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Abstract: Osteoporosis, a skeletal disorder, is expected to affect 60% of women aged over 50 years.
Dual-energy X-ray absorptiometry (DXA) scans, the current gold standard, are typically used post-
fracture, highlighting the need for early detection tools. Panoramic radiographs (PRs), common
in annual dental evaluations, have been explored for osteoporosis detection using deep learning,
but methodological flaws have cast doubt on otherwise optimistic results. This study aims to
develop a robust artificial intelligence (AI) application for accurate osteoporosis identification in PRs,
contributing to early and reliable diagnostics. A total of 250 PRs from three groups (A: osteoporosis
group, B: non-osteoporosis group matching A in age and gender, C: non-osteoporosis group differing
from A in age and gender) were cropped to the mental foramen region. A pretrained convolutional
neural network (CNN) classifier was used for training, testing, and validation with a random split
of the dataset into subsets (A vs. B, A vs. C). Detection accuracy and area under the curve (AUC)
were calculated. The method achieved an F1 score of 0.74 and an AUC of 0.8401 (A vs. B). For young
patients (A vs. C), it performed with 98% accuracy and an AUC of 0.9812. This study presents a
proof-of-concept algorithm, demonstrating the potential of deep learning to identify osteoporosis in
dental radiographs. It also highlights the importance of methodological rigor, as not all optimistic
results are credible.

Keywords: osteoporosis detection; deep learning; panoramic radiographs; convolutional neural
network (CNN); early diagnostic tool

1. Introduction

Osteoporosis, a systemic skeletal disorder marked by reduced bone mass, is antici-
pated to affect 60% of women over the age of 50 years by 2040 [1]. The current gold standard
for osteoporosis detection is a dual-energy X-ray absorptiometry (DXA) scan, which is only
available in specialized osteoporosis centers and typically employed post-fracture [2,3]. In
addition to DXA measurements, the diagnosis of osteoporosis takes a history of fragility
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fractures and clinical risk factors such as age, gender, and family history into account [1].
Given that osteoporosis-related fractures impose a financial burden on the health-care sys-
tem amounting to double-digit billions of dollars worldwide, there is a critical demand for
tools that are capable of early detection [4]. However, age-related changes in bone density
necessitate a tailored interpretation of DXA results [5]. As individuals age, their bone
density naturally decreases because of factors such as hormonal changes and decreased
physical activity. DXA scans provide valuable insights into the longitudinal alterations in
bone density, thereby enabling proactive interventions aimed at attenuating bone deminer-
alization and diminishing the likelihood of fractures in aging cohorts [6]. Consequently,
the interpretation of cross-sectional investigations and individual longitudinal diagnoses
requires meticulous consideration of each case’s unique circumstances. Generalizations
made within mathematical models are subject to clinical controversy and warrant thorough
discussion [7]. A few studies have been published on the alternative detection option for
osteoporosis, including magnetic resonance imaging (MRI), optical coherence tomography
(oCT), and quantitative computed tomography (qCT), which appear to be viable and may
offer cost and time savings [8–10].

Nevertheless, given the significant impact of osteoporosis-related fractures on the
health-care system caused by late detection, there is an urgent need for tools that enable
early detection [11]. The solutions discussed previously do not meet the requirements
for effective early detection screening, underscoring a significant medical need for the
development of such technologies.

Panoramic radiography (PR) is a routine component of dental evaluations and gives
a 2D overview of the dentition, the jaw, and the hard surrounding tissue. This may be
conducted annually and presents a viable medium for such early detection efforts [12].

