The Incidence of Venous Thromboembolism in Critically Ill Patients with SARS-CoV-2 Infection Compared with Critically Ill Influenza and Community-Acquired Pneumonia Patients: A Retrospective Chart Review
Abstract
:1. Introduction
2. Materials and Methods
- The first wave of COVID-19, admitted between 15 March 2020 and 24 May 2020 (n = 55).
- The second wave of COVID-19 admitted between 31 August 2020 and 13 February 2021 (n = 73).
- All influenza patients admitted between 23 February 2014 and 3 February 2020 (n = 60).
- All community-acquired pneumonia patients admitted between 11 January 2019 and 12 May 2021 (n = 88).
3. Results
3.1. Clinical Characteristics and Outcomes
3.2. Blood Results on Admission
3.3. Rates of Venous Thromboembolism, Deep Vein Thrombosis, and Pulmonary Embolism
3.4. Prophylactic and Therapeutic Anticoagulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Minno, A.; Ambrosino, P.; Calcaterra, I.; di Minno, M.N.D. COVID-19 and venous thromboembolism: A Meta-analysis of literature studies. Semin. Thromb. Hemost. 2020, 46, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Tal, S.; Spectre, G.; Kornowski, R.; Perl, L. Venous thromboembolism complicated with COVID-19: What do we know so far? Acta Haematol. 2020, 143, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Moll, M.; Zon, R.L.; Sylvester, K.W.; Chen, E.C.; Cheng, V.; Connell, N.; Fredenburgh, L.E.; Baron, R.M.; Cho, M.H.; Woolley, A.E.; et al. VTE in ICU patients with COVID-19. Chest 2020, 158, 2130–2135. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.L.; Gianos, E.; Barish, M.A.; Chatterjee, S.; Kohn, N.; Lesser, M.; Giannis, D.; Coppa, K.; Hirsch, J.S.; Mc Ginn, T.G.; et al. Prevalence and predictors of venous thromboembolism or mortality in hospitalized COVID-19 patients. Thromb. Haemost. 2021, 121, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Tufano, A.; Rendina, D.; Abate, V.; Casoria, A.; Marra, A.; Buonanno, P.; Galletti, F.; di Minno, G.; Servillo, G.; Vargas, M. Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: A systematic review with meta-analysis. J. Clin. Med. 2021, 10, 4925. [Google Scholar] [CrossRef]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Int. Med. 2020, 180, 934–943, Erratum in 2020, 180, 1031. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. J. Emerg. Med. 2020, 58, 711–712. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Chen, T.; Wu, D.I.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Ning, Q.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 31, 368:m1295, Erratum in BMJ 2020, 26, 368:m1091. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R., Jr.; Nahid, M.; Ringel, J.B.; et al. Clinical characteristics of COVID-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef] [PubMed]
- Giannis, D.; Ziogas, I.A.; Gianni, P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J. Clin. Virol. 2020, 127, 104362. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Deutschman, C.S.; Legrand, M. Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020, 46, 1105–1108. [Google Scholar] [CrossRef]
