
Citation: Pârvănescu, C.D.;

Bărbulescu, A.L.; Bit,ă, C.E.; Dinescu,
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Abstract: The accurate diagnosis of gout frequently constitutes a challenge in clinical practice, as it
bears a close resemblance to other rheumatologic conditions. An undelayed diagnosis and an early
therapeutic intervention using uric acid lowering therapy (ULT) is of the utmost importance for
preventing bone destruction, the main point of managing gout patients. Advanced and less invasive
imaging techniques are employed to diagnose the pathology and ultrasonography (US) stands out
as a non-invasive, widely accessible and easily reproducible method with high patient acceptability,
enabling the evaluation of the full clinical spectrum in gout. The 2023 EULAR recommendations for
imaging in diagnosis and management of crystal-induced arthropathies in clinical practice state that
US is a fundamental imagistic modality. The guidelines underline its effectiveness in detecting crystal
deposition, particularly for identifying tophi and the double contour sign (DCS). Its utility also arises
in the early stages, consequent to synovitis detection. US measures of monosodium urate (MSU)
deposits are valuable indicators, sensitive to change consequent to even short-term administration of
ULT treatment, and can be feasibly used both in current daily practice and clinical trials. This paper
aimed to provide an overview of the main US features observed in gout patients with reference to
standardized imaging guidelines, as well as the clinical applicability both for diagnosis accuracy
and treatment follow-up. Our research focused on summarizing the current knowledge on the topic,
highlighting key data that emphasize gout as one of the few rheumatological conditions where
US is recognized as a fundamental diagnostic and monitoring tool, as reflected in the most recent
classification criteria.

Keywords: gout; ultrasound; double contour; tophi; snowstorm sign

1. Introduction

Gout is the most common crystal-induced arthritis, with documented increasing
incidence and prevalence during the last decades. Among the most significant risk factors
are obesity, dietary habits, hypertension, altered renal function, or diuretic treatment. It is a
disease characterized by abnormal purine metabolism and urate excretion, with consequent
deposition of MSU intra or peri-articular and future local destructive evolution along with
multisystem involvement. Crystal deposition leads to episodic gout flares followed by
chronic tissue inflammation and local irreversible changes [1].

The certain diagnosis of gout frequently constitutes a challenge in clinical practice,
as it shows a close resemblance to other rheumatologic conditions, such as osteoarthritis,
or inflammatory autoimmune pathologies, such as rheumatoid arthritis. Moreover, the
appearance of tophus at clinical examination can present similar characteristics to tumors
or calcium pyrophosphate dihydrate deposition (CPPD) [2]. An undelayed diagnosis and
early therapeutic intervention through uric acid lowering therapy (ULT) is of the utmost
importance for preventing bone destruction, the main point of managing gout patients [3].
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Although detecting MSU crystals in synovial fluid remains the diagnostic gold stan-
dard, advanced and less invasive imaging techniques are employed for diagnostic purposes
and constitute basic tools for clinical practice [4]. Conventional radiology has been tradi-
tionally used for decades, as a first imaging modality, economical and accessible, with the
major disadvantage of a limited overview in acute stages. It can detect certain changes, such
as bone erosions, narrowing articular spaces, or the presence of tophus [5]. Dual-energy
computed tomography (DECT) was first reported in 2007 and employs X-ray beams at
different energies, with four primary methods represented by sequential scanning, dual
source, rapid kilovoltage switching, and dual layer. The differences in photoelectric absorp-
tion determine the distinction between urate and bone on the achieved images and allow
subclinical tophus deposits to be identified. Its appliance in clinical practice exerts various
specificity and sensitivity rates in the published researches, validated by 2018 EULAR
recommendations [4,5]. Multi-energy spectral photon-counting computed tomography
(SPCCT) has been recently approached as a novel imaging method in crystal-induced
arthropathies, as it can distinguish between MSU, calcium pyrophosphate, and hydroxyap-
atite crystal deposits ex vivo [6]. Magnetic resonance imaging (MRI) finds its use in clinical
practice in cases of unusual settings of gout. The images can picture the inflammatory
aspect of gouty arthropathy, including synovitis, tenosynovitis, and edematous soft tissue
inflammation [7]. Musculoskeletal ultrasonography (US) stands out to be a non-invasive,
widely accessible, and easily reproducible method with a high patient acceptability, that can
be consequently approached in daily clinical practice. Using a high-frequency transducer
by an experienced examiner, the method makes it possible to detect crystal deposition and
distinguish between other possible pathologies [8]. The recent 2023 EULAR recommenda-
tions on imaging in diagnosis and management of crystal-induced arthropathies in clinical
practice state that imaging can offer details regarding crystal deposition, inflammation, and
structural damage, features that are not always associated with clinical manifestations. For
both diagnostic and monitoring purposes, US is a fundamental recommended imagistic
modality, with evidence demonstrated for crystal deposition, especially tophi and DCS. Its
utility also arises in the early stages, consequent to synovitis detection. Revealing specific
signs of MSU crystal deposition by US offers a high diagnostic capacity and does not
require synovial fluid analysis [9].

