Inflammation and Trauma-Related Psychopathology in Syrian and Iraqi Refugees
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Relation between Inflammation and Psychiatric Symptom Severity
3.2. Differential Relations between Inflammation and Symptom Severity by Domain
3.3. Sex Differences in Inflammation, and Relation with Symptom Severity
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kessler, R.C.; Aguilar-Gaxiola, S.; Alonso, J.; Benjet, C.; Bromet, E.J.; Cardoso, G.; Degenhardt, L.; de Girolamo, G.; Dinolova, R.V.; Ferry, F.; et al. Trauma and PTSD in the WHO world mental health surveys. Eur. J. Psychotraumatol. 2017, 8, 1353383. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.; Demler, O.; Jin, R.; Merikangas, K.R.; Walters, E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 2017, 42, 254–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haroon, E.; Raison, C.L.; Miller, A.H. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2005, 37, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef] [PubMed]
- Melmed, S.; Auchus, R.J.; Goldfine, A.B.; Koenig, R.J.; Rosen, C.J. Williams textbook of endocrinology, 14th ed.; Elsevier, Inc.: Philadelphia, PA, USA, 2019. [Google Scholar]
- Bierhaus, A.; Wolf, J.; Andrassy, M.; Rohleder, N.; Humpert, P.M.; Petrov, D.; Ferstl, R.; von Eynatten, M.; Wendt, T.; Rudofsky, G.; et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl. Acad. Sci. USA 2003, 100, 1920–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terpou, B.A.; Harricharan, S.; McKinnon, M.C.; Frewen, P.; Jetly, R.; Lanius, R.A. The effects of trauma on brain and body: A unifying role for the midbrain periaqueductal gray. J. Neurosci. Res. 2019, 97, 1110–1140. [Google Scholar] [CrossRef]
- Segerstrom, S.C.; Schipper, L.J.; Greenberg, R.N. Caregiving, repetitive thought, and immune response to vaccination in older adults. Brain Behav. Immun. 2008, 22, 744–752. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Tyrrell, D.A.; Smith, A.P. Psychological stress and susceptibility to the common cold. N. Engl. J. Med. 1991, 325, 606–612. [Google Scholar] [CrossRef]
- Padgett, D.A.; Marucha, P.T.; Sheridan, J.F. Restraint stress slows cutaneous wound healing in mice. Brain Behav. Immun. 1998, 12, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Spivak, B.; Shohat, B.; Mester, R.; Avraham, S.; Gil-Ad, I.; Bleich, A.; Valevski, A.; Weizman, A. Elevated levels of serum interleukin-1 beta in combat-related post-traumatic stress disorder. Biol. Psychiatry 1997, 42, 345–348. [Google Scholar] [CrossRef]
- Gouin, J.P.; Glaser, R.; Malarkey, W.B.; Beversdorf, D.; Kiecolt-Glaser, J.K. Childhood abuse and inflammatory responses to daily stressors. Ann. Behav. Med. 2012, 44, 287–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartwell, K.J.; Moran-Santa Maria, M.M.; Twal, W.O.; Shaftman, S.; DeSantis, S.M.; McRae-Clark, A.L.; Brady, K.T. Association of elevated cytokines with childhood adversity in a sample of healthy adults. J. Psychiatr. Res. 2013, 47, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Tietjen, G.E.; Khubchandani, J.; Herial, N.A.; Shah, K. Adverse childhood experiences are associated with migraine and vascular biomarkers. Headache 2012, 52, 920–929. [Google Scholar] [CrossRef]
- Oganesyan, L.P.; Mkrtchyan, G.M.; Sukiasyan, S.H.; Boyajyan, A.S. Classic and alternative complement cascades in post-traumatic stress disorder. Bull. Exp. Biol. Med. 2009, 148, 859–861. [Google Scholar] [CrossRef]
