Identification of Emerging Multidrug-Resistant Neisseria gonorrhoeae Isolates against Five Major Antimicrobial Agent Options
Abstract
:1. Introduction
2. Methods
2.1. Antibiotic Resistance
2.2. Data Analysis
3. Results
Antimicrobial Susceptibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- World Health Organization. WHO Guidelines for the Treatment of Neisseria gonorrhoeae; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Yakobi, S.H.; Pooe, O.J.; Yakobi, S.H.; Pooe, O.J. Antimicrobial Resistance of Neisseria gonorrhoeae in Sub-Saharan Populations. Bacteria 2022, 1, 96–111. [Google Scholar] [CrossRef]
- Unemo, M. Current and future antimicrobial treatment of gonorrhoea—The rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect. Dis. 2015, 15, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yakobi, S.H.; Pooe, O.J. Gonococcal Ophthalmia Neonatorum Infection Transmitted at Birth. Am. J. Biomed. Sci. Res. 2022, 16, 272–274. [Google Scholar] [CrossRef]
- Pérez-Gracia, M.T.; Suay-García, B. Gonorrhea. In Diagnostics to Pathogenomics of Sexually Transmitted Infections; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 181–209. [Google Scholar] [CrossRef]
- Jacobsson, S.; Cole, M.J.; Spiteri, G.; Day, M.; Unemo, M.; Eder, C.; Pleininger, S.; Indra, A.; Huhlescu, S.; De Baetselier, I.; et al. Associations between antimicrobial susceptibility/resistance of Neisseria gonorrhoeae isolates in European Union/European Economic Area and patients’ gender, sexual orientation and anatomical site of infection, 2009–2016. BMC Infect. Dis. 2021, 21, 273. [Google Scholar] [CrossRef]
- Chen, M.Y.; McNulty, A.; Avery, A.; Whiley, D.; Tabrizi, S.N.; Hardy, D.; Das, A.F.; Nenninger, A.; Fairley, C.K.; Hocking, J.S.; et al. Solithromycin versus ceftriaxone plus azithromycin for the treatment of uncomplicated genital gonorrhoea (SOLITAIRE-U): A randomised phase 3 non-inferiority trial. Lancet Infect. Dis. 2019, 19, 833–842. [Google Scholar] [CrossRef]
- Suay-García, B.; Pérez-Gracia, M.T. Future Prospects for Neisseria gonorrhoeae Treatment. Antibiotics 2018, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Maduna, L.; Kock, M.; Van der Veer, B.; Radebe, O.; McIntyre, J.; van Alphe, L.; Peters, R. Antimicrobial Resistance of Neisseria gonorrhoeae Isolates from High-Risk Men in Johannesburg, South Africa. Antimicrob. Agents Chemother. 2020, 64, e00906-20. [Google Scholar] [CrossRef]
- Vrioni, G.; Tsiamis, C.; Oikonomidis, G.; Theodoridou, K.; Kapsimali, V.; Tsakris, A. MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: Current achievements and future perspectives. Ann. Transl. Med. 2018, 6, 240. [Google Scholar] [CrossRef]
- Kharsany, A.B.M.; Karim, Q.A. HIV Infection and AIDS in Sub-Saharan Africa: Current Status, Challenges and Opportunities. Open AIDS J. 2016, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Abeyewickreme, I.; World Health Organization. UNAIDS/WHO Working Group on Global HIV/AIDS and STI Surveillance. In World Health Organization, Reproductive Health and Research. Strategies and Laboratory Methods for Strengthening Surveillance of Sexually Transmitted Infection, 2012; World Health Organization: Geneva, Switzerland, 2012; p. 92. [Google Scholar]
- Kularatne, R.; Maseko, V.; Gumede, L.; Kufa, T. Trends in Neisseria gonorrhoeae Antimicrobial Resistance over a Ten-Year Surveillance Period, Johannesburg, South Africa, 2008–2017. Antibiotics 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.; Maduna, L.D. Drug-Resistant Gonorrhoea Is a Growing Threat: A South African Case Study. Conversation. 2020. Available online: https://theconversation.com/drug-resistant-gonorrhoea-is-a-growing-threat-a-south-african-case-study-148012 (accessed on 14 September 2021).
