Data

For the implementation of the model, 10 min rainfall data recorded in two sites located in Sicily
have been considered (Figure 1). The rainfall data belong to the database of the “Servizio Informativo
Agrometeorologico Siciliano” (SIAS; www.sias.regione.sicilia.it). The first site is Monreale rain gauge
station, placed in the northwest part of the island, with data available in the period from 2003 to 2009.
The second site is Palazzolo Acreide rain gauge station, placed in the southeast part of Sicily, with data
available from the period from 2002 to 2007.
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Figure 1. Location of the rain gauge stations used for the study.

An average annual rainfall of 850 mm and 600 mm is observed for Monreale and Palazzolo
Acreide rain gauge stations respectively. Climate pattern is the typical Mediterranean one with rainy
season concentrated during the winter period and usually non-rainy days during the summer. As a
consequence, all the rainfall events occur in 50–55 rainy days and, in terms of extreme events, an
average value of about 13–15 significant rainfall events per year is observed [35].

2.3. Derivation of Rainfall Events

For the model implementation, it was first necessary to identify independent significant rainfall
events in the collected time series. Rainfall registrations can be interpreted as rainfall sequences
characterized by alternative wet periods, where a certain amount of rainfall is registered for each
considered time step, and dry periods, where no rain or less than a certain amount of rain is registered
for more consecutive time-steps. Wet periods are defined in function of their cumulative rainfall depth,
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duration and temporal pattern, while dry periods are characterized only by their duration. Wet and
dry periods are separated from each other through the inter-event time definition.

The estimation of this time can differ greatly [7,22,27], depending in many cases on the model
used for the rainfall analysis. The criteria used here, according to what proposed by Koutsoyiannis
and Foufoula-Georgiou [21], is to define storms as rainfall events which are independent from each
other, as based on Poisson storm arrivals. Here, the measure of the correlation between two successive
events was evaluated by fitting an exponential distribution to the samples of rainfall depth-duration
obtained separating the historical series for different inter-event time considered and checking the
goodness of fit through the chi-square test application. The minimum inter-event time for which the
chi-square test is satisfied is the inter-event time that has to be considered. Following this procedure, a
minimum inter-event time that equals to 2 h for Monreale rain gauge station and to 4 h for Palazzolo
Acreide rain gauge station has been recognized and adopted.

The second step of the analysis is the choice of those to be considered as hydrologically “significant”
events for the possible formation of a flooding. Therefore, in order to carry out this analysis, it
was decided, according to the Rahman et al. approach [36], to select only those rainfall episodes
which average intensity was greater than a fixed threshold intensity. Following this approach, the
threshold intensity can be calculated as function of the 2-year return time Intensity-Duration-Frequency
(IDF) curve:

ID,thres = α·ID,T=2 = α·a(T)·t(n−1), (1)

where α is the reduction factor and the ID,T = 2 is the IDF curve expressed with a classical two-parameters
power law with parameters a (function of the return period) and n.

The 2-year return time IDF curve was estimated by applying the Two Components Extreme Value
(TCEV) distribution [37], already adopted in Sicily for the statistical modelling of extreme rainfall [35].
In order to apply Equation (1), it was also necessary to determinate the reduction factor α. The use of
an appropriate value of this parameter allowed us to select “significant” events, meaning that events
with smaller intensity are not included. Here, the reduction factor α has been linked to the annual
mean number of rainfall episodes quantified by the application of the TCEV, as outlined in [35].

Following this, the annual mean number of rainfall episodes was estimated equals to about 15 for
the Monreale rain gauge station and equals to about 13 for the Palazzolo Acreide rain gauge station.
To ensure this average annual number of rainfall episodes, the value of the reduction factor α was
set equal to 0.3 in both cases. With these assumptions, 105 independent rainfall events for Monreale
and 83 independent rainfall events for Palazzolo Acreide were selected from the recorded dataset
(Figure 2). Specific information of the dataset and the main statistics of the rainfall events thus derived
is provided in Table 1.