This paper aims to provide an overview of the main US features observed in gout
patients with reference to standardized imaging guidelines, as well as the clinical appli-
cability both for diagnosis accuracy and treatment follow-up. Our research focused on
summarizing the current knowledge on the topic, highlighting key data that emphasize
gout as one of the few rheumatological conditions where US is recognized as a fundamental
diagnostic and monitoring tool, as reflected in the most recent classification criteria.

2. US Findings in Gout

US achieves images on structure description by delivering soundwaves and visual-
izing bone erosions and soft tissue details throughout acoustic reflections. It constitutes
a valuable tool for diagnosing gout, as it can detect early MSU crystal deposits in joint
structures like hyaline cartilage surfaces and the synovium. It is also useful for evaluating
synovial thickness, synovial effusion, and bone erosion. Additionally, power Doppler US
can assess synovial inflammation [10]. In gout, MSU crystal deposits reflect ultrasound
beams more strongly than surrounding tissues, such as unmineralized hyaline cartilage
or synovial tissue. As a result, crystalline material can be detected by US as a bright,
hyperechoic signal [11].

US findings in gout patients commonly include synovitis, tenosynovitis, and sub-
cutaneous edema during joint attacks, along with crystal deposits in joints and tendons.
To standardize descriptions of these lesions, the Outcome Measures in Rheumatology
(OMERACT) Ultrasound Working Group developed consensus definitions. The valida-
tion process established US definitions for the four main structural lesions in gout: tophi
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(larger collection of crystals), aggregates (urate burden), double contour sign, and erosions
(structural damage) [11] (Table 1).

Table 1. OMERACT definitions for US findings in gout [11,12].

Specific Findings OMERACT Definitions

Double contour sign
“Abnormal hyperechoic band over the superficial margin of the articular hyaline cartilage,
independent of the angle of insonation and which may be either irregular or regular,
continuous or intermittent and can be distinguished from the cartilage interface sign”.

Aggregates
“Heterogeneous hyperechoic foci that maintain their high degree of reflectivity even when
the gain setting is minimized or the insonation angle is changed and which occasionally
may generate posterior acoustic shadow”.

Tophus
“A circumscribed, inhomogeneous, hyperechoic and/or hypoechoic aggregation (which
may or may not generate posterior acoustic shadow) which may be surrounded by a small
anechoic rim”.

Bone surface changes (erosions) “An intra- and/or extra-articular discontinuity of the bone surface (visible in 2
perpendicular planes)

Non-specific findings

Synovial fluid
“Abnormal hyperechoic or anechoic (relative to subdermal fat, but sometimes may be
isoechoic or hyperechoic) intra-articular material that is displaceable and compressible; does
not exhibit Doppler signal”.