Numerous studies have applied PR for osteoporosis detection, supporting its potential
as an effective screening tool [13–16]. In this context, specific measures that are derivable
from panoramic radiographs (PRs) have been developed to assist in osteoporosis identifica-
tion. These measures include three primary indices: the Mandibular Cortical Index (MCI),
which assesses the shape of the mandibular cortex; the mandibular cortical width (MCW),
which evaluates the ratio of the mandibular cortical width to the cortical height; and the
Panoramic Mandibular Index (PMI), which is calculated as the ratio of the thickness of the
mandibular cortex to the distance between the mental foramen and the inferior mandibular
cortex [17]. Notably, the MCI, also referred to as the Klemetti Index (KI), was introduced
by Klemetti in 1993 [18] and has since become the most frequently utilized indices for this
purpose [19]. Nevertheless, these indices are rarely used in the clinical workflow, since they
must be manually calculated, are prone to errors, and are time-consuming. Comparing it
to a gold standard technique such as DXA has proven it to be unreliable [20,21]. Various
studies of osteoporosis detection in PRs using a deep convolutional neural network (CNN)
have been published recently, with promising outcomes [2,22]. However, upon closer
examination of the methodology and design of these studies, factors such as age, overlying
structures, gender, disease severity, and radiographic technique may have influenced the
radiographs’ ability to accurately detect osteoporosis-related changes, consequently affect-
ing the algorithms’ performance [23,24]. These variables were not adequately addressed
in those studies, highlighting significant flaws in the application of PRs for osteoporosis
detection and emphasizing the necessity for cautious interpretation. Furthermore, the
methods of recent studies were not transparent. The aim of this study is to rectify these
shortcomings of past studies and develop a reliable artificial intelligence (AI) application
for the accurate detection of osteoporosis in PRs.
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2. Materials and Methods

This study was conducted according to the guidelines of the Medical World Associa-
tion (Declaration of Helsinki). Ethical approval was granted by the Institutional Review
Board of the Charité ethics committee (EA2/089/22). The checklist for AI research in
dentistry of the ITU/WHO focus group “Artificial Intelligence for Health (AI4H)” was
consulted for the reporting in this study [25].

Data

This study retrospectively included patients who were diagnosed with osteoporosis
at Danube Private University. Each patient underwent a DXA scan to assess their bone
mineral density (BMD). Patients with a BMD T-score above −1 were classified as healthy,
while those with a BMD T-score below −2.5 were diagnosed with osteoporosis (group A).
PRs were retrieved from the medical records of each patient within 24 h following the DXA
scan. After the radiographs of the osteoporosis patient group were collected, a second
group of patients, related to the first group’s age and gender, was used as the control group
(group B). Another healthy group of a non-correlating age (young patients) and gender
distribution was also collected for validation purposes.

Data Preparation and Model Training

A total of 250 PRs with osteoporosis and a control group of 250 PRs without osteo-
porosis were automatically cropped to the region of interest of the mental foramen after
the annotation of 60 images in the CvatAI annotator (https://www.cvat.ai/) using the
YoloV8 code. The region of interest, ROI, of the mental foramen was chosen based on
the KI forecasting the most promising results [18]. Subsequently, all images were visually
inspected by an experienced investigator to identify any missing or improperly cropped
images in the designated area. In total, a dataset of 500 grayscale images (comprising
left and right views of the foramen and its surrounding area) was prepared meticulously
for each group. The mental foramen was selected as the region of interest based on the
aforementioned indices, which incorporate this anatomical structure. The cropped PRs with
osteoporosis were randomly divided into three splits (70% train, 15% test, 15% validation).
The control PRs without osteoporosis were sampled in accordance with the gender and age
distribution of the training set (age = 54 ± 16 a, female/male ratio = 3/1). The validation
split was used to select an optimal model performance during training and hyperparameter
selection, while the held-out test split was used to evaluate the model’s performance after
training and hyperparameter selection.

For data preparation, the cropped PR images were augmented using random rotation
with 10◦ and color-jitter (brightness = 0.2, hue = 0.1, contrast = 0.3, saturation = 0.3) and
cropped and vertically flipped at random. Afterward, the data were scaled to 224 × 224
and normalized.

The model optimization employed the SGD optimizer with an initial learning rate of
0.001 and a batch size of 16. To mitigate overfitting, an L2 lambda regularization strength
of 1 × 10−6 was applied. The model architecture was based on the pretrained Densenet201
network, which was adapted for binary classification output. After adjusting hyperparam-
eters, the model underwent training for 150 epochs. Implementation was carried out using
the PyTorch code, and training was performed on a single V100 GPU (NVIDIA).

Furthermore, 500 cropped PRs of young patients under the age of 30 years without
osteoporosis were used for the same model, performed with the same hyperparameter
(age = 24 ± 6 a, female/male ratio = 3/1); see Figure 1.

https://www.cvat.ai/
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Figure 1. Automatically rectangular images, cropped to the region of interest of the mental foramen: 
(A) young patients, (B) old patients without osteoporosis, and (C) old patients with osteoporosis. 

Statistical Analysis 
The accuracy of osteoporosis detection in the foramen regions involved the pro-

cessing of the cropped region using its classifier. Based on these predictions, performance 
metrics were computed, including precision on the validation set, as well as a confusion 
matrix for the comparison of the osteoporosis group versus the control group of the same 
age and the comparison of the osteoporosis group versus the young control group. 