Table 1. Rainfall dataset and statistics of the selected rainfall events.

Intensity (mm/h) Volume (mm) Duration (min)

Monreale
Length of record 7 (2003–2009)

Number of events 105
Max 16 148.6 3600
Min 1.25 7.8 30

Mean 4.37 31.45 657.14
Standard deviation 3.12 23.70 611.34
Palazzolo Acreide
Length of record 6 (2002–2007)

Number of events 83
Max 24.67 259.2 5430
Min 0.63 7 30

Mean 6.38 41.40 775.42
Standard deviation 5.53 47.91 965.54
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Figure 2. Events selected for the study with the threshold curve at: (a) Monreale; (b) Palazzolo Acreide.

2.4. Generation of Main Storm Characteristics

It is well known in the literature how the main storm characteristics, such as rainfall duration and
its intensity or rainfall depth, are correlated [23–27].

This correlation was also established for the analyzed data for both sites under study. The simple
graphical analysis showed in Figure 2 and the statistical analysis performed by application of different
measures of correlation between rainfall variables, as the Pearson, the Kendall and the Spearman
coefficients (Table 2), confirm this hypothesis and indicate how the duration (D) and the correspondent
average rainfall intensity (I) of an event have to be analyzed conjointly. In this contest, models based
on the copula theory are a good alternative.

Table 2. Estimated values of different measures of correlation between rainfall variables.

Intensity versus Duration

Monreale Palazzolo Acreide

Kendall −0.663 −0.625
Pearson −0.521 −0.466

Spearman −0.838 −0.810

The main advantage of this approach is that no hypothesis is necessary for the variables to be
independent or have the same type of marginal distributions.

Let two dependent random variables U1 and U2 uniformly distributed between 0 and 1, their
joint distribution function, named Copula C, is:

C(u1, u2) = Pr{U1 ≤ u1, U2 ≤ u2} , (2)

where u1 and u2 denote realizations. Successively, given two random variables, X and Y, characterized
respectively by their marginal distribution function Fx(x) and Fy(y), through a change of variables

Fx(x) = U1 and Fy(y) = U2, (3)

it is possible to obtain the multivariate distribution function as follow:

C
(
Fx(x), Fy(y)

)
= F(x, y) = F(X ≤ x; Y ≤ y), (4)
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The central theorem of copula’s theory (Sklar’s theorem) assures that if Fx(x) and Fy(y) are
continuous, then C is unique. Several authors, as Nelsen [38] or Genest and Favre [32] presented in
their studies many applications about the use of copulas in these fields and showed how quite a few
families of copulas can be used for modelling the correlation between two variables.

However, only a few families of copulas are able to model the negative correlation between two
variables, as happen to the duration and average intensity correlation. Among them, in the present
study, as already carried out by other authors [27,28,30], the family of the Archimedean copulas has
been considered. The choice has been orientated towards this family of copulas because it is widely
used for hydrological applications given its easy construction and its simple closed form expression.

Assuming that φ is a convex decreasing function with domain (0,1] and range [0,∞) satisfying the
condition that φ(1) = 0, a copula is named Archimedean if can be expressed in the form:

Cφ(u1, u2) = φ−1
{
φ(u1) + φ(u2)

}
f or all u1, u2 ε[0, 1], (5)

where φ, called generator (or generating function) of the Copula Cφ, is a function dependent from the
θ parameter of the copula.

Several authors [27–29] illustrated how, among the strict Archimedean copulas, only the
Ali–Mikhail–Haq and the Frank’s copula families can be used when the correlation amongst hydrologic
variables is negative. In particular, Frank’s copula is well suited to model the dependence between
average rainfall intensity and storm duration in comparison with other families of copulas [27].
The Ali–Mikhail–Haq copula family shows, in fact, a limited range of dependence (Kendall’s coefficient
τk has to be major than −0.1817) which restrict its use in application. Looking at the values reported
in Table 2, it is possible to verify how, for both the analyzed sites, Kendall’s coefficient is out to the
Ali-Mikhail-Haq copula’s range of dependence, so this copula cannot be applied for this case study.
Consequently, Frank’s copula family has been selected for this study.

