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Abstract: Objectives: To differentiate invasive lepidic predominant adenocarcinoma (iLPA) from
adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) of lung utilizing visual
semantic and computer-aided detection (CAD)-based texture features on subjects initially diagnosed
as AIS or MIA with CT-guided biopsy. Materials and Methods: From 2011 to 2017, all patients with
CT-guided biopsy results of AIS or MIA who subsequently underwent resection were identified.
CT scan before the biopsy was used to assess visual semantic and CAD texture features, totaling
23 semantic and 95 CAD-based quantitative texture variables. The least absolute shrinkage and
selection operator (LASSO) method or forward selection was used to select the most predictive feature
and combination of semantic and texture features for detection of invasive lung adenocarcinoma.
Results: Among the 33 core needle-biopsied patients with AIS/MIA pathology, 24 (72.7%) had
invasive LPA and 9 (27.3%) had AIS/MIA on resection. On CT, visual semantic features included
21 (63.6%) part-solid, 5 (15.2%) pure ground glass, and 7 (21.2%) solid nodules. LASSO selected
seven variables for the model, but all were not statistically significant. “Volume” was found to
be statistically significant when assessing the correlation between independent variables using the
backward selection technique. The LASSO selected “tumor_Perc95”, “nodule surround”, “small
cyst-like spaces”, and “volume” when assessing the correlation between independent variables.
Conclusions: Lung biopsy results showing noninvasive LPA underestimate invasiveness. Although
statistically non-significant, some semantic features showed potential for predicting invasiveness,
with septal stretching absent in all noninvasive cases, and solid consistency present in a significant
portion of invasive cases.

Keywords: lung biopsy; invasiveness prediction; lepidic predominant adenocarcinoma; semantic
features; radiomic features

1. Introduction

Lung cancer remains the leading cause of cancer-related death and the second most
diagnosed cancer in the United States [1]. Adenocarcinoma is the most common type of
primary lung cancer [2]. Adenocarcinoma with a lepidic growth pattern is characterized
by tumor cells proliferating along the surface of intact alveolar walls without stromal or
vascular invasion by pathologic assessment [3].

The International Association for the Study of Lung Cancer/American Thoracic Soci-
ety/European Respiratory Society (IASLC/ATS/ERS) classification criteria [4] for subtyp-
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ing of adenocarcinoma with lepidic growth pattern is based on size of tumor and presence
or absence of stromal invasion. This includes adenocarcinoma in situ (AIS) which has
an entirely lepidic growth pattern and is >0.5 cm and ≤3 cm in size, minimally invasive
adenocarcinoma (MIA) if ≤3 cm with ≤0.5 cm invasion, and lepidic predominant ade-
nocarcinoma (LPA) if a tumor with a lepidic-predominant growth pattern is >3 cm, has
>0.5 cm invasion, or has lymphovascular/pleural invasion of any size. AIS and MIA
have been shown to have favorable prognosis with close to 100% 5-year cancer-specific
survival rate compared to LPA with a cancer-specific survival rate between 85.7 to 100%
post-resection [5].

A previous study by Young et al. demonstrated that there were no statistically sig-
nificant differences in sex and age between AIS/MIA disease and iLPA. A number of
demographic factors have been shown to be associated with invasive disease. For example,
race was associated with invasive disease, specifically Asian descent. Smoking history was
shown to be inversely associated with invasive disease whereas active smoking and pack
years were not. A history of extrathoracic cancer less than 5 years prior to biopsy of the
lung nodule was also associated with invasive disease [6]. However, the study did not
evaluate the visual or texture features of the nodules biopsied to predict invasive disease.

Manifestations of LPA on CT can vary, but usually it appears as a part-solid nodule
or mass [4,7]. The ground glass component of the lesions has been shown to correlate
with a lepidic growth pattern on pathology [7]. Performing percutaneous needle biopsy
of the lung under computed tomography guidance is essential for evaluating pulmonary
abnormalities, given its exceptional diagnostic accuracy of around 93% in detecting malig-
nancies [8]. After biopsy confirmation, one proposed surgical approach to management
of lepidic predominant-growth pattern lesions has been a sublobar resection as opposed
to a lobectomy, which is recommended for histologically more aggressive (non-lepidic)
lung adenocarcinoma of similar size. Patients who have AIS and MIA stand to benefit
from sublobar resection, but there is an increased risk of recurrence if the adenocarcinoma
is invasive lepidic pattern adenocarcinoma (iLPA) [9–11]. To confirm the diagnosis of
AIS or MIA, however, an evaluation of the tumor post-resection is necessary to exclude
invasive disease.

