High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise
Abstract
:1. Introduction
2. Data Collection
3. Ridge Description
4. Lava Morphology Characteristics of Basalt to Rhyolite
5. Lava Morphology Classification Method
6. Training Data Selection
7. Accuracy Analysis
8. Classification Results
9. Discussion
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perfit, M.R.; Fornari, D.J. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift 2. Phase chemistry and crystallization history. J. Geophys. Res. 1983, 88, 10530–10550. [Google Scholar] [CrossRef]
- Perfit, M.R.; Fornari, D.J.; Malahoff, A.; Embley, R.W. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 3. Trace element abundances and Petrogenesis. J. Geophys. Res. 1983, 88, 10551–10572. [Google Scholar] [CrossRef]
- Regelous, M.; Niu, Y.; Wendt, J.I.; Batiza, R.; Greig, A.; Collerson, K.D. Variations in the geochemistry of magmatism on the East Pacific Rise at 10°30′ N since 800 ka. Earth Planet. Sci. Lett. 1999, 168, 45–63. [Google Scholar] [CrossRef]
- Chadwick, J.; Perfit, M.; Ridley, I.; Jonasson, I.; Kamenov, G.; Chadwick, W.; Embley, R.; le Roux, P.; Smith, M. Magmatic effects of the Cobb hot spot on the Juan de Fuca Ridge. J. Geophys. Res. 2005, 110. [Google Scholar]
- Gregg, T.K.; Fink, J.H. A laboratory investigation into the effects of slope on lava flow morphology. J. Volcanol. Geotherm. Res. 2000, 96, 145–159. [Google Scholar] [CrossRef]
- McClinton, T.; White, S.M.; Colman, A.; Sinton, J.M. Reconstructing lava flow emplacement processes at the hot spot-affected Galápagos Spreading Center, 95° W and 92° W. Geochem. Geophys. Geosyst. 2013, 14, 2731–2756. [Google Scholar] [CrossRef]
- Ballard, R.D.; Holcomb, R.T.; van Andel, T.H. The Galapagos Rift at 86° W: 3. Sheet flows, collapse pits, and lava lakes of the rift valley. J. Geophys. Res. 1979, 84, 5407–5422. [Google Scholar] [CrossRef]
- Bonatti, E.; Harrison, C.G.A. Eruption styles of basalt in oceanic spreading ridges and seamounts: Effect of magma temperature and viscosity. J. Geophys. Res. Solid Earth 1988, 93, 2967–2980. [Google Scholar] [CrossRef]
- Perfit, M.R.; Chadwick, W.W. Magmatism at Mid-Ocean Ridges: Constraints from Volcanological and Geochemical Investigations. Geophys. Monogr. 1998, 106, 59–115. [Google Scholar]
- Kurras, G.J.; Fornari, D.J.; Edwards, M.H.; Perfit, M.R.; Smith, M.C. Volcanic morphology of the East Pacific Rise Crest 9°49′–52′: Implications for volcanic emplacement processes at fast-spreading mid-ocean ridges. Mar. Geophys. Res. 2000, 21, 23–41. [Google Scholar] [CrossRef]
- Cann, J.R.; Smith, D.K. Evolution of volcanism and faulting in a segment of the Mid-Atlantic Ridge at 25° N. Geochem. Geophys. Geosyst. 2005, 6, 1–20. [Google Scholar] [CrossRef]
- Fundis, A.T.; Soule, S.A.; Fornari, D.J.; Perfit, M.R. Paving the seafloor: Volcanic emplacement processes during the 2005-2006 eruptions at the fast spreading East Pacific Rise, 9°50′ N. Geochem. Geophys. Geosyst. 2010, 11, Q08024. [Google Scholar] [CrossRef]
- Wanless, V.D.; Perfit, M.R.; Ridley, W.I.; Klein, E. Dacite petrogenesis on mid-ocean ridges: Evidence for oceanic crustal melting and assimilation. J. Petrol. 2010, 51, 2377–2410. [Google Scholar] [CrossRef]
- Stakes, D.S.; Perfit, M.R.; Tivey, M.A.; Caress, D.W.; Ramirez, T.M.; Maher, N. The Cleft revealed: Geologic, magnetic, and morphologic evidence for construction of upper oceanic crust along the southern Juan de Fuca Ridge. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef] [Green Version]
- Clague, D.A.; Caress, D.W.; Dreyer, B.M.; Lundsten, L.; Paduan, J.B.; Portner, R.A.; Le Saout, M. Geology of the Alarcon Rise, Southern Gulf of California. Geochem. Geophys. Geosyst. 2018, 19, 807–837. [Google Scholar] [CrossRef]
- Gregg, T.K.P.; Fink, J.H. Quantification of submarine lava-flow morphology through analog experiments. Geology 1995, 23, 73–76. [Google Scholar] [CrossRef]