Frank’s copula is a one parameter copula, with generation function:

φ(t) = −ln
[
(exp(−θt) − 1)

exp(−θ) − 1

]
and t = u1 or u2, (6)

defined as follow:

C(u1, u2) = −
1
θ

ln
[
1 +

[exp(−θu1) − 1]·[exp(−θ·u2) − 1]
exp(−θ) − 1

]
, (7)

where θ is the Frank’s copula parameter linked to the Kendall’s coefficient of correlation τ between X
and Y through the expression:

τ = 1 + 4
∆1(θ) − 1

θ
, (8)

where ∆1 is the first order Debye function:

∆1(θ) =
1
θ

∫ θ

0

t
exp(t) − 1

dt, (9)

An Archimedean copula is completely defined once its generating function has been evaluated.
To do this, we followed the procedure provided by Genest and Rivest [39].

The application of this procedure allowed us to derive the θ parameter for the Frank’s copula
for both the analyzed sites, obtaining a value of θ equal to −9.884 for the dataset extracted by the
Monreale rain gauge station and equal to −8.624 for that one extracted by the Palazzolo Acreide rain
gauge station.
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Figures 3 and 4 show the graphical goodness of fit of the selected copula to the empirical data
performed for both the analyzed case studies. Empirical data are represented using the empirical
(bivariate) copula derived in the form of the discrete function Cn [28] given by:

Cn

(
i
n

,
j
n

)
=

#
{
(x, y)

∣∣∣x ≤ x(i) and y ≤ y( j)

}
n

, (10)

where x(i) and y(j), with 1 ≤ i, j ≤ n, denote the order statistics of the sample and # provides the
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Figure 4. Shaded surfaces of empirical ((b,d)) vs. theoretical copula ((a,c)) at: Monreale ((a,b)); Palazzolo
Acreide ((c,d)).
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In particular, Figure 3 shows the contours of the empirical copula (bold lines) plotted together with
the theoretical copula (thin lines), while Figure 4 reports the comparison in terms of shaded surfaces.

In both cases, plot analysis confirms how Frank’s copula is adequately fit for modelling the
dependence structure between average intensity and rainfall duration.

Figure 5, instead, shows the results provided by a further goodness-of-fit graphical procedure
proposed by Genest and Rivest [39]. The procedure is based on nonparametric estimates of the
distribution function:

K(θ, z) = z−
φ(z)
φ′(z)

= P(C(u1, u2) ≤ z) with zε(0, 1], (11)

where u1 and u2 denote again realizations of two dependent random variables U1 and U2 uniformly
distributed between 0 and 1, and C is copula function defined in Equation (2). The empirical
nonparametric estimate of K, called Kn, is given by:

Kn(z) =
1
n

n∑
j=1

1
(
V jn ≤ z

)
with zε(0, 1], (12)

In this equation, 1(A) denote the indicator function of set A (it returns 1 if A is true, 0 if A is false)
and Vjn are pseudo-observations defined by:

Kn(z) =
1
n

n∑
k=1

1
(
Xk ≤ X j, Yk ≤ Y j

)
=

1
n

n∑
k=1

1
(
Rxk ≤ Rxj, Ryk ≤ Ryj

)
, (13)

where Rxj and Ryj standing for the rank of Xj and Yj among X1, . . . ,Xn and Y1, . . . ,Yn.
The graphical comparison reported in Figure 5 between Kn(z) with K(θ,z) shows again the

goodness of fit of the empirical data on the theoretical ones.
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Figure 5. Comparison of K(z) values for Frank copula with empirical data: (a) Monreale; (b)
Palazzolo Acreide.