Synovial hypertrophy
“Abnormal hypoechoic (relative to subdermal fat, but sometimes may be isoechoic or
hyperechoic) intra-articular tissue that is not displaceable and poorly compressible; may
exhibit Doppler signal”.

Power Doppler signal

Non-specific signs. Gout is an inflammatory disease that manifests through episodes
of acute arthritis. During the progression of the disease, urate arthropathy may occur,
accompanied by joint damage. Similar to rheumatoid arthritis and other erosive rheuma-
tism, joint effusion, synovial hypertrophy, and non-specific bone erosions can be found.
Joint effusion can be found in gout (Table 1), and the presence of hyperechoic spots (snow-
storm sign) in the synovial fluid suggests a crystalline pathology but is not specific to gout
(Figure 1) [13]. Synovitis, including Doppler activity, is not considered an elementary lesion
for gout because it is not specific enough to define the condition. Synovial hypertrophy
and hypervascularization are not specific to gout, but their association with hyperechoic
spots (bright focal areas) in the synovium strongly suggests gout. When assessing synovitis
and tenosynovitis in gout patients, the definitions validated by OMERACT ultrasound
group for rheumatoid arthritis are used. Synovial hypertrophy is another non-specific sign
that can be found in gout (Table 1). Tenosynovitis is defined as hypoechoic or anechoic
thickened tissue within the tendon sheath, with or without fluid, seen in two perpendicular
planes and potentially exhibiting a Doppler signal [11–13].
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Specific signs. Several US characteristics have been described in gout, and some
appear to be highly specific [14].

Tophi and aggregates, which can be observed in joints and soft tissues such as tendons
and bursae, represent larger collections of MSU crystals and may cause bone erosions by
invading bone. US detects a tophus as a heterogeneous mass with various US appear-
ances (Figures 2A, 3A,B and 4), with the possibility of hyper-echoic appearance due to the
presence of hyperechoic spots (Table 1). The association with posterior attenuation of the ul-
trasound or total acoustic shadowing depends on the density of the tophus. Thus, a cloudy
mass in a joint, with hyperechoic spots and a small anechoic rim, strongly suggests gout.
Moreover, US is used to visualize tophi in symptomatic joints, including the first metatar-
sophalangeal (MTP) joints (dorsal and lateral planes), knee (quadriceps, patellar, and lateral
ligaments), and ankle tendons (Achilles tendon, anterior tibial tendon). In small joints,
intra-articular tophi are often associated with bone erosions [15]. Sometimes, tophi can be
poorly defined and extend across multiple fascial planes. Tophi that appear hypoechoic on
imaging, without posterior shadowing, are described as “soft tophi”, while long-standing
tophi that obstruct the visualization of underlying structures are known as “hard tophi” [16].
In 2018, an international expert consensus was reached using OMERACT methodology for
a re-definition of aggregates and for the development of a semi-quantitative US scoring
system for gout lesions associated with MSU depositions (Table 2) [17]. Bone erosions in
gout are defined similarly to those in rheumatoid arthritis. However, in gout, bone erosions
are often found extra-articularly, and their distribution, rather than the appearance of a
single erosion, is a characteristic of the disease [13] (Figure 5).
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The double contour sign (DCS) indicates deposits of MSU crystals on cartilage sur-
faces, distinguishable from calcium pyrophosphate crystal deposits typically found within
cartilage, highly specific for gout (Figures 2B and 6A,B). Due to MSU crystal deposition, the
reflectivity of the chondrosynovial interface is no longer angle-dependent, allowing for easy
panoramic visualization of the entire chondrosynovial interface [18,19]. Like the tophus,
the DCS should be sought in symptomatic joints, including the first metatarsophalangeal
joints (dorsal and palmar planes) and the trochlear cartilage of the knees (suprapatellar
plane in maximum flexion). The DCS may be less visible in thin cartilage (tarsal joints) or
damaged cartilage, such as in osteoarthritis. Additionally, certain ultrasound features can
be mistaken for a DCS, leading to false positives due to several factors: first, the normal
hyperechoic appearance of the synovium, where the hyperechoic band appears regular,
like a line drawn with a pen. A “true” DCS adheres to the cartilage during dynamic
movements. Second, the presence of joint effusion enhances the echo of the posterior wall
(increased ultrasound propagation) and may accentuate the normal hyperechoic appear-
ance of the synovium. Finally, thin cartilage (small joints and/or associated osteoarthritis)
with chondrocalcinosis and calcium deposits often localized in the intermediate layer of the



