Human Trial for the Effect of Plasma-Activated Water Spray on Vaginal Cleaning in Patients with Bacterial Vaginosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Consideration
2.2. Patient Characteristics and Trial Design
2.3. Preparation of Plasma-Activated Water
2.4. Methods
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, R.; Karadja, E.; De Seta, F. Evidence-based mixture containing Lactobacillus strains and lactoferrin to prevent recurrent bacterial vaginosis: A double blind, placebo controlled, randomised clinical trial. Benef. Microbes 2019, 10, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Verhelst, R.; Verstraelen, H.; Claeys, G.; Verschraegen, G.; Delanghe, J.; Van Simaey, L.; De Ganck, C.; Temmerman, M.; Vaneechoutte, M. Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol. 2004, 4, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, J.; Machado, D.; Cerca, N. Unveiling the role of Gardnerella vaginalis in polymicrobial Bacterial Vaginosis biofilms: The impact of other vaginal pathogens living as neighbors. ISME J. 2019, 13, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Mendling, W.; Loening-Baucke, V.; Ladhoff, A.; Swidsinski, S.; Hale, L.P.; Lochs, H. Adherent biofilms in bacterial vaginosis. Obstet. Gynecol. 2005, 106, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Verstraelen, H.; Swidsinski, A. The biofilm in bacterial vaginosis: Implications for epidemiology, diagnosis and treatment: 2018 update. Curr. Opin. Infect. Dis. 2019, 32, 38–42. [Google Scholar] [CrossRef]
- Rosca, A.S.; Castro, J.; Franca, A.; Vaneechoutte, M.; Cerca, N. Gardnerella Vaginalis Dominates Multi-Species Biofilms in both Pre-Conditioned and Competitive In Vitro Biofilm Formation Models. Microb. Ecol. 2021, in press. [Google Scholar] [CrossRef]
- Machado, A.; Cerca, N. Influence of Biofilm Formation by Gardnerella vaginalis and Other Anaerobes on Bacterial Vaginosis. J. Infect. Dis. 2015, 212, 1856–1861. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, N.M.; Lewis, W.G.; Lewis, A.L. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis. PLoS ONE 2013, 8, e59539. [Google Scholar] [CrossRef] [Green Version]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. Extracellular DNA (eDNA). A Major Ubiquitous Element of the Bacterial Biofilm Architecture. Int. J. Mol. Sci. 2021, 22, 9100. [Google Scholar] [CrossRef]
- Hoiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.J.; Moser, C.; Jensen, P.O.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The clinical impact of bacterial biofilms. Int. J. Oral. Sci. 2011, 3, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Machado, D.; Castro, J.; Palmeira-de-Oliveira, A.; Martinez-de-Oliveira, J.; Cerca, N. Bacterial Vaginosis Biofilms: Challenges to Current Therapies and Emerging Solutions. Front. Microbiol. 2015, 6, 1528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.M.; Ojha, S.; Burgess, C.M.; Sun, D.W.; Tiwari, B.K. Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. J. Appl. Microbiol. 2020, 129, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.W.; Zhou, R.S.; Prasad, K.; Fang, Z.; Speight, R.; Bazaka, K.; Ostrikov, K. Cold atmospheric plasma activated water as a prospective disinfectant: The crucial role of peroxynitrite. Green Chem. 2018, 20, 5276–5284. [Google Scholar] [CrossRef]