In cases where biopsy results only show a noninvasive lepidic tumor, treatment often
becomes delayed, with a false sense of security for the treating physician and patient, and
the patient may need to undergo complete lobectomy at a later stage. Since the surgical
approach and outcome differ between noninvasive lepidic tumors and LPA, it is important
to predict iLPA despite a biopsy revealing only noninvasive lepidic growth.

This study aims to test various imaging parameters to predict iLPA tumors in biopsy-
proven AIS/MIA using visual semantic and quantitative CAD-based texture analysis (CBTA).

2. Materials and Methods

This study is a retrospective analysis of a lung nodule biopsy database from a single
academic center. It was approved by the University of California Los Angeles (UCLA)
Institutional Review Board (IRB#17-001536). Since this study was retrospective and all
the data and images used were fully anonymized, the requirement of informed consent
was waived.

2.1. Subject Selection

Review of pathology database of subjects who were 18 years and older and underwent
CT-guided core needle biopsy (CNB) which revealed a diagnosis of noninvasive LPA and
subsequently underwent surgical resection from 2011 to 2017 were identified. Pathology
assessment was performed as a standard of care. For the purpose of this study, all pathology
slides were reassessed by a chest pathologist with 20 years of experience (WDW) to confirm
the original diagnosis.

Thirty-three subjects satisfied the inclusion criteria. CT assessment for visual semantic
features and computer-aided texture analysis was performed on non-contrast CT scan
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obtained immediately prior to the biopsy. All scans were performed on Siemens Definition
CT scanners (Munich, Germany), at 120 kV, with a dose of 90 mAs, using a 256-slice
scanner with 1 mm collimation, and reconstruction at 1 mm slice thickness and B30f
(medium kernel) reconstruction. The CT-detected nodules underwent visual semantic
feature assessment independently by a thoracic and interventional radiologist with 23 years
of experience (FA) and a thoracic radiologist with 6 years of experience (SMHT), with any
discrepancies resolved through consensus. The readers were blind to the demographic data
and corresponding pathology results associated with CT images. A total of 23 semantic
variables were identified and assessed using CT scans obtained immediately prior to the
biopsy. These features are described in Table 1.

Table 1. Description of visual semantic features.

Variable Description

Intranodular Bronchiectasis
Availability of prior scan

Lobar location
Longest axial diameters

Longest diameter of solid component
Nodule consistency

Nodule margin conspicuity
Nodule reticulation

Nodule shape
Purely endobronchial
Short axial diameter

Subpleural

As implied by the variable name.

Airway cut-off An airway entering the nodule is obliterated at some point after entering
the nodule.

Axial location Peripheral: if located within 1 cm of costal pleura.
Central: if not peripheral.

Cyst-like spaces The presence of cystic spaces smaller than 3 mm within the nodule’s border.

Cavitation The presence of cystic spaces with thick walls and a size of 3 mm or larger within
the nodule’s borders.

Primary dominant margin The nodule’s most dominant margin type.

Secondary dominant margin The second most dominant type of nodule margins.

Paracicatricial emphysema Some or all of the lung immediately surrounding the nodule is fibrotic and
emphysematous.

Nodule surround emphysema Emphysema is the nature of lung parenchyma in the 25 mm surrounding
environment.

Vascular convergence A vessel that approaches or departs from the nodule appears to curve or deviate
from its anticipated course in order to connect with the nodule.

Pleural attachment The nodule is attached to the costal pleura.

Pleural retraction The nodule pulls the adjacent pleura so that a dimpling is created.

Septal stretching Septal lines without tapering are observed in the parenchyma surrounding the
nodule (as opposed to spiculations that taper as going away from the nodule).