Med. Sci. 2024, 12, 37 6 of 14

cartilage [14,16]. Regarding the diagnostic performance of the DCS sign, a recent study by
Cipolletta et al. emphasized that dynamic examination significantly improves the effective-
ness of US in differentiating between gout and calcium pyrophosphate dihydrate CPPD
crystal arthritis. Their results indicated that, with dynamic examination, the DCS sign
moved with the cartilage in all cases of gout, whereas it moved in the opposite direction
in CPPD patients. [20]. In 2022, Filippou et al. conducted an anatomical cadaver study
to compare US DCS findings with pathological features, aiming to evaluate how crystal
location affects ultrasound characteristics. The study was performed on upper limb joints
until calcium pyrophosphate (CCP) deposits were detected according to OMERACT criteria.
The affected joints were then examined pathologically, with crystal deposition described.
The findings concluded that monosodium urate (MSU) crystals in gout are located directly
on the chondral surface and cause the DCS sign to move with the cartilage. In contrast,
CCP crystals are found in capsules and/or ligaments, above the hyaline cartilage, and do
not exhibit dynamic sliding during US examination [21].
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In gout patients, the most common location for all four gout lesions is represented
the MTP1 joints, with a DCS mean count of 0.8 and more than one tophus, aggregate, and
erosion on average. MTP2–4 and talocrural joints typically showed DCS and aggregates.
MTP5 joints frequently had erosions. The knees were the second most common site for DCS.
In MCP joints, aggregates were the most common finding, while DCS was less common,
and tophi or erosions were rare. Wrists commonly had aggregates. Tendon involvement
was relatively common, with tophi most often found in the peroneus tendons, followed
by the proximal patella, triceps, distal patella, quadriceps, and Achilles tendon insertions.
Extensor tendons of the wrist and tibialis posterior tendon involvement were very rare [17].

The presence of tophi, DCS, and the snowstorm sign are directly linked to serum
urate acid (SUA) levels. Research has shown that the DCS disappears when SUA levels
are kept below 6 mg/dl for over six months, although tophi take longer to dissolve [22].
These US signs appear in a specific sequence, with tophi typically developing late, after a
median disease duration of 12.5 years. This may explain the slightly lower sensitivity and
similar specificity in joint-based evaluations compared to person-based evaluations [23].
For established gout patients, the snowstorm sign appears earlier, with a median disease
duration of 2 years, while those without this sign had a median duration of 5.5 years,
indicating its lower diagnostic value in long-term gout. The DCS appears between the
appearance of the snowstorm sign and tophi. Thus, different patient populations with
varying disease durations contribute to the heterogeneous results among studies [24].

What sites should be scanned in gout?
Although there are well-known and validated sites to be examined in crystal-induced

arthropathies (MTP1 in gout, knees and wrist in CCPD, or shoulder in basic calcium
phosphate deposition-BCPD), several locations have been shown to exhibit US signs of
MSU deposition [9]. It is also important to note the importance of different disease stages in
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the appearance of certain US findings. A recent paper published by Cipolletta et al. aimed
to assess the most effective US methodology for diagnosing gout or CPPD in patients with
acute arthritis. The study, which analyzed 32 gout and 30 CCPD patients, compared to 99
controls, found that examining knees and first MTP joint in gout, and both knees and wrist
in CPPD, along with the symptomatic joint, provided high and feasible sensitivity and
specificity. This approach proved more effective than focusing only on the symptomatic
joint, identifying key joints to scan in cases of recent onset monoarthritis [25].