- Fiske, R.S.; Naka, J.; Iizasa, K.; Yuasa, M.; Klaus, A. Submarine silicic caldera at the front of the Izu-Bonin arc, Japan: Voluminous seafloor eruptions of rhyolitic pumice. GSA Bull. 2001, 113, 813–824. [Google Scholar] [CrossRef]
- Goto, Y.; Tsuchiya, N. Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan. J. Volcanol. Geotherm. Res. 2004, 134, 255–275. [Google Scholar] [CrossRef]
- Honsho, C.; Ura, T.; Kim, K.; Asada, A. Postcaldera volcanism and hydrothermal activity revealed by autonomous underwater vehicle surveys in Myojin Knoll caldera, Izu-Ogasawara arc. J. Geophys. Res. Solid Earth 2016, 121, 4085–4102. [Google Scholar] [CrossRef] [Green Version]
- Scutter, C.R.; Cas, R.A.F.; Moore, C.L. Facies architecture and origin of a submarine rhyolitic lava flow-dome complex, Ponza, Italy. J. Geophys. Res. 1998, 103, 27551–27556. [Google Scholar] [CrossRef]
- DeRita, D.; Giordano, G.; Cecili, A. A model for submarine rhyolite dome growth: Ponza Island (central Italy). J. Volcanol. Geotherm. Res. 2001, 107, 221–239. [Google Scholar] [CrossRef]
- Chadwick, W.W.; Scheirer, D.S.; Embley, R.W.; Johnson, P. High-resolution bathymetric surveys using scanning sonars: Lava flow morphology, hydrothermal vents, and geologic structure at recent eruption sites on the Juan de Fuca Ridge. J. Geophys. Res. 2001, 106, 16075–16099. [Google Scholar] [CrossRef]
- Caress, D.W.; Paduan, J.; Clague, D.A.; Spelz-Madero, R. Processed Gridded Near-Bottom Bathymetry Data (ArcASCII fomat) from the Alarcon Rise Spreading Center, Integrated Earth Data Alliance (IEDA). 2018. Available online: http://get.iedadata.org/doi/324367 (accessed on 30 March 2019).
- Caress, D.W.; Thomas, H.; Kirkwood, W.J.; McEwen, R.; Henthorn, R.; Clague, D.A.; Paull, C.K.; Paduan, J.; Maier, K.L. High-resolution multibeam, sidescan, and subbottom surveys using the MBARI AUV D. Allan B. In Marine Habitat Mapping Technology for Alaska; Reynolds, J.R., Greene, H.G., Eds.; University of Alaska: Colitch, AK, USA, 2008; pp. 47–69. [Google Scholar]
- Fisher, A.T.; Giambalvo, E.; Sclater, J.; Kastner, M.; Ransom, B.; Weinstein, Y.; Lonsdale, P. Heat flow, sediment and pore fluid chemistry, and hydrothermal circulation on the east flank of Alarcon Ridge, Gulf of California. Earth Planet. Sci. Lett. 2001, 188, 521–534. [Google Scholar] [CrossRef]
- Yeo, I.; Searle, R.C.; Achenbach, K.L.; Le Bas, T.P.; Murton, B.J. Eruptive hummocks: Building blocks of the upper ocean crust. Geology 2012, 40, 91–94. [Google Scholar] [CrossRef]
- Mills, S.R.; Perfit, M.; Clague, D.A.; Paduan, J.B. Petrology and petrogenesis of andesites from Axial Seamount, Juan de Fuca Ridge, Geological Society of America, Cordilleran Section. In Proceedings of the 113th Annual Meeting, Honolulu, HI, USA, 23–25 May 2017; p. 44. [Google Scholar]
- Embley, R.W.; Rubin, K.H. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin. Bull. Volcanol. 2018, 80, 36. [Google Scholar] [CrossRef]
- Batiza, R.; Smith, T.L.; Niu, Y. Geological and petrologic evolution of seamounts near the EPR based on submersible and camera study. Mar. Geophys. Res. 1989, 11, 169–236. [Google Scholar]
- Gregg, T.K.; Smith, D.K. Volcanic investigations of the Puna Ridge, Hawai′ i: Relations of lava flow morphologies and underlying slopes. J. Volcanol. Geotherm. Res. 2003, 126, 63–77. [Google Scholar] [CrossRef]
- Meyer, J.D.; White, S.M. Lava morphology mapping by expert system classification of high-resolution side-scan sonar imagery from the East Pacific Rise, 9°–10° N. Mar. Geophys. Res. 2007, 28, 81–93. [Google Scholar] [CrossRef]
- McClinton, J.T.; White, S.M.; Sinton, J.M. Neuro-fuzzy classification of submarine lava flow morphology. Photogramm. Eng. Sens. 2012, 78, 605–616. [Google Scholar] [CrossRef]
- Horn, B.K. Hill shading and the reflectance map. Proc. IEEE 1981, 69, 14–47. [Google Scholar] [CrossRef] [Green Version]
- Lundbald, E.R.; Wright, D.J.; Miller, J.; Larkin, E.M.; Rinehart, R.; Naar, D.F.; Donahue, B.T.; Anderson, S.M.; Battista, T. A benthic terrain classification scheme for American Samoa. Mar. Geod. 2006, 29, 89–111. [Google Scholar] [CrossRef]