- Brambilla, F.; Bellodi, L.; Perna, G.; Bertani, A.; Panerai, A.; Sacerdote, P. Plasma interleukin-1 beta concentrations in panic disorder. Psychiatry Res. 1994, 54, 135–142. [Google Scholar] [CrossRef]
- Hoge, E.A.; Brandstetter, K.; Moshier, S.; Pollack, M.H.; Wong, K.K.; Simon, N.M. Broad spectrum of cytokine abnormalities in panic disorder and post-traumatic stress disorder. Depress. Anxiety 2009, 26, 447–455. [Google Scholar] [CrossRef]
- Zieker, J.; Zieker, D.; Jatzko, A.; Dietzsch, J.; Nieselt, K.; Schmitt, A.; Bertsch, T.; Fassbender, K.; Spanagel, R.; Northoff, H.; et al. Differential gene expression in peripheral blood of patients suffering from post-traumatic stress disorder. Mol. Psychiatry 2007, 12, 116–118. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Binder, E.B. Gene × environment vulnerability factors for PTSD: The HPA-axis. Neuropharmacology 2012, 62, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Breen, M.S.; Maihofer, A.X.; Glatt, S.J.; Tylee, D.S.; Chandler, S.D.; Tsuang, M.T.; Risbrough, V.B.; Baker, D.G.; O’Connor, D.T.; Nievergelt, C.M.; et al. Gene networks specific for innate immunity define post-traumatic stress disorder. Mol. Psychiatry 2015, 20, 1538–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tylee, D.S.; Chandler, S.D.; Nievergelt, C.M.; Liu, X.; Pazol, J.; Woelk, C.H.; Lohr, J.B.; Kremen, W.S.; Baker, D.G.; Glatt, S.J.; et al. Blood-based gene-expression biomarkers of post-traumatic stress disorder among deployed marines: A pilot study. Psychoneuroendocrinology 2015, 51, 472–494. [Google Scholar] [CrossRef] [Green Version]
- Powers, A.; Dixon, H.D.; Conneely, K.; Gluck, R.; Munoz, A.; Rochat, C.; Mendoza, H.; Hartzell, G.; Ressler, K.J.; Bradley, B.; et al. The differential effects of PTSD, MDD, and dissociation on CRP in trauma-exposed women. Compr. Psychiatry 2019, 93, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Plantinga, L.; Bremner, J.D.; Miller, A.H.; Jones, D.P.; Veledar, E.; Goldberg, J.; Vaccarino, V. Association between post-traumatic stress disorder and inflammation: A twin study. Brain Behav. Immun. 2013, 30, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitzer, C.; Barnow, S.; Volzke, H.; Wallaschofski, H.; John, U.; Freyberger, H.J.; Lowe, B.; Grabe, H.J. Association of post-traumatic stress disorder with low-grade elevation of C-reactive protein: Evidence from the general population. J. Psychiatr. Res. 2010, 44, 15–21. [Google Scholar] [CrossRef]
- Black, S.; Kushner, I.; Samols, D. C-reactive Protein. J. Biol. Chem. 2004, 279, 48487–48490. [Google Scholar] [CrossRef] [Green Version]
- Eraly, S.A.; Nievergelt, C.M.; Maihofer, A.X.; Barkauskas, D.A.; Biswas, N.; Agorastos, A.; O’Connor, D.T.; Baker, D.G.; Marine Resiliency Study, T. Assessment of plasma C-reactive protein as a biomarker of post-traumatic stress disorder risk. JAMA Psychiatry 2014, 71, 423–431. [Google Scholar] [CrossRef]