3. Results 
The detection accuracy and area under the curve (AUC) were calculated for the da-

tasets. In Figures 2 and 3, the confusion matrix illustrates the detection results of osteopo-
rosis on PR.  

The model achieved a precision of 73.6% and an F1 score of 0.74 for the validation 
accuracy in the group comparing osteoporosis patients with the age-matched control 
group (Table 1). The AUC was 0.84. In the group comparing osteoporosis patients with 
the young control cohort, the model demonstrated an accuracy of 97.8% and an AUC of 
0.98, with an F1 score of 0.97 (Table 2). 

The correlating confusion matrices are shown in Tables 1 and 2. 

 
Figure 2. Confusion matrix illustrating, on the left, the detection results of osteoporosis based on PR 
for an untouched validation set after training and hyperparameter selection and, on the right, the 
receiver operating characteristic (ROC) curve. 

Figure 1. Automatically rectangular images, cropped to the region of interest of the mental foramen:
(A) young patients, (B) old patients without osteoporosis, and (C) old patients with osteoporosis.

Statistical Analysis

The accuracy of osteoporosis detection in the foramen regions involved the processing
of the cropped region using its classifier. Based on these predictions, performance metrics
were computed, including precision on the validation set, as well as a confusion matrix for
the comparison of the osteoporosis group versus the control group of the same age and the
comparison of the osteoporosis group versus the young control group.

3. Results

The detection accuracy and area under the curve (AUC) were calculated for the
datasets. In Figures 2 and 3, the confusion matrix illustrates the detection results of
osteoporosis on PR.

The model achieved a precision of 73.6% and an F1 score of 0.74 for the validation
accuracy in the group comparing osteoporosis patients with the age-matched control group
(Table 1). The AUC was 0.84. In the group comparing osteoporosis patients with the young
control cohort, the model demonstrated an accuracy of 97.8% and an AUC of 0.98, with an
F1 score of 0.97 (Table 2).

The correlating confusion matrices are shown in Tables 1 and 2.
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Figure 3. Confusion matrix illustrating, on the left, the detection results of osteoporosis based on PR
for an untouched validation set of the osteoporosis group versus a young control group and, on the
right, the receiver operating characteristic (ROC) curve, indicating that the high accuracy is due to
the recognition of a young-versus-old bone structure, making the results misleading.

Table 1. Confusion matrix for the comparison of the osteoporosis group versus the control group of
the same age.

Model for Osteoporosis Group versus Control of Same Age

Measure Value Derivations

Sensitivity 0.7000 TPR = TP / (TP + FN)
Specificity 0.7813 SPC = TN / (FP + TN)
Precision 0.8000 PPV = TP / (TP + FP)
Negative Predictive Value 0.6757 NPV = TN / (TN + FN)
False Positive Rate 0.2188 FPR = FP / (FP + TN)
False Discovery Rate 0.2000 FDR = FP / (FP + TP)
False Negative Rate 0.3000 FNR = FN / (FN + TP)
Accuracy 0.7361 ACC = (TP + TN) / (P + N)
F1 Score 0.7467 F1 = 2TP / (2TP + FP + FN)
Matthews Correlation Coefficient 0.4785 TP × TN − FP × FN / sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))

Table 2. Confusion matrix for the comparison of the osteoporosis group versus the control group of
the same age and the comparison of the osteoporosis group versus the young control group.

Model for Osteoporosis Group versus Control of Young Age

Measure Value Derivations

Sensitivity 0.9855 TPR = TP / (TP + FN)
Specificity 0.9737 SPC = TN / (FP + TN)
Precision 0.9577 PPV = TP / (TP + FP)
Negative Predictive Value 0.9911 NPV = TN / (TN + FN)
False Positive Rate 0.0263 FPR = FP / (FP + TN)
False Discovery Rate 0.0423 FDR = FP / (FP + TP)
False Negative Rate 0.0145 FNR = FN / (FN + TP)
Accuracy 0.9781 ACC = (TP + TN) / (P + N)
F1 Score 0.9714 F1 = 2TP / (2TP + FP + FN)
Matthews Correlation Coefficient 0.9540 TP × TN − FP × FN / sqrt((TP + FP) × (TP + FN) × (TN + FP) × (TN + FN))
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4. Discussion