CAD-based texture analysis of nodules for characterization was performed on the
same baseline non-contrast CT scan obtained before the biopsy with 1 mm slice thick-
ness at B30f reconstruction. The CT images were imported to an in-house-developed
software package, the Quantitative Imaging Workstation (QIWS) developed at UCLA for
segmentation and further image analysis. This workstation has a variety of automated
and semi-automated CAD and measurement tools. Automatic segmentation function was
applied slice-by-slice for each nodule by an operator trained at identifying and segmenting
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nodules (SJ). Each slice was then carefully reviewed, and manual corrections to the segmen-
tation were made as necessary. Thereafter, a radiologist with 23 years of experience (FA)
reviewed the segmentation, performed necessary segmentation adjustments, and finalized
the segmentation. A sample of the segmentation is shown in Figure 1. Quantitative fea-
tures were extracted from the regions of interest using the QIWS software (Version 1), as
previously mentioned. These features included shape, intensity histogram statistics, and
texture features derived from gray-level co-occurrence matrices (GLCM). Through CAD-
based texture analysis, 95 variables were generated, categorized into 11 histogram features,
4 size features, and 80 GLCM texture features (as detailed in the Supplementary Materials).
The radiomics calculations followed the Image Biomarker Standardization Initiative (IBSI)
guidelines [12].
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Figure 1. Axial CT image showing the segmentation of a part-solid nodule in the left upper lobe,
outlined in blue. The right and left lungs are outlined in green and red, respectively. Vessels are
segmented separately to distinguish them from the lung parenchyma.

2.2. Statistical Analysis

Summary statistics of visual read and radiomic variables were reported for invasive
vs. noninvasive LPA (AIS/MIA). The association between invasiveness of adenocarcinoma
and visual read were analyzed using Fisher’s exact test or Chi-squared test, depending on
the counts of the groups. We used LASSO for feature selection based on a cross-validation
approach, with mean deviance as the criterion. Given the nature of difference in visual read
and texture feature as well as extensive number of variables, the 23 categorical variables
from visual read underwent LASSO selection in three groups: nodule internal features,
nodule external features, and features representing anatomical location; resulting in 7 visual
read variables selected. The 95 continuous variables based on texture feature extraction
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were composed of 3 datasets: histogram, size, and GLCM. These are shown in Supplemen-
tary Materials. Analysis was performed using R version 4.1.1 and STATA 17.0 SE.

3. Results

Out of the 33 patients with CT-guided biopsy diagnosis of AIS/MIA who satisfied
the eligibility criteria and were selected for the analysis, the final post-surgery pathologic
assessment of the explanted lesion was consistent with AIS/MIA in 9 (27.3%) cases, and
invasive LPA in 24 (72.7%) cases. The study population consisted of 20 (60.6%) females and
13 (39.4%) males, with an average age of 69.8 (±10.6) years. A summary of the patients’
demographics is provided in Table 2. Examples of the CT images immediately before
biopsy are depicted in Figures 2 and 3.

Med. Sci. 2024, 12, x FOR PEER REVIEW 5 of 13 
 

 

the counts of the groups. We used LASSO for feature selection based on a cross-validation 
approach, with mean deviance as the criterion. Given the nature of difference in visual 
read and texture feature as well as extensive number of variables, the 23 categorical vari-
ables from visual read underwent LASSO selection in three groups: nodule internal fea-
tures, nodule external features, and features representing anatomical location; resulting 
in 7 visual read variables selected. The 95 continuous variables based on texture feature 
extraction were composed of 3 datasets: histogram, size, and GLCM. These are shown in 
Supplementary Materials. Analysis was performed using R version 4.1.1 and STATA 17.0 
SE. 

3. Results 
Out of the 33 patients with CT-guided biopsy diagnosis of AIS/MIA who satisfied the 

eligibility criteria and were selected for the analysis, the final post-surgery pathologic as-
sessment of the explanted lesion was consistent with AIS/MIA in 9 (27.3%) cases, and in-
vasive LPA in 24 (72.7%) cases. The study population consisted of 20 (60.6%) females and 
13 (39.4%) males, with an average age of 69.8 (±10.6) years. A summary of the patients� 
demographics is provided in Table 2. Examples of the CT images immediately before bi-
opsy are depicted in Figures 2 and 3. 

 
Figure 2. Axial images depicting a nodule that was found to be AIS/MIA after resection. Figure 2. Axial images depicting a nodule that was found to be AIS/MIA after resection.

Table 2. Summary of the patients’ demographics.

Demographic Category Count (Percent)

Sex Female 20 (60.6)

Male 13 (39.4)

Age Under 50 1 (3.0)

50–59 1 (3.0)

60–69 14 (42.4)

70–79 13 (39.4)

80 and over 4 (12.1)
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Table 2. Cont.

Demographic Category Count (Percent)

Smoking History Yes 20 (60.6)

No 13 (39.4)

Race Asian 8 (24.2)

Caucasian 21 (63.6)

Black 1 (3.0)

Other 3 (9.1)
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Figure 3. (a–c) Axial images depicting nodules that were found to be invasive on resection.