- Wicky, P.H.; Niedermann, M.S.; Timsit, J.F. Ventilator-associated pneumonia in the era of COVID-19 pandemic: How common and what is the impact? Crit. Care. 2021, 25, 153. [Google Scholar] [CrossRef]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Gandet, F.F.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Peyvandi, F.; Martin-Loeches, I. Pulmonary immuno-thrombosis in COVID-19 ARDS pathogenesis. Intensive Care Med. 2021, 47, 899–902. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, Z.; Hu, Y. COVID-19 and venous thromboembolism: From pathological mechanisms to clinical management. J. Pers. Med. 2021, 11, 1328. [Google Scholar] [CrossRef]
- Dobesh, P.P.; Trujillo, T.C. Coagulopathy, venous thromboembolism, and anticoagulation in patients with COVID-19. Pharmacotherapy 2020, 40, 1130–1151. [Google Scholar] [CrossRef]
- Hoteit, L.; Deeb, A.-P.; Andraska, E.A.; Kaltenmeier, C.; Yazdani, H.O.; Tohme, S.; Neal, M.D.; Mota, R.I. The Pathobiological basis for thrombotic complications in COVID-19: A review of the literature. Curr. Pathobiol. Rep. 2021, 8, 107–117. [Google Scholar] [CrossRef]
- Colling, M.E.; Kanthi, Y. COVID-19-associated coagulopathy: An exploration of mechanisms. Vasc. Med. 2020, 25, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Martin-Loeches, I. The incidence of venous thromboembolism in critically ill patients with COVID-19 compared with critically ill non-COVID patients. Ir. J. Med. Sci. 2021, 190, 1317–1320. [Google Scholar] [CrossRef] [PubMed]
- Lobbes, H.; Mainbourg, S.; Mai, V.; Douplat, M.; Provencher, S.; Lega, J.-C. Risk Factors for venous thromboembolism in severe COVID-19: A study-level meta-analysis of 21 studies. Int. J. Environ. Res. Public Health 2021, 18, 12944. [Google Scholar] [CrossRef]
- Al-Ani, F.; Chehade, S.; Lazo-Langner, A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020, 192, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Goldin, M.; Giannis, D.; Diab, W.; Wang, J.; Khanijo, S.; Mignatti, A.; Gianos, E.; Cohen, M.; Sharifova, G.; et al. Efficacy and safety of therapeutic-dose heparin vs standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19: The HEP-COVID randomized clinical trial. JAMA Intern. Med. 2021, 181, 1612–1620, Erratum in 2022, 182, 239. [Google Scholar] [CrossRef] [PubMed]
- ACTIV-4. Available online: https://www.nhlbi.nih.gov/news/2021/full-dose-blood-thinners-decreased-need-life-support-and-improved-outcome-hospitalized (accessed on 11 January 2022).
- Gabara, C.; Solarat, B.; Castro, P.; Fernández, S.; Badia, J.R.; Toapanta, D.; Schulman, S.; Reverter, J.C.; Soriano, A.; Moisés, J.; et al. Anticoagulation strategies and risk of bleeding events in critically ill COVID-19 patients. Med. Intensiva 2021, 30. [Google Scholar] [CrossRef]
- Angelini, D.E.; Kaatz, S.; Rosovsky, R.P.; Zon, R.L.; Pillai, S.; Robertson, W.E.; Elavalakanar, P.; Patell, R.; Khorana, A. COVID-19 and venous thromboembolism: A narrative review. Res. Pract. Thromb Haemost. 2022, 6, e12666. [Google Scholar] [CrossRef]
- Attia, J.; Ray, J.G.; Cook, D.J.; Douketis, J.; Ginsberg, J.S.; Geerts, W.H. Deep vein thrombosis and its prevention in critically ill adults. Arch. Intern. Med. 2001, 161, 1268–1279. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Mi, J.; Wang, X.; Zou, Y.; Chen, X.; Nie, Z.; Luo, X.; Gan, R. The cumulative venous thromboembolism incidence and risk factors in intensive care patients receiving the guideline-recommended thromboprophylaxis. Medicine 2019, 98, e15833. [Google Scholar] [CrossRef]