Extra-articular gout commonly involves tendons, with monosodium urate (MSU)
crystal deposits frequently found in the Achilles, patellar, peroneal, and flexor or extensor
tendons of the hand. Detecting tendon involvement is crucial due to the risk of spontaneous
rupture, which can significantly impact a patient’s quality of life. A multicenter descriptive
study involving 80 gout patients aimed to evaluate the prevalence of Achilles, quadriceps,
and patellar tendon involvement compared to individuals with osteoarthritis or asymp-
tomatic marathon runners. The results showed a significant presence of intra-tendinous
aggregates and tophi, with the highest percentage located in the Achilles tendon [26]. An-
other relevant research aimed to analyze the US features of Achilles tendon in patients with
tophaceous gout compared to healthy individuals. The study found a high prevalence of
tophi, intra-tendinous PD signal, and hyperechoic spots, with an extremely low incidence
of structural damage. Additionally, only minimal erosions were described at the calcaneal
entheseal site [27].

MSU crystal deposition can also involve the axial skeleton, leading to spinal com-
pression and subsequent clinical symptoms. A cross-sectional study of gout patients,
compared to healthy subjects, aimed to assess the presence and volume of MSU deposits
in the lumbosacral area using DECT imaging, with both default and specifically adjusted
to MSU settings. The results demonstrated a substantial amount of MSU deposits in the
lumbosacral region, despite the use of precise settings designed to eliminate interference
from other signals. These findings emphasize the need to consider MSU deposition as a
potential diagnosis in patients with gout who present with axial symptoms, such as pain
or neuropathic features, indicating that gout can affect not only peripheral joints but also
axial sites [28].

US scoring systems. In addition to developing and validating consensus-based defini-
tions of gout characteristic US lesions, to fulfill the requirements of an OMERACT Imaging
Measurement Instrument, the method requires a stepwise selection and development of a
well-defined, standardized scoring system for grading lesion severity at site level. In 2018,
an international expert consensus was reached using OMERACT methodology to develop
a semi-quantitative US scoring system for gout lesions associated with MSU depositions.
The scoring system for DCS, tophus, and aggregates was divided into four categories and
established as: 0—absent; 1—possible; 2—definite but minimal; 3—definite and severe [17].

US in patients with asymptomatic hyperuricemia. A significant number of studies re-
ported the presence of several US changes subsequent to crystal deposition in patients with
asymptomatic hyperuricemia (AH). Although no systematic US scanning is recommended
in AH, periodic evaluation enables the detection of patients at risk not only for gout flares
but also for cardiovascular events consequent to crystal-induced chronic inflammation [29].
In 2011, Pineda et al. performed a cross-sectional study involving 40 patients with AH and
found the DCS at the MTP joint in 25% of the cases. Their results also included additional
description of tophi or entesophytes at sites such as Achilles or patellar tendon sites was
also mentioned by their results [30]. In 2021, Cao et al. reported the presence of MSU
crystals in 25.58% of the 43 patients with AH included in their analysis [31]. However, a
2024 study published by Shao Q et al. found a lower percentage, detecting MSU crystal
deposition in 17 of 81 AH patients, mostly in the MTP l joint, ankle, and peroneus-longus
and brevis tendons [32]. Another relevant study, published in 2024, assessed the impact
of various US protocols on detecting MSU deposition in a group of 77 AH patients. The
results found a median of one location with tophi and one with aggregates; the percentage
of crystal deposition varied between 23.4% and 87%, with PD signal present in 19.5% of
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the cases, and erosions observed in 28.4% of the patients [29]. Additionally, a recent study
evaluated the association between hyperuricemia and US-detected hand synovitis in a large
cohort of over 3200 randomly selected subjects. The study reported a higher prevalence of
hand synovitis, demonstrated in grayscale, for patients with AH when compared to those
with normal UA levels, and identified a direct association between hyperuricemia and this
US finding [33].