- Michopoulos, V.; Rothbaum, A.O.; Jovanovic, T.; Almli, L.M.; Bradley, B.; Rothbaum, B.O.; Gillespie, C.F.; Ressler, K.J. Association of CRP genetic variation and CRP level with elevated PTSD symptoms and physiological responses in a civilian population with high levels of trauma. Am. J. Psychiatry 2015, 172, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, T.; Kazama, A.; Bachevalier, J.; Davis, M. Impaired safety signal learning may be a biomarker of PTSD. Neuropharmacology 2012, 62, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Baumert, J.; Lukaschek, K.; Kruse, J.; Emeny, R.T.; Koenig, W.; von Kanel, R.; Ladwig, K.H. investigators, K No evidence for an association of post-traumatic stress disorder with circulating levels of CRP and IL-18 in a population-based study. Cytokine 2013, 63, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, A.G.; Alexander, D.A.; Hutchison, J.D. Disturbance of pro-inflammatory cytokines in post-traumatic psychopathology. Cytokine 2003, 24, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Bankier, B.; Barajas, J.; Martinez-Rumayor, A.; Januzzi, J.L. Association between C-reactive protein and generalized anxiety disorder in stable coronary heart disease patients. Eur. Heart J. 2008, 29, 2212–2217. [Google Scholar] [CrossRef] [PubMed]
- Copeland, W.E.; Shanahan, L.; Worthman, C.; Angold, A.; Costello, E.J. Generalized anxiety and C-reactive protein levels: A prospective, longitudinal analysis. Psychol. Med. 2012, 42, 2641–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, E.Y.; Wagner, J.T.; Glaus, J.; Vandeleur, C.L.; Castelao, E.; Strippoli, M.P.; Vollenweider, P.; Preisig, M.; von Kanel, R. Evidence for chronic low-grade systemic inflammation in individuals with agoraphobia from a population-based prospective study. PLoS ONE 2015, 10, e0123757. [Google Scholar] [CrossRef] [Green Version]
- Sondergaard, H.P.; Hansson, L.O.; Theorell, T. The inflammatory markers C-reactive protein and serum amyloid A in refugees with and without post-traumatic stress disorder. Clin. Chim. Acta 2004, 342, 93–98. [Google Scholar] [CrossRef]
- Valentine, R.J.; McAuley, E.; Vieira, V.J.; Baynard, T.; Hu, L.; Evans, E.M.; Woods, J.A. Sex differences in the relationship between obesity, C-reactive protein, physical activity, depression, sleep quality and fatigue in older adults. Brain Behav. Immun. 2009, 23, 643–648. [Google Scholar] [CrossRef]
- Moieni, M.; Irwin, M.R.; Jevtic, I.; Olmstead, R.; Breen, E.C.; Eisenberger, N.I. Sex differences in depressive and socioemotional responses to an inflammatory challenge: Implications for sex differences in depression. Neuropsychopharmacology 2015, 40, 1709–1716. [Google Scholar] [CrossRef] [Green Version]
- Saltevo, J.; Vanhala, M.; Kautiainen, H.; Kumpusalo, E.; Laakso, M. Association of C-reactive protein, interleukin-1 receptor antagonist and adiponectin with the metabolic syndrome. Mediat. Inflamm. 2007, 2007, 93573. [Google Scholar] [CrossRef] [Green Version]
- Saltevo, J.; Vanhala, M.; Kautiainen, H.; Laakso, M. Levels of adiponectin, C-reactive protein and interleukin-1 receptor antagonist are associated with the relative change in body mass index between childhood and adulthood. Diab. Vasc. Dis. Res. 2007, 4, 328–331. [Google Scholar] [CrossRef]
- Khera, A.; McGuire, D.K.; Murphy, S.A.; Stanek, H.G.; Das, S.R.; Vongpatanasin, W.; Wians, F.H., Jr.; Grundy, S.M.; de Lemos, J.A. Race and gender differences in C-reactive protein levels. J. Am. Coll. Cardiol. 2005, 46, 464–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakoski, S.G.; Cushman, M.; Criqui, M.; Rundek, T.; Blumenthal, R.S.; D’Agostino, R.B., Jr.; Herrington, D.M. Gender and C-reactive protein: Data from the multiethnic study of atherosclerosis (MESA) cohort. Am. Heart J. 2006, 152, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Neylan, T.C.; Sun, B.; Rempel, H.; Ross, J.; Lenoci, M.; O’Donovan, A.; Pulliam, L. Suppressed monocyte gene expression profile in men versus women with PTSD. Brain Behav. Immun. 2011, 25, 524–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arfken, C.L.; Alsaud, M.I.; Mischel, E.F.; Haddad, L.; Sonderman, S.; Lister, J.J.; Javanbakht, A. Recent Iraqi refugees: Association between ethnic identification and psychological distress. J. Muslim. Ment. Health 2018, 12. [Google Scholar] [CrossRef]