In the same Figure, the 95% confidence bounds for Frank’s copula are displayed and show how
the data are adequately fitted by this kind of copulas. Their limits are calculated in the following form:

Kn(z) ±
1
√

n
·Tn,95 (14)
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where Tn,95 is the 95% quantile of Kolmogorov–Smirnov statistic Tn [40] under the null hypothesis
whose values are equal to 0.747 for Monreale and 0.776 for Palazzolo Acreide respectively.

As widely discussed above, copula is able to describe how marginal distributions of two
correlated variables are tied together regardless of the scale in which each variable is measured;
no assumption is needed for the variables to be independent or have the same type of marginal
distributions. Consequently, the other step for the model implementation is the determination of
marginal distributions based on univariate data. In the conventional statistical approach, selected
intensities (I) and durations (D) values were fitted by several statistical distributions. In particular,
Exponential, Gamma, Weibull and Lognormal statistical distributions were considered.

Maximum Likelihood method was applied to define the parameters of these distributions, and
the more common statistical tests, as the Akaike Information Criterion (AIC), the Bayesian Information
Criterion (BIC), the Relative Root-Mean-Square-Error (RRMSE) and the Chi-Square test [41–43] were
used to measure the goodness of fit of the analyzed distributions. Tables 3 and 4 report the obtained
results for both the analyzed case studies, and illustrate how, for both the analyzed sites, Lognormal is
the best statistical distribution for describing the rainfall average intensity, whilst Gamma distribution
is more suitable for the characterization of the event duration.

Table 3. Marginal distribution parameters and goodness of fit results—Monreale rain gauge station.

Average Intensity a b AIC BIC RRMSE χ2 χ2
υ,0.05

Exponential 4.37 - 521.71 524.37 0.62 60.52 28.9
Gamma 2.77 1.58 477.03 482.34 0.32 27.38 27.6
Weibull 4.92 1.58 490.54 495.85 0.38 40.71 27.6

Lognormal 1.28 0.59 461.26 466.57 0.22 20.52 27.6

Duration a b AIC BIC RRMSE χ2 χ2
υ,0.05

Exponential 657.14 - 1574.46 1577.11 3.03 30.43 28.87
Gamma 1.36 483.91 1570.91 1576.22 2.34 19.38 27.59
Weibull 695.16 1.16 1572.57 1577.88 2.48 31.19 27.59

Lognormal 6.08 0.98 1572.69 1578.00 4.64 26.24 27.59

Table 4. Marginal distribution parameters and goodness of fit results—Palazzolo Acreide rain
gauge station.

Average Intensity a b AIC BIC RRMSE χ2 χ2
υ,0.05

Exponential 6.38 - 475.55 477.97 0.44 30.93 23.7
Gamma 1.65 3.86 466.64 471.48 0.39 29.39 22.4
Weibull 6.92 1.27 470.20 475.04 0.40 28.61 22.4

Lognormal 1.52 0.82 458.36 463.20 0.34 18.59 22.4

Duration a b AIC BIC RRMSE χ2 χ2
υ,0.05

Exponential 775.42 - 1272.47 1274.88 6.64 20.52 23.7
Gamma 0.82 945.80 1272.15 1276.99 4.43 13.58 22.4
Weibull 709.21 0.85 1270.55 1275.39 3.43 23.60 22.4

Lognormal 5.93 1.28 1264.28 1269.12 7.10 9.34 22.4

Figure 6 shows the two selected individual distributions and the empirical exceedance probabilities
of the observed data for the analyzed case studies. In particular, for the i-th observation of a sample of
n data, the plotting position was evaluated with the Gringorten equation [41]. This graphical analysis
demonstrates how the empirical data are well represented by the chosen statistical distributions.
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2.5. Generation of Rainfall Event Profile