- Ma, K.C.; Mortimer, T.D.; Hicks, A.L.; Wheeler, N.E.; Sánchez-Busó, L.; Golparian, D.; Taiaroa, G.; Rubin, D.H.F.; Wang, Y.; Williamson, D.A.; et al. Adaptation to the cervical environment is associated with increased antibiotic susceptibility in Neisseria gonorrhoeae. Nat. Commun. 2020, 11, 4126. [Google Scholar] [CrossRef] [PubMed]
- Kirkcaldy, R.D.; Weston, E.; Segurado, A.C.; Hughes, G. Epidemiology of Gonorrhea: A Global Perspective. Sex. Health 2019, 16, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, T.; Buder, S. The Laboratory Diagnosis of Neisseria gonorrhoeae: Current Testing and Future Demands. Pathogens 2020, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodie, M.; Gale-Rowe, M.; Alexandre, S.; Auguste, U.; Tomas, K.; Martin, I. Multidrug resistant gonorrhea: Addressing the rising rates of gonorrhea and drug-resistant gonorrhea: There is no time like the present. Canada Commun. Dis. Rep. 2019, 45, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Kirkcaldy, R.D. Neisseria gonorrhoeae Antimicrobial Susceptibility Surveillance—The Gonococcal Isolate Surveillance Project, 27 Sites, United States, 2014. MMWR. Surveill. Summ. 2019, 65, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Pham, C.D.; Sharpe, S.; Schlanger, K.; Cyr, S.; Holderman, J.; Steece, R.; Soge, O.O.; Masinde, G.; Arno, J.; Schmerer, M.; et al. Emergence of Neisseria gonorrhoeae Strains Harboring a Novel Combination of Azithromycin-Attenuating Mutations. Antimicrob. Agents Chemother. 2019, 63, e02313-18. [Google Scholar] [CrossRef] [Green Version]
- Semchenko, E.A.; Seib, K.L. Outer membrane vesicle vaccines for Neisseria gonorrhoeae. Nat. Rev. Urol. 2021, 19, 5–6. [Google Scholar] [CrossRef]
- Torrone, E.A.; Morrison, C.S.; Chen, P.L.; Kwok, C.; Francis, S.C.; Hayes, R.J.; Looker, K.J.; McCormack, S.; McGrath, N.; van de Wijgert, J.H.H.M.; et al. Prevalence of sexually transmitted infections and bacterial vaginosis among women in sub-Saharan Africa: An individual participant data meta-analysis of 18 HIV prevention studies. PLoS Med. 2018, 15, e1002511. [Google Scholar] [CrossRef] [Green Version]
- Kularatne, R.; Maseko, V.; Gumede, L.; Radebe, F.; Kufa-Chakezha, T. Neisseria gonorrhoeae antimicrobial resistance surveillance in Gauteng Province, South Africa. Commun. Dis. Surveill. Bull. 2016, 14, 56–64. [Google Scholar]
- Fourie, J.L.; Ciaassen, F.M.; Myburgh, J.J. Causative pathogens and antibiotic resistance in community-acquired urinary tract infections in central South Africa. SAMJ S. Afr. Med. J. 2021, 111, 124–128. [Google Scholar] [CrossRef]
- Morris, B.J.; Hankins, C.A.; Banerjee, J.; Lumbers, E.R.; Mindel, A.; Klausner, J.D.; Krieger, J.N. Does male circumcision reduce women’s risk of sexually transmitted infections, cervical cancer, and associated conditions? Front. Public Health 2019, 7, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, E.Y.; Adamson, P.C.; Klausner, J.D. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021, 81, 1153. [Google Scholar] [CrossRef] [PubMed]