3.1. Visual Read Variables

On CT, visual semantic features included 21 (63.6%) part-solid, 5 (15.2%) pure ground
glass, and 7 (21.2%) solid nodules. From the LASSO selection method (assessing the in-
dependent vs. dependent variables), four semantic feature variables were identified for
the model but were not statistically significant. These variables included septal stretching,
nodule surround, secondary margin type, and small cyst-like spaces. Summary statistics
of the visual read variables are shown in Table 3. After subjecting the variables to another
round of LASSO selection and backward selection, no variables or combination of variables
were found to be statistically significant in differentiating iLPA from AIS/MIA. Multivari-
able exact logistic regression from visual semantic feature variables selected from forward
selection is shown in Table 4.

Table 3. Summary statistics of visual semantic features read.

Characteristics Non-Invasive
n = 9

Invasive
n = 24

Total
n = 33 p-Value

Airway Cut-off, N (%)
1.000No 9 (100) 23 (95.8) 32 (97.0)

Yes 0 1 (4.2) 1 (3.0)

Axial Location, N (%)
1.000Central (>1 cm) 2 (22.2) 6 (25.0) 8 (24.2)

Peripheral (≤1 cm) 7 (77.8) 18 (75.0) 25 (75.8)



Med. Sci. 2024, 12, 57 7 of 12

Table 3. Cont.

Characteristics Non-Invasive
n = 9

Invasive
n = 24

Total
n = 33 p-Value

Cavitation, N (%)
1.000No 9 (100.0) 22 (91.7) 31 (93.9)

Yes 0 (0) 2 (8.3) 2 (6.1)

Intranodular Bronchiectasis, N (%) 2 (6.1)
0.097No 9 (100.0) 17 (70.8) 7 (21.2)

Yes 0 (0) 7 (29.2) 24 (72.7)

Large Pericystic Space, N (%)
1.000No 9 (100) 23 (95.8) 32 (97.0)

Yes 0 (0) 1 (4.2) 1 (3.0)

Lobar Location, N (%)

0.335

LLL 0 (0) 5 (20.8) 5 (15.2)
LUL 4 (44.4) 6 (25.0) 10 (30.3)
RLL 1 (11.1) 3 (12.5) 4 (12.1)
RML 0 (0) 0 (0) 0 (0)
RUL 4 (44.4) 10 (41.7) 14 (42.4)

Nodule Consistency, N (%)

0.015
Part-solid 6 (66.7) 15 (62.5) 21 (63.6)
Pure Ground Glass 3 (33.3) 2 (8.3) 5 (15.2)
Solid 0 (0) 7 (29.2) 7 (21.2)

Nodule Margin Conspicuity, N (%)
0.681Poorly Marginated 7 (77.8) 15 (62.5) 22 (66.7)

Well Marginated 2 (22.2) 9 (37.5) 11 (33.3)

Nodule Reticulation, N (%)
0.295No 7 (77.8) 22 (91.7) 29 (87.9)

Yes 2 (22.2) 2 (8.3) 4 (12.1)

Nodule Shape, N (%)

0.688
Complex 5 (55.6) 17 (70.8) 22 (66.7)
Ovoid 2 (22.2) 3 (12.5) 5 (15.2)
Round 2 (22.2) 4 (16.7) 6 (18.2)

Nodule Surround (Approx. 2.5 cm)
0.174Emphysema 2 (22.2) 1 (4.2) 3 (9.1)

Normal 7 (77.8) 23 (95.8) 30 (90.9)

Paracicatricial Emphysema
-No 9 (100) 24 (100) 33 (100)

Yes 0 (0) 0 (0) 0 (0)

Pleural Attachment
0.358No 3 (33.3) 4 (16.7) 7 (21.2)

Yes 6 (66.7) 20 (83.3) 26 (78.8)

Pleural Retraction

0.315
Absent 4 (44.4) 7 (29.2) 11 (33.3)
Mild Dimpling 2 (22.2) 11 (45.8) 13 (39.4)
Obvious Dimpling 0 1 (4.2) 1 (3.0)
n/a 3 (33.3) 5 (20.8) 8 (24.2)

Primary Dominant Margin

0.135

Indeterminate 8 (88.9) 14 (58.3) 22 (66.7)
Lobulated 0 (0) 6 (25.0) 6 (18.2)
Notched/Concavity 0 (0) 0 (0) 0 (0)
Smooth 1 (11.1) 1 (4.2) 2 (6.1)
Spiculated/Serrated 0 (0) 3 (12.5) 3 (9.1)
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Table 3. Cont.