- Kaplan, D.; Casper, T.C.; Elliott, C.G.; Men, S.; Pendleton, R.C.; Kraiss, L.W.; Weyrich, A.; Grissom, C.K.; Zimmerman, G.A.; Rondina, M.T. VTE incidence and risk factors in patients with severe sepsis and septic shock. Chest 2015, 148, 1224–1230. [Google Scholar] [CrossRef] [Green Version]
- Malato, A.; Dentali, F.; Siragusa, S.; Fabbiano, F.; Kagoma, Y.K.; Boddi, M.; Gensini, G.F.; Peris, A.; Crowther, M.; Napolitano, M. The impact of deep vein thrombosis in critically ill patients: A meta-analysis of major clinical outcomes. Blood Transfus. 2015, 13, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, D.; Crowther, M.; Meade, M.; Rabbat, C.; Griffith, L.; Schiff, D.; Geerts, W.; Guyatt, G. Deep venous thrombosis in medical-surgical critically ill patients: Prevalence, incidence, and risk factors. Crit. Care Med. 2005, 33, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Dalager-Pedersen, M.; Lund, L.C.; Mariager, T.; Winther, R.; Hellfritzsch, M.; Larsen, T.B.; Thomsen, R.W.; Johansen, N.B.; Søgaard, O.S.; Nielsen, S.L.; et al. Venous thromboembolism and major bleeding in patients with Coronavirus disease 2019 (COVID-19): A nationwide, population-based cohort study. Clin. Infect. Dis. 2021, 73, 2283–2293. [Google Scholar] [CrossRef]
- Kollias, A.; Kyriakoulis, K.G.; Lagou, S.; Kontopantelis, E.; Stergiou, G.S.; Syrigos, K. Venous thromboembolism in COVID-19: A systematic review and meta-analysis. Vasc. Med. 2021, 26, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Bertoletti, L.; Bikdeli, B.; Zuily, S.; Blondon, M.; Mismetti, P. Thromboprophylaxis strategies to improve the prognosis of COVID-19. Vasc. Pharmacol. 2021, 139, 106883. [Google Scholar] [CrossRef] [PubMed]
- Di Micco, P.; Imbalzano, E.; Russo, V.; Attena, E.; Mandaliti, V.; Orlando, L.; Lombardi, M.; di Micco, G.; Camporese, G.; del Guercio, M.; et al. Heparin and SARS-CoV-2: Multiple pathophysiological links. Viruses 2021, 13, 2486. [Google Scholar] [CrossRef]
- Schulman, S.; Hu, Y.; Konstantinides, S. Venous Thromboembolism in COVID-19. Thromb. Haemost. 2020, 120, 1642–1653. [Google Scholar] [CrossRef]
- Rashid, A.; Muneer, S.; Mendhi, J.; Sabuj, M.Z.R.; Alhamhoom, Y.; Xiao, Y.; Wang, T.; Izake, E.L.; Islam, N. Inhaled edoxaban dry powder inhaler formulations: Development, characterization and their effects on the coagulopathy associated with COVID-19 infection. Int. J. Pharm. 2021, 608, 121122. [Google Scholar] [CrossRef]
- Prouse, G.; Ettorre, L.; Mongelli, F.; Demundo, D.; Berg, J.C.V.D.; Catanese, C.; Fumagalli, L.; Usai, C.; Spinedi, L.; Riva, F.; et al. SOFA score as a reliable tool to detect high risk for venous thrombosis in patients with critical stage SARS-CoV-2. Front. Cardiovasc. Med. 2021, 8, 729298. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.; Estes, S.K.; Ali, R.A.; Gandhi, A.A.; Yalavarthi, S.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.A.; Zuo, M.; et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020, 12, eabd3876. [Google Scholar] [CrossRef] [PubMed]
- Harzallah, I.; Debliquis, A.; Drénou, B. Lupus anticoagulant is frequent in patients with COVID-19. J. Thromb. Haemost. JTH 2020, 18, 2064–2065. [Google Scholar] [CrossRef]