- Hummell, N.A.; Kirienko, N.V. Repurposing bioactive compounds for treating multidrug-resistant pathogens. J. Med. Microbiol. 2020, 69, 881. [Google Scholar] [CrossRef] [PubMed]
- Hamasuna, R.; Ohnishi, M.; Matsumoto, M.; Okumura, R.; Unemo, M.; Matsumoto, T. In Vitro Activity of Sitafloxacin and Additional Newer Generation Fluoroquinolones Against Ciprofloxacin-Resistant Neisseria gonorrhoeae Isolates. Microb. Drug Resist. 2018, 24, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Kivata, M.W.; Mbuchi, M.; Eyase, F.; Bulimo, W.D.; Kyanya, C.K.; Oundo, V.; Mbinda, W.M.; Sang, W.; Andagalu, B.; Soge, O.O.; et al. Plasmid mediated penicillin and tetracycline resistance among Neisseria gonorrhoeae isolates from Kenya. BMC Infect. Dis. 2020, 20, 703. [Google Scholar] [CrossRef] [PubMed]
- Cristillo, A.D.; Bristow, C.C.; Torrone, E.; Dillon, J.A.; Kirkcaldy, R.D.; Dong, H.; Grad, Y.H.; Nicholas, R.A.; Rice, P.A.; Lawrence, K.; et al. Antimicrobial Resistance in Neisseria gonorrhoeae: Proceedings of the STAR Sexually Transmitted Infection—Clinical Trial Group Programmatic Meeting. Sex. Transm. Dis. 2019, 46, e18–e25. [Google Scholar] [CrossRef]
- Rambaran, S.; Naidoo, K.; Dookie, N.; Moodley, P.; Sturm, A.W. Resistance Profile of Neisseria gonorrhoeae in KwaZulu-Natal, South Africa Questioning the Effect of the Currently Advocated Dual Therapy. Sex. Transm. Dis. 2019, 46, 266–270. [Google Scholar] [CrossRef]
- Yin, Y.-P.; Han, Y.; Dai, X.-Q.; Zheng, H.-P.; Chen, S.-C.; Zhu, B.-Y.; Yong, G.; Zhong, N.; Hu, L.-H.; Cao, W.-L.; et al. Susceptibility of Neisseria gonorrhoeae to azithromycin and ceftriaxone in China: A retrospective study of national surveillance data from 2013 to 2016. PLoS Med. 2018, 15, e1002499. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, C. Dual Azithromycin/Ceftriaxone Therapy for Gonorrhea in PrEP Cohorts Results in Levels of Macrolide Consumption That Exceed Resistance Thresholds by up to 7-Fold. J. Infect. Dis. Dis. 2021, 224, 1623–1624. [Google Scholar] [CrossRef]
- Chen, S.C.; Yuan, L.F.; Zhu, X.Y.; Van der Veen, S.; Yin, Y.P. Sustained transmission of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone in China. J. Antimicrob. Chemother. 2020, 75, 2499–2502. [Google Scholar] [CrossRef]
- Nakayama, S.I.; Shimuta, K.; Furubayashi, K.I.; Kawahata, T.; Unemo, M.; Ohnishi, M. New Ceftriaxone- and Multidrug-Resistant Neisseria gonorrhoeae Strain with a Novel Mosaic penA Gene Isolated in Japan. Antimicrob. Agents Chemother. 2016, 60, 4339–4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahra, M.M.; Martin, I.; Demczuk, W.; Jennison, A.V.; Lee, K.I.; Nakayama, S.I.; Lefebvre, B.; Longtin, J.; Ward, A.; Mulvey, M.R.; et al. Cooperative Recognition of Internationally Disseminated Ceftriaxone-Resistant Neisseria gonorrhoeae Strain. Emerg. Infect. Dis. 2018, 24, 735–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefebvre, B.; Martin, I.; Demczuk, W.; Deshaies, L.; Michaud, S.; Labbé, A.C.; Beaudoin, M.C.; Longtin, J. Ceftriaxone-Resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 2018, 24, 381–383. [Google Scholar] [CrossRef] [Green Version]