Characteristics Non-Invasive
n = 9

Invasive
n = 24

Total
n = 33 p-Value

Purely Endobronchial
-No 9 (100) 24 (100) 33 (100)

Yes 0 (0) 0 (0) 0 (0)

Secondary Margin Type

0.229

Intermediate 9 (100) 15 (62.5) 24 (72.7)
Lobulated 0 (0) 4 (16.7) 4 (12.1)
Notched/Concavity 0 (0) 1 (4.2) 1 (3.0)
Smooth 0 (0) 0 (0) 0 (0)
Spiculated/Serrated 0 (0) 4 (16.7) 4 (12.1)

Septal Stretching
0.090No 9 (100) 18 (75.0) 27 (81.8)

Yes 0 (0) 6 (25.0) 6 (18.2)

Small Cyst-like Spaces
0.107No 8 (88.9) 13 (54.2) 21 (63.6)

Yes 1 (11.1) 11 (45.8) 12 (36.4)

Subpleural

-No 0 (0) 4 (16.7) 4 (12.1)
Yes 0 (0) 1 (4.2) 1 (3.0)
n/a 9 (100) 21 (87.5) 28 (84.9))

Vascular Convergence
1.000No 9 (100) 23 (95.8) 32 (97.0)

Yes 0 (0) 1 (4.2) 1 (3.0)

Table 4. Multivariable exact logistic regression from visual semantic feature variables selected from
forward selection.

Visual Variable Odds Ratio 95% CI p-Value

Septal Stretching 2.30 0.33–infinity 0.25

Nodule Surround (Approx 2.5 cm)
Emphysema 0.38 0–3.36 0.23
Normal reference

Secondary Margin Type
Lobulated 1.40 0.17–infinity 0.40
Notched/Concavity 0.25 0.013–infinity 0.80
Spiculated/Serrated 1.95 0.27–infinity 0.30
Indeterminate reference

Small Cyst-like Spaces 2.16 0.13–137.50 0.97

3.2. Radiomic Variables

For radiomic features, 95 variables were assessed in the categories of histogram
data, size data, and feature data. Three variables were selected by forward selection:
Tumor_perc95 (95th percentile, HU), volume, and glcm_info_corr_a_16′ (linear dependency
of gray level values to the respective voxels in GLCM). The summary statistics for the
radiomic variables are shown in the Supplementary Materials. Multivariable logistic
regression results from radiomic feature variables selected from forward selection are
shown in Table 5.
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Table 5. Multivariable logistic regression results from radiomic feature variables selected from
forward selection.

Radiometric Feature Variable Odds Ratio 95% CI p-Value

Tumor_perc95 1.00 1.00–1.01 0.15

Volume 1.00 1.000–1.001 0.22

glcm_info_corr_a_16 0.02 0.00013–2.9 0.124

4. Discussion

In this study, we intend to predict iLPA using visual and CAD-based texture analysis
on nodules which were initially diagnosed as MIA or AIS based on CT-guided biopsy. The
purpose of core needle biopsy is to characterize the nodule and within adenocarcinoma
spectrum predict the probability of a lung nodule being invasive or non-invasive. The
accurate diagnosis of invasiveness status of adenocarcinoma carries significant prognosti-
cation and helps guide treatment plans as well as plan future interventions in case biopsy
results are discordant [13]. LPA is well defined and has been incorporated in the lung
cancer staging TNM 8th edition [14]. The predictors and imaging features of LPA have also
been established in the literature. Lepidic growth is characterized by ground glass nodules
on CT imaging, and the degree of concurrent solid component can suggest invasiveness,
with MIA lesions having equal or less than 5 mm and invasive LPA lesions having more
than 5 mm of solid tissue on imaging. The literature has also suggested that semantic and
radiomic features may be useful in the process of differentiating invasive from noninvasive
LPA [15,16]. In a study involving a Caucasian cohort, univariate analysis showed nodule
height, solid component size, density, mass, disappearance rate, and pleural retraction
were found to be significant differentiating factors between AIS/MIA and invasive disease.
On multivariate analysis, only the solid component size was significant [14].