3. US Diagnostic Accuracy

An early, accurate diagnosis and individualized therapeutic approach prevents the
inherent destructive articular process consequent to MSU deposition, with a major impact
on associated morbidity and mortality rates, as well as on patients’ quality of life. Advanced
imaging techniques enable clinicians to have a proper overview of the pathological process,
providing a new tool to explore the disease and appreciate its future evolution [34,35].
US has attracted more and more attention during the past decades, consequent to its
outstanding development, extensive availability, and easy reproducibility, making it an
indispensable tool for our current practice. An important number of studies have focused
on describing the diagnostic accuracy of US in gout, with important results that require
attention and applicability for gout patients [25–35].

The meta-analysis conducted by Lee et al., published in 2018, included 11 studies,
938 patients with gout and 788 controls, and revealed important results regarding the
overall sensitivity and specificity of US. Their analysis demonstrated that US was more
specific (89%) than sensitive (65.1%). Taken together, the diagnostic performance was good,
with an AUC of 0.858. Moreover, when analysis was divided in subgroups, depending
on diagnostic criteria, number of patients and study design, the diagnostic performance
was maintained. An important conclusion of the research was that a high specificity was
achieved by revealing certain US characteristics such as tophus, snowstorm, and erosions,
although they displayed a limited sensitivity [36]. In contrast, the DCS proved to be a
highly sensitive and specific finding, the only one included in the 2015 gout classification
criteria developed by the ACR and EULAR [37]. An important mention regarding this US
characteristics of gout is that is limited regarding small articular sites (PIP, DIP), mainly due
to poor acoustic window. For these locations, an accurate diagnosis is established in the
presence of tophus deposits. Overall, the appearance of typical US characteristics provides
a good sensitivity and a high specificity for diagnostic purposes [36].

The research of Zhang et al., published in 2018, included 13 studies that confirmed
that highly specific features of gout, DCS, tophi and snowstorm sign, closely related to
the deposit of MSU crystals, were consistent with their results, with a high specificity,
over 0.90 for all, regarding establishing a certain diagnosis of gout. Additionally, lower
sensitivities, of 0.66 for DCS, 0.56 for tophi and 0.31 for snowstorm sign, constitute an
argument for the mention that the lack of one of the characteristics does not exclude the
diagnostic probability of gout. Simultaneously interpretation of these US features improved
the diagnostic accuracy compared to the evaluation based on each joint, for detecting
the presence of DCS and tophi, as specific US signs in gout [38]. Previous studies have
confirmed the first MTP joint and knee constitute the most frequently involved articular
sites in gout [39–44]. The aforementioned meta-analysis reported that the sensitivity in
articular site-based evaluation is slightly higher but not statistically different compared
to an overall evaluation of each patient. Moreover, each site’s evaluation specificity is
significantly lower compared to the overall one [38]. One possible explanation for this result
might be represented by the fact that the patients with chronic or subacute stages of gout
were likely to have false negative findings on preestablished articular sites when performing
the US examination. Additionally, the included studies had a significant number of patients
with CPPD that negatively influenced the observed specificity. The false negative cases
may appear for several reasons. The level of SUA directly impacts the presence of tophi,
DCS, and snowstorm sign [45,46]. In this direction, Das et al. reported that a therapeutic
success, with the achievement of SUA below 6 mg/dl for at least 6 months, determines
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the disappearance of DCS, but not for tophi [18]. Additionally, several scientific reports
proved that the appearance of specific signs has a particular, sequential order. The longer
duration is found for tophi, which can be observed in patients with a mean duration of the
disease of 12.5 years [23,45], fact that constitutes a cause for the lower sensitivity, but similar
specificity associated with each articular site US evaluation when compared to overall sites
US evaluation. A different report was published by Elsaman et al., that concluded that in
cases of established, chronic gout, the appearance of snowstorm sign was associated with
a mean disease duration of 2 years and 5 years for those in which US evaluation did not
reveal this feature, a conclusion that underlines the fact that this early characteristic has a
lower diagnostic value in patients with a long duration of the disease [24]. Additionally,
an important observation was that in cases with DCS on US, the mean duration was in
between the one calculated for the presence of snowstorm and tophi [24]. The different
results reported by the studies included in the meta-analyses are a consequence of the
heterogeneity of the populations and different disease durations.