For the complete characterization of an event, once the main storm characteristics are generated,
it is necessary to establish the rainfall event profile. To this aim, the concept of mass curves, defined as
normalized cumulative storm depth versus normalized time since the beginning of a storm, extensively
applied by several authors [11,13,44], has been utilized. According to this theory, for an event of total
duration D, average rainfall intensity I and, consequently, cumulative storm volume V = I·D, its pattern
is represented by a dimensionless rainfall hyetograph defined as:

H(d) =
1
V

∫ t

0
h(t) dt, (15)

where t (0 ≤ t ≤ D) is the considered time interval of the event divided by the total duration and,
consequently, d = t/D (0 ≤ d ≤ 1) is the correspondent dimensionless duration; h(t) is the fraction of the
total rainfall depth of the analyzed event at time t (0 ≤ h ≤ V) and, consequently, H = H(d)/V is the
correspondent dimensionless rainfall depth.

The choice of an appropriate time step in which each rainfall event has to be divided into is a
fundamental step in creating reliable dimensionless hyetographs. This value needs to be adequately
fixed in order to guarantee the preservation of the event characteristics to this end, taking into account
of the time-resolution of the data available for the creation of these dimensionless curves, a time
interval equal to 10 min was fixed.
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Dimensionless hyetographs thus derived for the selected rainfall events and for both the considered
rain gauge stations are plotted in Figure 7.
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Figure 7. Dimensionless hyetographs for the selected events at: (a) Monreale; (b) Palazzolo Acreide.

These empirical curves have been used for calibrating the stochastic model of the rainfall event
profile. Following the Garcia-Guzman and Aranda-Oliver approach [13], for modelling event profiles,
Beta cumulative distribution was adopted, for each considered time-step. How outlined by several
authors [1,13], in fact, the fixed upper and lower bounds of this statistical distribution and its particular
shape density function make it able to adequately fits this kind of data and, hence, particularly suitable
for this modelling.

The probability density function of the Beta distribution is a power function of the variable x and
of its reflection (1-x) defined as:

f (x|α, β) =
1

B(α, β)
xα−1(1− x)β−1 f or 0 ≤ x ≤ 1, (16)

where B(α,β) is the Beta function with shape positive parameters α and β given by:

B(α, β) =
Γ(α+ β)

Γ(α)Γ(β)
, (17)

and Γ corresponds to the Gamma function.
The cumulative Beta distribution function is defined, instead, as:

F(x
∣∣∣α, β) =

B(x
∣∣∣α, β)

B(α, β)
=

1
B(α, β)

∫ x

0
tα−1(1− t)β−1 dt, (18)

To overcome the limitation due to the different number of time-steps in which each rainfall event
has been divided into and to preserve rainfall characteristics, historical normalized mass curves have
been sampled in 26 equal time-steps (0; 0.04; 0.08; . . . ; 0.96; 1). This number was chosen in order to
avoid time-steps lower than 10 min. For each time-step, parameters of the Beta cumulative distribution
have been estimated by using the method of maximum likelihood and values thus obtained are shown
in Table 5.
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Table 5. Beta distribution parameters for different normalized time-step.

Monreale

d 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48
α 1.113 1.120 1.070 1.070 1.185 1.296 1.410 1.622 1.869 2.079 2.214 2.327
β 30.562 15.247 8.741 6.029 4.938 4.057 3.474 3.218 3.032 2.805 2.509 2.227

d 0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96
α 2.585 2.940 3.468 4.028 4.435 5.097 5.879 8.219 10.976 13.691 19.830 45.558
β 2.068 1.931 1.790 1.648 1.447 1.363 1.276 1.330 1.309 1.187 1.080 1.121