- Mai-Prochnow, A.; Zhou, R.; Zhang, T.; Ostrikov, K.K.; Mugunthan, S.; Rice, S.A.; Cullen, P.J. Interactions of plasma-activated water with biofilms: Inactivation, dispersal effects and mechanisms of action. NPJ Biofilm. Microbiomes 2021, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Karwe, M.V. Inactivation and removal of Enterobacter aerogenes biofilm in a model piping system using plasma-activated water (PAW). Innov. Food Sci. Emerg. Technol. 2021, 69, 102664. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Wang, P.; Luan, B.; Zhang, X.; Fang, Z.; Xian, Y.; Lu, X.; Ostrikov, K.K.; Bazaka, K. Microplasma Bubbles: Reactive Vehicles for Biofilm Dispersal. ACS Appl. Mater. Interfaces 2019, 11, 20660–20669. [Google Scholar] [CrossRef]
- Chen, T.-P.; Su, T.-L.; Liang, J. Plasma-activated solutions for bacteria and biofilm inactivation. Curr. Bioact. Compd. 2017, 13, 59–65. [Google Scholar] [CrossRef]
- Khlyustova, A.; Labay, C.; Machala, Z.; Ginebra, M.P.; Canal, C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Front. Chem. Sci. Eng. 2019, 13, 238–252. [Google Scholar] [CrossRef]
- Privat-Maldonado, A.; Schmidt, A.; Lin, A.; Weltmann, K.D.; Wende, K.; Bogaerts, A.; Bekeschus, S. ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy. Oxidative Med. Cell. Longev. 2019, 2019, 9062098. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Ricky, S.; Lim, T.H.; Kim, H.; Lee, E.J.; Song, Y.; Lee, S.; Jang, Y. An atmospheric plasma jet induces expression of wound healing genes in progressive burn wounds in a comb burn rat model: A pilot study. J. Burn Care Res. 2021, in press. [Google Scholar] [CrossRef]
- Nicol, M.J.; Brubaker, T.R.; Honish, B.J., 2nd; Simmons, A.N.; Kazemi, A.; Geissel, M.A.; Whalen, C.T.; Siedlecki, C.A.; Bilen, S.G.; Knecht, S.D.; et al. Antibacterial effects of low-temperature plasma generated by atmospheric-pressure plasma jet are mediated by reactive oxygen species. Sci. Rep. 2020, 10, 3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard-Sahun, F.; Badets, V.; Lefrancois, P.; Sojic, N.; Clement, F.; Arbault, S. Reactive Oxygen Species Generated by Cold Atmospheric Plasmas in Aqueous Solution: Successful Electrochemical Monitoring in Situ under a High Voltage System. Anal. Chem. 2019, 91, 8002–8007. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, J.; Kim, J.; Jang, Y.; Lim, T.H. Atmospheric Pressure Plasma Irradiation Facilitates Transdermal Permeability of Aniline Blue on Porcine Skin and the Cellular Permeability of Keratinocytes with the Production of Nitric Oxide. Appl. Sci. 2021, 11, 2390. [Google Scholar] [CrossRef]
- Lee, S.J.; Ma, S.H.; Hong, Y.C.; Choi, M.C. Effects of pulsed and continuous wave discharges of underwater plasma on Escherichia coli. Sep. Purif. Technol. 2018, 193, 351–357. [Google Scholar] [CrossRef]
- Hong, Y.C.; Park, H.J.; Lee, B.J.; Kang, W.S.; Uhm, H.S. Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli. Phys. Plasmas 2010, 17, 053502. [Google Scholar] [CrossRef]
- Hwang, Y.; Jeon, H.; Wang, G.Y.; Kim, H.K.; Kim, J.-H.; Ahn, D.K.; Choi, J.S.; Jang, Y. Design and Medical Effects of a Vaginal Cleaning Device Generating Plasma-Activated Water with Antimicrobial Activity on Bacterial Vaginosis. Plasma 2020, 3, 204–213. [Google Scholar] [CrossRef]
BT | PAWS | ||
---|---|---|---|
All bacteria | Number of samples | 87 | 83 |
Average | 14.37 | 22.29 | |
Standard deviation | 44.07 | 33.36 | |
Standard error of mean | 4.73 | 3.66 | |
Gram-positive bacteria | Number of samples | 64 | 62 |
Average | 12.11 | 20.56 | |
Standard deviation | 40.33 | 34.03 | |
Standard error of mean | 5.04 | 4.32 | |
Gram-negative bacteria | Number of samples | 23 | 21 |
Average | 20.65 | 27.38 | |
Standard deviation | 53.65 | 31.53 | |
Standard error of mean | 11.19 | 6.88 |
Gram Stain | Before | After | Patient No. | |