- Stewart, K.; Jiang, M.; Marra, M. A neural network approach to classification of sidescan sonar imagery from a midocean ridge area. IEEE J. Ocean. Eng. 1994, 19, 214–224. [Google Scholar] [CrossRef]
- Blondel, P. Segmentation of the Mid-Atlantic Ridge south of the Azores, based on acoustic classification of TOBI data. Geol. Soc. Spec. Publ. 1996, 118, 1–13. [Google Scholar] [CrossRef]
- Gao, D.; Hurst, S.; Karson, J.; Delaney, J.; Spiess, F. Computer-aided interpretation of side-looking sonar images from the eastern intersection of the Mid-Atlantic Ridge with the Kane Transform. J. Geophys. Res. 1998, 103, 20997–21014. [Google Scholar] [CrossRef]
- Jang, J.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Yamagishi, H.; Dimroth, E. A comparison of Miocene and Archean rhyolite hyaloclastites: Evidence for a hot and fluid rhyolite lava. J. Volcanol. Geotherm. Res. 1985, 23, 337–355. [Google Scholar] [CrossRef]
- Stasiuk, M.V.; Jaupart, C. Lava flow shapes and dimensions as reflections of magma system conditions. J. Volcanol. Geotherm. Res. 1997, 78, 31–50. [Google Scholar] [CrossRef]
- Whittington, A.G.; Hellwig, B.M.; Behrens, H.; Joachim, B.; Stechern, A.; Vetere, F. The viscosity of hydrous dacitic liquids: Implications for the rheology of evolving silicic magmas. Bull. Volcanol. 2009, 71, 185–199. [Google Scholar] [CrossRef]
- Diesing, M.; Mitchell, P.; Stephens, D. Image-based seabed classification: What can we learn from terrestrial remote sensing? ICES J. Mar. Sci. 2016, 73, 2425–2441. [Google Scholar] [CrossRef]
- Lucieer, V.L. Object-oriented classification of sidescan sonar data for mapping benthic marine habitats. Int. J. Remote Sens. 2008, 29, 905–921. [Google Scholar] [CrossRef]
- Reed, T.B.; Hussong, D. Digital Image Processing Techniques for Enhancement and Classification of SeaMARC II Side Scan Sonar Imagery. J. Geophys. Res. Solid Earth 1989, 94, 7469–7490. [Google Scholar] [CrossRef]
- Masetti, G.; Mayer, L.A.; Ward, L.G. A bathymetry-and reflectivity-based approach for seafloor segmentation. Geosciences 2018, 8, 14. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
Ground Reference Classes | |||||
---|---|---|---|---|---|
ANFIS Classes | Basalt | Rhyolite | Total Possible | PA | UA |
Basalt | 0.78 | 0.19 | 0.97 | 78% | 81% |
Rhyolite | 0.22 | 0.81 | 1.03 | 81% | 79% |
Total | 1.0 | 1.0 | 2 | ||
Overall Accuracy | 80% | ||||
Kappa Value | 0.60 |
Ground Reference Classes | |||||
---|---|---|---|---|---|
ANFIS Classes | Basalt | Rhyolite | Total Possible | PA | UA |
Basalt | 1.0 | 0.1 | 1.1 | 100% | 91% |
Rhyolite | 0 | 0.9 | 0.9 | 90% | 100% |
Total | 1 | 1 | 2 | ||
Overall Accuracy | 95% | ||||
Kappa Value | 0.90 |
Classification Results | Sample Composition | ||||
---|---|---|---|---|---|
Basalt (208 Samples) | Basaltic Andesite (19 Samples) | Andesite (37 Samples) | Dacite (22 Samples) | Rhyolite (43 Samples) | |
% Basalt | 97 | 89 | 76 | 73 | 26 |
% Rhyolite | 3 | 11 | 24 | 27 | 74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maschmeyer, C.H.; White, S.M.; Dreyer, B.M.; Clague, D.A. High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise. Geosciences 2019, 9, 245. https://doi.org/10.3390/geosciences9060245
Maschmeyer CH, White SM, Dreyer BM, Clague DA. High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise. Geosciences. 2019; 9(6):245. https://doi.org/10.3390/geosciences9060245
Chicago/Turabian StyleMaschmeyer, Christina H., Scott M. White, Brian M. Dreyer, and David A. Clague. 2019. "High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise" Geosciences 9, no. 6: 245. https://doi.org/10.3390/geosciences9060245
APA StyleMaschmeyer, C. H., White, S. M., Dreyer, B. M., & Clague, D. A. (2019). High-Silica Lava Morphology at Ocean Spreading Ridges: Machine-Learning Seafloor Classification at Alarcon Rise. Geosciences, 9(6), 245. https://doi.org/10.3390/geosciences9060245