Palazzolo Acreide

d 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.48
α 0.792 0.749 0.737 0.778 0.789 0.830 0.877 0.955 1.035 1.150 1.243 1.344
β 16.766 7.010 4.063 3.001 2.290 1.845 1.515 1.301 1.158 1.072 1.000 0.934

d 0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8 0.84 0.88 0.92 0.96
α 1.616 1.922 2.111 2.440 3.225 3.681 4.456 5.884 9.340 12.947 21.020 54.655
β 0.931 0.905 0.814 0.754 0.770 0.730 0.734 0.765 0.843 0.846 0.842 0.970

3. Results

For the implementation of the methodology, 20,000 single storm events were generated for each
analyzed site using the Monte Carlo procedure represented in Figure 8 and described below. The
number of simulations was chosen to guarantee the balance of the require degree of accuracy and the
computational effort necessary [45].Geosciences 2018, 8, x FOR PEER REVIEW  12 of 17 
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Once that the pair (D, I) has been defined, in order to create a synthetic event, the code performs 
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Equation 21 provides, for given pair of parameters α and β estimated for each considered time-
step, the values of the correspondent dimensionless rainfall depth. Finally, with Equation 15 we are 
able to obtain of the final hyetograph. 

The events so generated have been compared with the observed ones and the obtained results 
are represented in Figures 9 and 10. More in detail, Figure 9 shows the comparison between the 
correlation structure of generated and observed events and demonstrate how the duration-intensity 
correlation of the generated couples is congruent with that one of the observed couples.  

Generate three independent random variables, 
r1, r2 and r3, both uniform on [0,1]

Hyetograph shape generation by 
using r3 as follow

Generation of couples of duration and 
average intensity (D,I) by using r1 and r2

as follow

From the pair (u1,u2) generate a pair (D,I) 
setting:

D = F-1
D(u1) and I = F-1

I(u2)

Set u1 = r1  and set  u2 = S-1
u1

Figure 8. Flow diagram of the Monte Carlo simulation.

For each i-th simulation (with 1 < i < 20,000), the model firstly generates the event’s main
characteristics (storm duration Di and rainfall average intensity Ii) by using Frank’s copula, then define
its temporal pattern by applying the Beta distribution with parameter α and β estimated, for each time
step, on the basis of the observed rainfall patterns.

Going into more details, Monte Carlo generation of pairs of storm duration and average rainfall
intensity (D, I) can be easily carried out by applying the algorithm proposed by Nelsen [38,46].
Following this procedure, the code initially creates two independent random variables, called r1 and
r2, both uniform on [0,1]. Starting from these two variables, the code derives two new parameters,
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called u1 and u2, setting u1 = r1 and u2 = S−1
u1
(r2) where Su1(r2) is a function which exists and is

non-decreasing almost everywhere in [0,1] defined as:

Su1(r2) =
∂C(u1, u2)

∂u1
= Pr{U2 ≤ u2 | U1 = u1}, (19)

where C(u1,u2) is the Frank’s copula defined by Equation (7).
The pair (D, I) is then generated from the pair (u1, u2) through the inversion of the marginal

distributions of storm duration and rainfall average intensity previously determined, setting:

D = F−1
D (u1) and I = F−1

I (u2), (20)

Once that the pair (D, I) has been defined, in order to create a synthetic event, the code performs
the generation of a synthetic dimensionless hyetograph.

This can be easily carried out by randomly generating a new variable r3, uniform distributed on
[0,1], and calculating the dimensionless hyetograph by inverting Equation (18) as follow:

F−1(r3
∣∣∣α, β) =

{
x : F(x

∣∣∣α, β) = r3
}
, (21)

Equation (21) provides, for given pair of parameters α and β estimated for each considered
time-step, the values of the correspondent dimensionless rainfall depth. Finally, with Equation (15) we
are able to obtain of the final hyetograph.