The meta-analysis published in 2015 by Ogdie et al., clarified the pooled diagnostic
accuracy. Their research included eleven studies, all set in secondary care, with a mean
gout disease duration of at least 7 years. Their research lacks comprising all the US features,
part of them providing data about DCS, others regarding tophi, and at utmost importance,
the final analysis did not differentiate between overall articular evaluation and articular-
site based ones. Additionally, the overall US examination includes multiple joints, while
articular-site based ones only include symptomatic ones [23].

A recent meta-analysis, published in 2022 by Shang et al., aimed to compare the
diagnostic accuracy of DECT over US for gout, by analyzing data from both imagistic
methods separately. A total of 14 of the included studies reported data regarding US
examination, 10 only reported on DECT, and four were based on a comparison between the
DECT and US examination [47]. According to DCS sign, eleven studies provided data and
revealed a sensitivity and specificity of 0.7 and 0.95, respectively [5,23,24,43,48–54]. For the
tophus identification, eight studies [23,24,43,48–50,52,53] provided data on the diagnostic
accuracy of US and indicated that the pooled sensitivity and specificity were 0.57 and 0.99.
Regarding overall findings, 11 studies [9,23,24,49,52,55–60] provided data and showed a
specificity and sensitivity of 0.84. A subgroup analysis of patients with a disease duration
of a maximum 2 years, considering the overall US characteristics, showed a sensitivity and
specificity of 0.93 and 0.8.

In 2020 Zhang et al. compared the diagnostic value of US and DECT in detecting MSU
deposits in patients with different stages of acute gouty arthritis. Their results evidenced
that US and DECT had similar sensitivities in middle and late-stage groups but in early
stages, US showed a significantly higher sensitivity (66.7%) compared to DECT (26.6%).
The pooled outcomes indicated that the disease course strongly affected the diagnostic
accuracy of both modalities [61]. US allows evaluation of the full clinical spectrum in gouty
arthritis from its earliest to its most advanced characteristics [5]. Thus, the sensitivity and
AUC of DECT were decreased in patients with short disease course because small MSU
deposits might remained undetected in the early stages of gout [62]. In a similar manner,
Bongartz et al. [62] and Jia et al. [63] showed that the sensitivity of DECT was lower in
recent onset or gout flare, as Lamers-Karnebeek et al. reported a sensitivity of 96% for US
in acute gout [52].

The call for more research is mandatory in order to completely compare the diagnostic
performance of US versus DECT for patients at first gout flare or during early phases when
tophaceous deposits are absent. As the main scope of diagnosis is to identify and properly
manage the pathology before the appearance of erosions, the necessity of establishing
the most accurate method is highly necessary. However, there must be taken under
consideration the accessibility, reproducibility, and level of comfort for the patients, along
with the level of radiation exerted by DECT examination.
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4. US Evaluation for Urate-Lowering Therapy (ULT) Follow-Up

Conventional monitoring of therapy efficacy in gout has relied on clinical assessment
along with periodical evaluation of SUA levels. As US, as a valuable imaging method,
improved over time and showed outstanding utilities in clinical practice, along with an
extended availability and reproducibility, it is currently used for periodic assessment.
OMERACT described important endpoints in gout therapeutic management, represented
by the MSU load and the decrease in urate deposits, both visualized by US evaluation [64].