- Gendron, N.; Dragon-Durey, M.; Chocron, R.; Darnige, L.; Jourdi, G.; Philippe, A.; Chenevier-Gobeaux, C.; Hadjadj, J.; Duchemin, J.; Khider, L.; et al. Lupus anticoagulant single positivity during the acute phase of COVID-19 is not associated with venous thromboembolism or in-hospital mortality. Arthritis Rheumatol. 2021, 73, 1976–1985. [Google Scholar] [CrossRef]
- Devreese, K.M.J.; Ortel, T.L.; Pengo, V.; De Laat, B.; Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. Laboratory criteria for antiphospholipid syndrome: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Fogarty, H.; Townsend, L.; Cheallaigh, C.N.; Bergin, C.; Martin-Loeches, I.; Browne, P.; Bacon, C.L.; Gaule, R.; Gillett, A.; Byrne, M.; et al. COVID19 coagulopathy in Caucasian patients. Br. J. Haematol. 2020, 189, 1044–1049. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Karp Leaf, R.S.; Dzik, W.H.; Carlson, J.C.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.K.; Bornikova, L.; Rosovsky, R.P. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef]
- Martha, J.W.; Wibowo, A.; Pranata, R. Prognostic value of elevated lactate dehydrogenase in patients with COVID-19: A systematic review and meta-analysis. Postgrad. Med. J. 2021, 98, 422–427. [Google Scholar] [CrossRef]
- Bhakta, S.; Erben, Y.; Sanghavi, D.; Fortich, S.; Li, Y.; Hasan, M.M.; Dong, Y.; Brigham, T.J.; Edwards, M.A.; Meschia, J.F.; et al. A systematic review and meta-analysis of racial disparities in deep vein thrombosis and pulmonary embolism events in patients hospitalized with coronavirus disease 2019. J. Vasc. Surg. Venous Lymphat. Disord. 2022, 17. [Google Scholar] [CrossRef] [PubMed]
- Lucijanic, M.; Zivkovic, N.P.; Ivic, M.; Sedinic, M.; Brkljacic, B.; Mutvar, A.; Atic, A.; Rudan, D.; Barsic, B.; Luksic, I.; et al. Asymptomatic deep vein thromboses in prolonged hospitalized COVID-19 patients. Wien. Klin. Wochenschr. 2021, 133, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
Parameters | COVID-19 Wave 1 (n = 55) | COVID-19 Wave 2 (n = 73) | Influenza (n = 60) | Community-Acquired Pneumonia (n = 88) | p-Value |
---|---|---|---|---|---|
n = 276 | |||||
Male (n, %) | 38 (69.09%) | 48 (65.75%) | 33 (55.00%) | 56 (63.64%) | 0.381 |
Female (n, %) | 17 (30.91%) | 25 (34.25%) | 27 (45.00%) | 32 (36.36%) | 0.381 |
Age (years) (mean, [SD]) | 60.38 [13.65] | 64.33 [12.21] | 61.70 [16.58] | 62.33 [15.13] | 0.476 |
CCF (n, %) | 6 (10.90%) | 5 (6.85%) | 6 (10.00%) | 10 (11.36%) | 0.791 |
IHD (n, %) | 13 (23.63%) | 9 (12.32%) | 25 (41.67%) | 10 (11.36%) | <0.001 |
HTN (n, %) | 17 (30.90%) | 37 (50.68%) | 19 (31.67%) | 24 (27.27%) | 0.012 |
DM (n, %) | 12 (21.82%) | 17 (23.29%) | 11 (18.33%) | 8 (9.09%) | 0.079 |
COPD (n, %) | 6 (10.90%) | 15 (20.55%) | 22 (36.67%) | 30 (34.09%) | 0.003 |
Asthma (n, %) | 7 (12.73%) | 9 (12.32%) | 7 (11.67%) | 7 (7.95%) | 0.757 |
CKD (n, %) | 7 (12.73%) | 3 (4.11%) | 3 (5.00%) | 4 (4.55%) | 0.160 |
Cirrhosis (n, %) | 0 (0%) | 2 (2.74%) | 1 (1.67%) | 2 (2.27%) | 0.687 |
Cancer (n, %) | 1 (1.82%) | 10 (13.70%) | 7 (11.67%) | 13 (14.77%) | 0.092 |
Immunosuppressed * (n, %) | 5 (9.09%) | 12 (16.44%) | 9 (15.00%) | 15 (17.05%) | 0.558 |
BMI (kg/m2) (mean, [SD]) | 29.80 [16.28] | 29.18 [6.58] | 27.08 [9.62] | 25.79 [9.55] | 0.412 |
SAPSII (mean, [SD]) | 49.75 [18.63] | 41.63 [17.63] | 55.73 [17.26] | 48.92 [18.83] | <0.001 |
SOFA worst throughout admission (mean, [SD]) | 9.18 [4.32] | 8.94 [4.77] | 11.13 [4.49] | 9.76 [4.15] | 0.029 |