- Terkelsen, D.; Tolstrup, J.; Johnsen, C.H.; Lund, O.; Larsen, H.K.; Worning, P.; Unemo, M.; Westh, H. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Eurosurveillance 2017, 22, 17–00659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golparian, D.; Rose, L.; Lynam, A.; Mohamed, A.; Bercot, B.; Ohnishi, M.; Crowley, B.; Unemo, M. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Eurosurveillance 2018, 23, 1800617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, D.W.; Town, K.; Street, T.; Barker, L.; Sanderson, N.; Cole, M.J.; Mohammed, H.; Pitt, R.; Gobin, M.; Irish, C.; et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Eurosurveillance 2019, 24, 1900147. [Google Scholar] [CrossRef] [Green Version]
- Ko, K.K.K.; Chio, M.T.W.; Goh, S.S.; Tan, A.L.; Koh, T.H.; Rahman, N.B.A. First Case of Ceftriaxone-Resistant Multidrug-Resistant Neisseria gonorrhoeae in Singapore. Antimicrob. Agents Chemother. 2019, 63, e02624-18. [Google Scholar] [CrossRef] [Green Version]
- Shigemura, K.; Osawa, K.; Miura, M.; Tanaka, K.; Arakawa, S.; Shirakawa, T.; Fujisawa, M. Azithromycin Resistance and Its Mechanism in Neisseria gonorrhoeae Strains in Hyogo, Japan. Antimicrob. Agents Chemother. 2015, 59, 2695–2699. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, A.; Smith, A.; Fasinu, P.S.; Thompson, D.K. Sexually Transmitted Neisseria gonorrhoeae Infections—Update on Drug Treatment and Vaccine Development. Medicines 2021, 8, 11. [Google Scholar] [CrossRef]
- Bradford, P.A.; Miller, A.A.; O’Donnell, J.; Mueller, J.P. Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect. Dis. 2020, 6, 1332–1345. [Google Scholar] [CrossRef]
Drug | Number of Isolates: | MIC (µg/mL) | |||
---|---|---|---|---|---|
Susceptible | Resistant | Median | Mean | Range | |
a Ciprofloxacin | 4 | 60 | 2 | 8 | 0.016–32 |
b Azithromycin | 63 | 1 | 0.094 | 0.2 | 0.016–1.5 |
a Penicillin | 35 | 29 | 0.094 | 3.7 | 0.016–32 |
a Tetracycline | 36 | 28 | 0.094 | 3.1 | 0.016–32 |
a Ceftriaxone | 64 | 0 | 0.006 | 0.012 | 0.002–0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakobi, S.H.; Pooe, O.J. Identification of Emerging Multidrug-Resistant Neisseria gonorrhoeae Isolates against Five Major Antimicrobial Agent Options. Med. Sci. 2023, 11, 28. https://doi.org/10.3390/medsci11020028
Yakobi SH, Pooe OJ. Identification of Emerging Multidrug-Resistant Neisseria gonorrhoeae Isolates against Five Major Antimicrobial Agent Options. Medical Sciences. 2023; 11(2):28. https://doi.org/10.3390/medsci11020028
Chicago/Turabian StyleYakobi, Sinethemba Hopewell, and Ofentse Jacob Pooe. 2023. "Identification of Emerging Multidrug-Resistant Neisseria gonorrhoeae Isolates against Five Major Antimicrobial Agent Options" Medical Sciences 11, no. 2: 28. https://doi.org/10.3390/medsci11020028
APA StyleYakobi, S. H., & Pooe, O. J. (2023). Identification of Emerging Multidrug-Resistant Neisseria gonorrhoeae Isolates against Five Major Antimicrobial Agent Options. Medical Sciences, 11(2), 28. https://doi.org/10.3390/medsci11020028