There are multiple diseases that can mimic LPA on CT scans and clinicians rely mostly
on the results of CT-guided biopsy to determine the course of care for these LPAs [17].
However, as demonstrated here, core biopsy alone cannot capture the heterogeneity of the
entire tumor. The implications of these findings are far reaching as there will be patients
who may later be upstaged due to incomplete biopsy findings that suggest AIS/MIA
disease. In this study, we demonstrate that the majority (24/33—72.7%) of the patients who
only had noninvasive tumor on the core biopsy, suggesting AIS/MIA, were later found
to be iLPA, on the explant specimen. Prior studies have also demonstrated concordance
between core biopsy and final resection pathologies ranging between 58.6% and 77% in
lepidic adenocarcinoma [18,19]. In another study looking at peripheral subsolid nodules,
the overall concordance rate between biopsy and surgical pathology in determining the
predominant histological subtype was 64%. There was better concordance for tumors less
than 2 cm or pure GG nodules [20]. Therefore, patients and clinicians who receive biopsy
results suggestive of AIS/MIA disease should anticipate the probability of more advanced
disease on the explant specimen. This can lead to more appropriate surgical management
to minimize further complications and evolution of malignancy. It is worth noting that
recent studies have attempted to develop models for differentiating and predicting the
invasiveness of lung adenocarcinoma based on specific patterns observed on chest CT, with
promising results. For example, Yang et al. trained a nomogram incorporating intratu-
moral and peritumoral radiomics features from CT scans, combined with clinical semantic
data, to predict poorly differentiated invasive pulmonary adenocarcinoma. Their study
demonstrated that this nomogram has the potential to preoperatively predict poorly differ-
entiated IPA manifesting as subsolid or solid lesions [21]. Similarly, Chen et al. developed a
multi-parameter prediction model integrating monochromatic CT values from dual-energy
CT (DECT) along with quantitative and semantic features, which showed promise in dis-
tinguishing invasive lung adenocarcinoma from AIS and MIA in GG-predominant lung
adenocarcinomas [22].
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Although multiple semantic parameters did not reach statistical significance, predic-
tions can be made when assessing nodules for concordance with biopsy results. Some
semantic features showed potential for predicting invasiveness, with septal stretching
absent in all noninvasive cases but present in six (25%) of the invasive cases. In addition,
solid consistency was not observed in any of the non-invasive samples, whereas it was
noted in seven (29.2%) of the invasive cases.

In our study, we used both visual and CAD-based texture analysis to predict invasive
LPA and increase the concordance between CNB and surgical specimen. Using the LASSO
technique, four variables were selected from the visual assessments: secondary margin
type, small cyst-like spaces, nodule surround emphysema, and septal stretching. Using the
forward selection method, three variables were identified from the radiomic feature vari-
ables: Tumor_Perc95, Volume, and glcm_info_corr_a_16. Although these seven variables
were identified to be predictive, they were not able to exceed a statistically significant level
of p < 0.15 after they were subjected to another LASSO selection and backward selection.
Tumor_Perc95 represents the 95th percentile of the Hounsfield unit of pixels within the
margins of the tumor. Glcm_cor or Gray Level Co-occurrence Matrix is a statistical texture
analysis method that observes the probability of a pair of pixels occurring.

Limitations to this study included a relatively small sample size with an unbalanced
dataset in an 8:3 (invasive–AIS/MIA) ratio. This may explain the inability to precipitate
more semantic variables that were predictive of invasiveness. Selection bias could also be an
issue in our study, as patients who received resection despite AIS/MIA on biopsy may have
had other predictors of lung cancer beyond imaging at the time of the procedure including
growth, family history of cancer, smoking history, or other factors increasing lung cancer
risk. These factors may have also prompted the surgeon to resect the tumor as opposed to
pursuing non-operative management such as Stereotactic Body Radiation Therapy or Image-
Guided Thermal Ablation. Future studies with standardized reconstruction algorithms
and higher sample sizes may be able to address these limitations and provide more robust
findings to validate the importance of visual semantic and radiomic features. In addition,
we acknowledge that achieving statistical significance at the conventional threshold of
p < 0.05 can be challenging due to the limited sample size. Given the 96 radiomic features
in our dataset, we decided to use a strict feature selection criterion to minimize the risk
of overfitting. However, we recognize that this approach may not be optimal and could
potentially exclude features with weaker, yet clinically relevant, associations.

5. Conclusions

A large number of patients with noninvasive lepidic pattern lung adenocarcinoma
on needle biopsy are later found to have invasive tumor on surgical specimen. Although
statistically non-significant, some semantic features showed potential for predicting in-
vasiveness, with septal stretching absent in all noninvasive cases, and solid consistency
present in a significant portion of invasive cases.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/medsci12040057/s1, Table S1: Radiomic texture features; Table S2:
Summary statistics for radiomic variables.
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CAD Computer-Aided Detection
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CNB Core Needle Biopsy
GLCM Gray-Level Co-occurrence Matrix
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