A study performed by Ebstein et al., on a group of 79 patients, with US evaluations at
baseline, 3 months and 6 months, during ULT, reported that DCS and tophus significantly
decreased during treatment. In particular, DCS represented an early sign of therapeutic
success, with a significant change after the first 3 months of treatment. Tophi were observed
to exert reductions after 6 months of therapy administration. Their analysis also showed a
significant decrease in US features of gout among patients with the lowest SUA level [65].
Peiteado et al. reported similar results in 2019, with a significant parallel improvement
in the SUA levels and US features found at the follow-up assessments [66]. Das et al.
performed an observational study on 38 patients, intending to monitor US signs of MSU
crystals deposition after initiation of ULT and concluded that DCS and hyperechoic spots
disappeared after 6 months and 5.7 months, respectively and SUA normalization was the
only significant predictor of DCS disappearance [22].

In 2023, Yuan et al. published a report regarding the effectiveness of uric acid-lowering
therapy in 215 patients with gout over one year using US as a monitoring method. Their
analysis was divided into two directions: treat-to-target (TTG) and treat-to-non-target
(TNTG) subgroups. Data showed that after one year of ULT the area, long diameter, and
short diameter of tophus and SQUS-DCS in the TTG subgroup reduced significantly (DCS
faster than tophus). Although DCS decreased in TNTG, DCS decreased faster in TTG than
in TNTG [67].

El-Mallah et al., in 2022, aimed to evaluate the changes in ultrasound of 43 gout
patients’ knee and 1st metatarsophalangeal joint (MTP1) after initiation of urate-lowering
therapy (ULT) drugs in the six-month period and concluded that patients that reached the
target SUA level showed higher disappearance of DC sign and a decrease in tophus size.
The percentage of tophus size in 6 months was 26.4% and 3% for DC sign disappearance,
which was more at MTP1 [68].

In 2020, Hammer et al. published one of the most extended US studies regarding
imaging changes consequent to TTG approach. A total of 209 patients were evaluated at
baseline, 3, 6, and 12 months, and a semiquantitative scoring system of basic features (DCS,
tophi and aggregates) was used to reckon the evolution during follow-up. Their results
showed that DCS was the first variable that improved and exerted the highest sensitivity. It
is important to note that at their 12 months evaluation for almost 50% of the patients, DCS
was not present on US imaging. This observation can be explained by the fact that MSU
crystals are deposited near cartilage and in close contact with synovial fluid, a location
where the UA levels decrease fast, consequent to ULT. It is important to note that MTPI
was the most common site for MSU deposit, and the erosions pointed in this location were
significantly related to the other US findings [69].

Another relevant research, published by Christiansen et al., aimed to assess the sen-
sitivity of structural gout lesions changes as defined by OMERACT US group in a cohort
of 50 patients undergoing ULT. Their results disclosed a relevant decrease in DCS and
tophus scores during treatment, whereas the aggregate sum score diminished significantly
only from 3 to 6 months; the erosion sum score did not exert any notable change during
treatment. Another important observation was that all four features were most commonly
revealed in MTPI joints, while DCS alone was most frequently observed in the knee. These
two sites represented the locations the worthiest to note regareding score changes [70].

Contemporary published data underline that US constitutes an effective tool for
monitoring dynamic changes in tophus and DCS. US measures of MSU deposits are
valuable indicators, sensitive to change consequent to even short-term administration of
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ULT treatment, and can be feasibly used both in current daily practice and clinical trials.
Although a complete examination of multiple articular sites may be time-consuming, its
current use exerts an additional motivational appliance both for patients and physicians
and helps to augment treatment adherence, an important point of each individualized
therapeutic approach.

5. Conclusions

US has become one of the main imaging tools used in the management of gout patients
during the past decades. This is due to its availability and developments in the standardized
approach which increases its reproducibility. US constitutes an essential imaging test for
current practice, which enables a high diagnostic accuracy and can be easily integrated in
the therapeutic follow-up.
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