ICU LOS (median, [IQR]) | 12.00 [5.00, 26.00] | 14.00 [6.00, 32.50] | 9.00 [3.25, 20.00] | 10.00 [4.00, 18.75] | 0.010 |
MV (median, [IQR]) | 8.00 [0.00, 17.00] | 11.00 [0.50, 25.00] | 7.00 [1.00, 14.75] | 5.00 [0.25, 14.00] | 0.009 |
ICU mortality (n, %) | 9 (16.36%) | 28 (38.36%) | 20 (33.33%) | 23 (26.14%) | 0.047 |
Parameters | Normal Range | COVID-19 Wave 1 (n = 55) | COVID-19 Wave 2 (n = 73) | Influenza (n = 60) | Community-Acquired Pneumonia (n = 88) | p-Value |
---|---|---|---|---|---|---|
n = 276 | ||||||
PT (seconds) (mean, [SD]) | 9.9–13.1 | 14.27 [3.28] | 15.22 [6.53] | 15.23 [10.47] | 15.52 [5.77] | 0.763 |
aPTT (seconds) (mean, [SD]) | 24.0–36.0 | 34.58 [17.40] | 32.39 [13.34] | 33.99 [11.94] | 32.45 [7.39] | 0.673 |
Fibrinogen (g/L) (mean, [SD]) | 1.9–3.5 | 5.88 [1.60] | 5.12 [2.00] | 3.67 [1.98] | 5.06 [2.39] | 0.003 |
Platelets (×109/L) (mean, [SD]) | 140–450 | 260.15 [150.50] | 234.81 [104.10] | 192.53 [104.64] | 244.38 [139.00] | 0.026 |
CRP (mg/L) (mean, [SD]) | <10 | 152.72 [100.1] | 101.61 [88.20] | 128.19 [104.07] | 152.77 [125.51] | 0.012 |
LDH (IU/L) (mean, [SD]) | 135–250 | 405.33 [209.14] | 516.45 [237.85] | 1465.78 [2841.29] | 425.56 [257.89] | <0.001 |
Parameters | COVID-19 Wave 1 (n = 55) | COVID-19 Wave 2 (n = 73) | Influenza (n = 60) | Community-Acquired Pneumonia (n = 88) | p-Value |
---|---|---|---|---|---|
n = 276 | |||||
VTE (n, %) | 6 (10.91%) | 10 (13.69%) | 8 (13.33%) | 6 (6.81%) | 0.481 |
PE (n, %) | 4 (7.27%) | 8 (10.95%) | 2 (3.33%) | 5 (5.68%) | 0.350 |
DVT (n, %) | 3 (5.45%) | 4 (5.48%) | 6 (10.00%) | 1 (1.14%) | 0.117 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyd, S.; Sheng Loh, K.; Lynch, J.; Alrashed, D.; Muzzammil, S.; Marsh, H.; Masoud, M.; Bin Ihsan, S.; Martin-Loeches, I. The Incidence of Venous Thromboembolism in Critically Ill Patients with SARS-CoV-2 Infection Compared with Critically Ill Influenza and Community-Acquired Pneumonia Patients: A Retrospective Chart Review. Med. Sci. 2022, 10, 30. https://doi.org/10.3390/medsci10020030
Boyd S, Sheng Loh K, Lynch J, Alrashed D, Muzzammil S, Marsh H, Masoud M, Bin Ihsan S, Martin-Loeches I. The Incidence of Venous Thromboembolism in Critically Ill Patients with SARS-CoV-2 Infection Compared with Critically Ill Influenza and Community-Acquired Pneumonia Patients: A Retrospective Chart Review. Medical Sciences. 2022; 10(2):30. https://doi.org/10.3390/medsci10020030
Chicago/Turabian StyleBoyd, Sean, Kai Sheng Loh, Jessie Lynch, Dhari Alrashed, Saad Muzzammil, Hannah Marsh, Mustafa Masoud, Salman Bin Ihsan, and Ignacio Martin-Loeches. 2022. "The Incidence of Venous Thromboembolism in Critically Ill Patients with SARS-CoV-2 Infection Compared with Critically Ill Influenza and Community-Acquired Pneumonia Patients: A Retrospective Chart Review" Medical Sciences 10, no. 2: 30. https://doi.org/10.3390/medsci10020030
APA StyleBoyd, S., Sheng Loh, K., Lynch, J., Alrashed, D., Muzzammil, S., Marsh, H., Masoud, M., Bin Ihsan, S., & Martin-Loeches, I. (2022). The Incidence of Venous Thromboembolism in Critically Ill Patients with SARS-CoV-2 Infection Compared with Critically Ill Influenza and Community-Acquired Pneumonia Patients: A Retrospective Chart Review. Medical Sciences, 10(2), 30. https://doi.org/10.3390/medsci10020030