---|---|---|---|---|
Betadine-treated patients | Gram-positive cocci | - | few | B8 |
- | rare | B17 | ||
rare | few | B18 | ||
Gram-positive bacilli | few | moderate | B2 | |
few | moderate | B7 | ||
moderate | heavy | B14 | ||
moderate | heavy | B27 | ||
Gram-positive cocobacilli | few | moderate | B8 | |
rare | few | B17 | ||
- | moderate | B25 | ||
- | few | B33 | ||
- | heavy | B38 | ||
- | moderate | B39 | ||
Gram-negative bacilli | - | rare | B2 | |
rare | few | B8 | ||
Gram-negative cocobacilli | - | moderate | B5 | |
- | few | B14 | ||
- | heavy | B17 | ||
PAW- sprayed patients | Gram-positive cocci | - | few | P5 |
Gram-positive bacilli | - | heavy | P1 | |
- | few | P21 | ||
Gram-negative cocobacilli | moderate | heavy | P14 | |
- | rare | P19 |
Patient No. | Gram-Positive Cocci | Gram-Positive Bacilli | Gram-Positive Coccobacilli | Gram-Negative Bacilli | Gram-Negative Coccobacilli | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | % | Before | After | % | Before | After | % | Before | After | % | Before | After | % | |
B1 | few | rare | 25 | heavy | rare | 75 | |||||||||
B2 | few | moderate | −25 | - | rare | −25 | |||||||||
B3 | heavy | heavy | 0 | ||||||||||||
B4 | few | rare | 25 | ||||||||||||
B5 | few | few | 0 | few | few | 0 | heavy | moderate | 25 | moderate | few | 50 | - | moderate | −75 |
B6 | few | - | 50 | few | rare | 25 | heavy | heavy | 0 | heavy | - | 100 | |||
B7 | few | moderate | −25 | heavy | few | 50 | |||||||||
B8 | - | few | −50 | moderate | moderate | 0 | few | moderate | −25 | rare | few | −25 | |||
B9 | heavy | heavy | 0 | ||||||||||||
B10 | heavy | moderate | 25 | ||||||||||||
B11 | few | rare | 25 | ||||||||||||
B12 | heavy | few | 50 | heavy | - | 100 | heavy | - | 100 | ||||||
B13 | moderate | rare | 50 | moderate | - | 75 | heavy | - | 100 | ||||||
B14 | moderate | heavy | −25 | - | moderate | −75 | |||||||||
B15 | moderate | moderate | 0 | few | - | 50 | |||||||||
B16 | heavy | rare | 75 | few | - | 50 | rare | rare | 0 | ||||||
B17 | - | rare | −25 | heavy | rare | 75 | rare | few | −25 | rare | - | 25 | - | few | −50 |
B18 | rare | few | −25 | rare | - | 25 | heavy | heavy | 0 | heavy | heavy | 0 | |||
B19 | heavy | few | 50 | ||||||||||||
B20 | heavy | heavy | 0 | rare | - | 25 | rare | - | 25 | ||||||
B21 | rare | rare | 0 | rare | rare | 0 | heavy | heavy | 0 | rare | - | 25 | few | few | 0 |
B22 | heavy | heavy | 0 | ||||||||||||
B23 | few | few | 0 | few | few | 0 | heavy | heavy | 0 | moderate | - | 75 | |||
B24 | heavy | moderate | 25 | heavy | heavy | 0 | |||||||||
B25 | heavy | rare | 75 | - | moderate | −75 | |||||||||
B26 | rare | rare | 0 | ||||||||||||
B27 | moderate | heavy | −25 | ||||||||||||
B28 | heavy | heavy | 0 | ||||||||||||
B29 | few | few | 0 | heavy | moderate | 25 | few | few | 0 | few | few | 0 | few | few | 0 |
B30 | heavy | rare | 75 | ||||||||||||
B31 | heavy | moderate | 25 | ||||||||||||
B32 | moderate | moderate | 0 | ||||||||||||
B33 | heavy | heavy | 0 | - | few | −50 | |||||||||
B34 | heavy | heavy | 0 | ||||||||||||
B35 | moderate | few | 25 | heavy | - | 100 | heavy | - | 100 | ||||||
B36 | heavy | rare | 75 | moderate | - | 75 | |||||||||
B37 | few | - | 50 | heavy | heavy | 0 | moderate | moderate | 0 | ||||||
B38 | heavy | few | 50 | - | heavy | −100 | - | heavy | −100 | ||||||
B39 | heavy | heavy | 0 | - | moderate | −75 | |||||||||
B40 | heavy | heavy | 0 |
Patient No. | Gram-Positive Cocci | Gram-Positive Bacilli | Gram-Positive Coccobacilli | Gram-Negative Bacilli | Gram-Negative Coccobacilli | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before | After | % | Before | After | % | Before | After | % | Before | After | % | Before | After | % | |