The events so generated have been compared with the observed ones and the obtained results are
represented in Figures 9 and 10. More in detail, Figure 9 shows the comparison between the correlation
structure of generated and observed events and demonstrate how the duration-intensity correlation of
the generated couples is congruent with that one of the observed couples.Geosciences 2018, 8, x FOR PEER REVIEW  13 of 17 
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Figure 9. Comparison between 20.000 values generated from the Frank’s copulas fitted on the observed
data and observed events at: (a) Monreale; (b) Palazzolo Acreide.

In Figure 10, the main statistics of observed and generated hyetograph shape are plotted.
In particular mean, standard deviation and 10th, 50th and 90th percentiles derived, for each considered
time-step, both for the generated hyetographs and for the observed ones have been overlapped for each
analyzed case study, demonstrating a very good capacity of the model to reproduce these statistics.

Finally, Figure 11 reports the comparison between the expected values of the maximum depth for
fixed duration calculated for both series (generated and observed), showing again very satisfying results.



Geosciences 2019, 9, 226 14 of 18

Geosciences 2018, 8, x FOR PEER REVIEW  13 of 17 

 

(a) (b) 

Figure 9. Comparison between 20.000 values generated from the Frank’s copulas fitted on the 
observed data and observed events at: (a) Monreale; (b) Palazzolo Acreide. 

In Figure 10, the main statistics of observed and generated hyetograph shape are plotted. In 
particular mean, standard deviation and 10th, 50th and 90th percentiles derived, for each considered 
time-step, both for the generated hyetographs and for the observed ones have been overlapped for 
each analyzed case study, demonstrating a very good capacity of the model to reproduce these 
statistics.  

 

(a) (b) (c) 

(d) (e) (f) 
Figure 10. Comparison between observed and generated hyetograph shape: (a) mean at the Monreale 
rain gauge station; (b) standard deviation at the Monreale rain gauge station; (c) 10th, 50th and 90th at 
the Monreale rain gauge station; (d) mean at the Palazzolo Acreide rain gauge station; (e) standard 
deviation at the Palazzolo Acreide rain gauge station; (f) 10th, 50th and 90th at the Palazzolo Acreide 
rain gauge station. 

1

10

100

10 100 1000 10000

I (
m

m
/h

)

D (min)

generated
observed

Monreale

1

10

100

10 100 1000 10000

I (
m

m
/h

)

D (min)

generated
observed

Palazzolo Acreide

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

d

E[
H]

observed
generated

Monreale  

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

d

St
d[

H]

observed

generated

Monreale  

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

d

H

observed
generated

P = 0.9

P = 0.1

P = 0.5

Monreale

 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

d

E[
H]

observed
generated

Palazzolo Acreide  

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

d

St
d[

H]

observed

generated

Palazzolo Acreide  

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

d

H

observed
generated

P = 0.9

P = 0.1

P = 0.5
Palazzolo 
Acreide

Figure 10. Comparison between observed and generated hyetograph shape: (a) mean at the Monreale
rain gauge station; (b) standard deviation at the Monreale rain gauge station; (c) 10th, 50th and 90th at
the Monreale rain gauge station; (d) mean at the Palazzolo Acreide rain gauge station; (e) standard
deviation at the Palazzolo Acreide rain gauge station; (f) 10th, 50th and 90th at the Palazzolo Acreide
rain gauge station.
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4. Discussions and Conclusions

A stochastic rainfall model for simulating synthetic sub-hourly rainfall events at a given site has
been presented. Taking into account the statistical correlation between the main event characteristics,
the Archimedean copula family, and in particular the Frank’s copula, was implemented. For both the
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analyzed case studies, the statistical tests performed suggested that the Lognormal is the best statistical
distribution for characterizing the rainfall average intensity and the Gamma statistical distribution is
more suitable to describe the event duration.