This study demonstrated the capability of a deep learning algorithm to detect osteo-
porosis indicators in dental radiographs. It demonstrated the model’s effective performance
in distinguishing osteoporosis patients from control groups of varying ages. The findings
underscore its robustness in diagnostic accuracy and discrimination ability, emphasizing its
potential utility in clinical practice for diverse demographic profiles. Within these models,
significant differences in AI-assisted osteoporosis diagnosis outcomes emerged, primarily
stemming from discrepancies in data selection and annotation methodologies [2,22]. For
instance, Sukegawa et al. [2], utilizing a meticulously curated dataset with comprehensive
annotations, achieved commendable accuracy rates in identifying osteoporotic markers
from dental radiographs. Conversely, Lee et al. [22], using inadequately annotated data
with limited diversity, produced inferior results, highlighting the significant impact of data
quality on AI performance.

In this case, the inclusion of young patients in the dataset falsely improves the algo-
rithm’s performance, as our study demonstrated through our calculations. Comparing the
model to 224 images of young patients, the algorithm performed with a 97.81% accuracy.
The performance of AI systems is significantly affected not only by data acquisition but
also by factors such as the network architecture and hyperparameters during training and
validation. This complexity poses challenges in assessing the reliability of reported results.
In the field of automated data detection, the importance of data selection and annotation
cannot be overstated. They form the basis upon which AI models are constructed, directly
influencing their performance and outcomes. Numerous studies have emphasized the piv-
otal role of data quality in AI applications [26,27]. The choice of data, their relevance, and
the accuracy of annotation are pivotal factors that influence the efficacy of AI algorithms.
In medical imaging, where precision and reliability are paramount, the impact of data
selection and annotation is particularly pronounced. This investigation also reveals several
limitations. The applications of PRs are not considered the gold standard for osteoporosis
detection. The small sample size increases the risk of overfitting, potentially affecting the
model’s performance when applied to new datasets. The use of only one type of radio-
graph further limits the model’s generalizability, as it may not perform as well with other
imaging modalities. Additionally, the dataset is derived from a single institution, which
may introduce biases that are specific to that population and reduce the external validity of
the findings. As a result, the model’s applicability to broader clinical settings and diverse
patient populations remains uncertain. Future studies should aim to validate these findings
using larger, multi-institutional datasets and a variety of radiographic types to improve gen-
eralizability and robustness. Enhancing the data volume through multi-center collaborative
efforts could elevate the accuracy and generalizability of the model’s diagnostic classifi-
cation. Another limitation concerns the specific types of models evaluated. This research
assessed the performance of YOLOv8 at various depths. Discovering an architecture with
fewer parameters that maintains or improves performance could enhance its applicability
by reducing computational costs. YOLOv8 is an object detection model that has not been
specifically developed on medical images. Future research should focus on identifying an
architecture that is optimal for different image qualities and patient demographic variables.
Lastly, the manual cropping of images to position the mental foramen within the mandible
based on the common indices introduces a potential bias in preoperative preparation. This
underscores the need for refined image preparation techniques in future studies.

In the future, it will be essential to evaluate this model alongside medical profession-
als to assess whether their diagnostic accuracy improves when they utilize regions that
are highlighted by deep learning techniques. Conducting such comparisons will aid in
enhancing the development and application of deep learning methodologies.

Additional studies are required to ascertain the specific areas within a PR that the
model identifies as significant, considering that the image encompasses various anatomical
structures. Moreover, it is crucial to investigate the model’s adaptability and performance
in terms of generalizability using datasets from different institutions.
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5. Conclusions

This research showcased a proof-of-concept algorithm that highlights the potential of
deep learning in identifying osteoporosis indicators in dental radiographs. Furthermore,
our thorough examination of existing algorithms revealed that not all optimistic outcomes
hold credibility under scrutiny of methodological integrity. Despite promising results,
several limitations must be considered. The reliance on a small, single-institution dataset
increases the risk of overfitting and limits generalizability. Furthermore, the exclusive
use of PRs, which are not the gold standard for osteoporosis detection, and the need for
manual image preparation introduce potential biases. Future research should focus on
validating these findings with larger, multi-institutional datasets and exploring models that
are better suited for medical imaging. Additionally, integrating deep learning techniques
into clinical practice will require further evaluation alongside expert radiologists to enhance
the diagnostic accuracy and practical applicability.
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