P1 | heavy | moderate | 25 | - | heavy | −100 | heavy | - | 100 | heavy | moderate | 25 | heavy | - | 100 |
P2 | heavy | rare | 75 | ||||||||||||
P3 | heavy | moderate | 25 | ||||||||||||
P4 | heavy | moderate | 25 | ||||||||||||
P5 | - | few | −50 | moderate | moderate | 0 | moderate | moderate | 0 | ||||||
P6 | heavy | heavy | 0 | few | - | 50 | |||||||||
P7 | few | rare | 25 | heavy | - | 100 | |||||||||
P8 | heavy | heavy | 0 | ||||||||||||
P9 | heavy | heavy | 0 | ||||||||||||
P10 | heavy | moderate | 25 | ||||||||||||
P11 | few | few | 0 | ||||||||||||
P12 | moderate | few | 25 | moderate | few | 25 | few | - | 50 | ||||||
P13 | heavy | rare | 75 | rare | rare | 0 | |||||||||
P14 | moderate | moderate | 0 | heavy | heavy | 0 | moderate | heavy | −25 | ||||||
P15 | few | few | 0 | ||||||||||||
P16 | heavy | moderate | 25 | heavy | heavy | 0 | heavy | heavy | 0 | ||||||
P17 | heavy | heavy | 0 | ||||||||||||
P18 | moderate | few | 25 | ||||||||||||
P19 | heavy | few | 50 | moderate | moderate | 0 | - | rare | −25 | ||||||
P20 | rare | rare | 0 | rare | rare | 0 | heavy | heavy | 0 | rare | rare | 0 | few | few | 0 |
P21 | - | few | −50 | heavy | few | 50 | heavy | few | 50 | ||||||
P22 | heavy | heavy | 0 | Few | rare | 25 | |||||||||
P23 | heavy | rare | 75 | ||||||||||||
P24 | heavy | heavy | 0 | ||||||||||||
P25 | heavy | rare | 75 | heavy | few | 50 | few | - | 50 | ||||||
P26 | heavy | heavy | 0 | ||||||||||||
P27 | heavy | heavy | 0 | ||||||||||||
P28 | heavy | heavy | 0 | ||||||||||||
P29 | heavy | heavy | 0 | ||||||||||||
P30 | few | rare | 25 | ||||||||||||
P31 | heavy | heavy | 0 | few | few | 0 | rare | - | 25 | rare | - | 25 | |||
P32 | heavy | heavy | 0 | ||||||||||||
P33 | heavy | moderate | 25 | ||||||||||||
P34 | few | - | 50 | heavy | rare | 75 | moderate | moderate | 0 | ||||||
P35 | heavy | moderate | 25 | ||||||||||||
P36 | heavy | few | 50 | ||||||||||||
P37 | heavy | heavy | 0 | ||||||||||||
P38 | heavy | rare | 75 | ||||||||||||
P39 | few | rare | 25 | heavy | heavy | 0 | few | - | 50 | heavy | moderate | 25 | |||
P40 | heavy | moderate | 25 | ||||||||||||
P41 | heavy | moderate | 25 | few | - | 50 | few | - | 50 | ||||||
P42 | heavy | rare | 75 | ||||||||||||
P43 | heavy | few | 50 | ||||||||||||
P44 | heavy | moderate | 25 | rare | - | 25 | |||||||||
P45 | heavy | few | 50 | ||||||||||||
P46 | rare | rare | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.; Bok, J.; Ahn, D.K.; Kim, C.-K.; Kang, J.-S. Human Trial for the Effect of Plasma-Activated Water Spray on Vaginal Cleaning in Patients with Bacterial Vaginosis. Med. Sci. 2022, 10, 33. https://doi.org/10.3390/medsci10020033
Jang Y, Bok J, Ahn DK, Kim C-K, Kang J-S. Human Trial for the Effect of Plasma-Activated Water Spray on Vaginal Cleaning in Patients with Bacterial Vaginosis. Medical Sciences. 2022; 10(2):33. https://doi.org/10.3390/medsci10020033
Chicago/Turabian StyleJang, Yongwoo, Junsoo Bok, Dong Keun Ahn, Chang-Koo Kim, and Ju-Seop Kang. 2022. "Human Trial for the Effect of Plasma-Activated Water Spray on Vaginal Cleaning in Patients with Bacterial Vaginosis" Medical Sciences 10, no. 2: 33. https://doi.org/10.3390/medsci10020033
APA StyleJang, Y., Bok, J., Ahn, D. K., Kim, C. -K., & Kang, J. -S. (2022). Human Trial for the Effect of Plasma-Activated Water Spray on Vaginal Cleaning in Patients with Bacterial Vaginosis. Medical Sciences, 10(2), 33. https://doi.org/10.3390/medsci10020033