In order to describe the temporal pattern of the rainfall within each generated event, all the
historical dimensionless events, sampled in several time-steps, were statistically analyzed by applying
the Beta distribution. Although other cumulative distribution functions could be used for modelling
the dimensionless rainfall at individual time-steps, as for example the Kumarasawamy statistical
distribution, the Beta distribution was selected in this application because of its capacity to reproduce
well this kind of data. Beta distribution was applied for each sample derived for each considered
time-step and the correspondent shape parameters were estimated. In this way, it was possible to
obtain the statistical parameters for each considered time-step that made it possible to derive rainfall
profile for a given generated event. Once that dimensionless rain process is fully characterized, only
the total amount of precipitation and the storm duration have to be inserted in order to get an event.

The results are plotted in Figures 9–11 and the good agreement between the statistics of observed
and derived rainfall events, for both the analyzed case studies, is a robust indicator of the good
performance of the model. Figures 9 and 10 demonstrate, in fact, how the synthetic events so generated
reproduce reasonably well the statistics of the historic observed events, both with regard to the
duration-intensity correlation (Figure 9), and also with regard to their temporal pattern (Figure 10).

In particular, the results showed in Figure 9 confirm how the statistical dependence between
storm duration and rainfall intensity can be adequately modelled by applying the Frank’s copula and
how the selected marginal distributions, for each considered variable, allow their correlation structure
to be well respected.

For what concerns the generator’s capacity to reproduce the temporal pattern of the rainfall,
looking at Figure 10c,f, where the 10th, 50th and 90th percentiles of the hyetograph shape are plotted,
it is possible to verify how the generated curves have nonlinear shape in accordance with the observed
ones. Moreover, all the curves plotted in Figure 10 show how generated and observed values at
each step are very close to each other without any remarkable deviation, except, perhaps for the
standard deviation comparison where, in some points, a little discrepancy can be observed. The good
results obtained provide a good indicator of how the temporal pattern sub-model make it possible to
effectively represent the statistical characteristics of the observed event shape.

More significant for the aim of the present study are the results shown in Figure 11. In those
graphs, the comparison between mean of the rainfall depth for fixed duration, both for observed
and for generated events, was plotted. The good agreement between historic and generated points
is a significant indicator of the capability and the robustness of the proposed model to generate
meaningfully extreme rainfall events as well. In addition, it is worth to pointing out that there is good
agreement for the short and for the longer durations, which is in accordance with one of the main
purposes of this methodology.

Hence, the model is capable to easily generate a long sequence of sub-hourly synthetic rainfall
events consistent with the main hydrological characteristics of a considered site.

Because of its simplicity and of the limited data necessary for its calibration, the model could
be very useful in those sites where long recorded and high-resolution rainfall series are not always
available. Dealing with few years of rainfall data series is not possible to work with the annual
maxima. This implies the need of selecting, for each considered year, significant events to perform the
calculation. This selection has been in this study linked to the average annual number of significant
rainfall episodes. This selection should ensure to deal with independent events that can be considered
as hydrologically “significant” for the possible formation of a flooding.

Conversely, a limitation of the methodology lies in the historic event selection. Dealing with
few years of high-resolution rainfall series, is not possible perform a robust statistical analysis by
selecting only the annual maxima. This implies the need to select more events for year that have to be
independent of each other and hydrologically significant. For this aim, the procedure proposed by
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Rahman et al. was in study followed. Exclusion of low intensity rainfall reduces the data domain to the
interval (int_min, infty). However, in order to preserve the simplicity of the model we decided to use
the non-truncated marginal distributions (only 2 parameters instead of 3 each) and, instead, preferred
to reduce the domain of the generated data by using the same truncation threshold. Of course, the
availability of longer rainfall series characterized by high temporal resolution could make it possible to
overcome this limitation, as it could be possible to work only with annual maxima.

Furthermore, the model assumes as a hypothesis that the data used for the analysis are stationary.
This hypothesis can reasonably be considered valid, given the limited number of the years considered.
Moreover, some studies in Sicily [47,48] have shown how for all the time series analyzed, no trend
actually exists, and consequently, they denote a stationary behavior.
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