- Javanbakht, A.; Amirsadri, A.; Abu Suhaiban, H.; Alsaud, M.I.; Alobaidi, Z.; Rawi, Z.; Arfken, C.L. Prevalence of possible mental disorders in Syrian refugees resettling in the united states screened at primary care. J. Immigr. Minor. Health 2019, 21, 664–667. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, A.; Rosenberg, D.; Haddad, L.; Arfken, C.L. Mental health in Syrian refugee children resettling in the united states: War trauma, migration, and the role of parental stress. J. Am. Acad. Child. Adolesc. Psychiatry 2018, 57, 209–211. [Google Scholar] [CrossRef]
- Blevins, C.A.; Weathers, F.W.; Davis, M.T.; Witte, T.K.; Domino, J.L. The post-traumatic stress Disorder checklist for DSM-5 (PCL-5): Development and initial psychometric evaluation. J. Trauma. Stress 2015, 28, 489–498. [Google Scholar] [CrossRef]
- Terhakopian, A.; Sinaii, N.; Engel, C.C.; Schnurr, P.P.; Hoge, C.W. Estimating population prevalence of post-traumatic stress disorder: An example using the PTSD checklist. J. Trauma. Stress 2008, 21, 290–300. [Google Scholar] [CrossRef]
- Derogatis, L.R.; Lipman, R.S.; Rickels, K.; Uhlenhuth, E.H.; Covi, L. The Hopkins Symptom Checklist (HSCL): A self-report symptom inventory. Behav. Sci. 1974, 19, 1–15. [Google Scholar] [CrossRef]
- Mwendwa, D.T.; Ali, M.K.; Sims, R.C.; Madhere, S.; Levy, S.A.; Callender, C.O.; Campbell, A.L. Psychometric properties of the cook medley hostility scale and its association with inflammatory markers in African Americans. Psychol. Health Med. 2013, 18, 431–444. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Macintosh; IBM Corp.: Armonk, NY, USA, 2017. [Google Scholar]
- Dong, Y.; Peng, C.Y. Principled missing data methods for researchers. Springerplus 2013, 2, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindqvist, D.; Wolkowitz, O.M.; Mellon, S.; Yehuda, R.; Flory, J.D.; Henn-Haase, C.; Bierer, L.M.; Abu-Amara, D.; Coy, M.; Neylan, T.C.; et al. Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress. Brain Behav. Immun. 2014, 42, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Babyak, M.A. What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 2004, 66, 411–421. [Google Scholar] [PubMed] [Green Version]
- Miller, G.E.; Brody, G.H.; Yu, T.; Chen, E. A family-oriented psychosocial intervention reduces inflammation in low-SES African American youth. Proc. Natl. Acad. Sci. USA 2014, 111, 11287–11292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nusslock, R.; Body, G.H.; Armstrong, C.C.; Carroll, A.L.; Sweet, L.H.; Yu, T.; Barton, A.W.; Hallowell, E.S.; Chen, E.; Higgins, J.P.; et al. Higher peripheral inflammatory signaling associated with lower resting-state functional brain connectivity in emotion regulation and central executive networks. Biol. Psychiatry 2019, 86, 153–162. [Google Scholar] [CrossRef]
- Bersani, F.S.; Wolkowitz, O.M.; Lindqvist, D.; Yehuda, R.; Flory, J.; Bierer, L.M.; Makotine, I.; Abu-Amara, D.; Coy, M.; Reus, V.I.; et al. Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation. Brain Behav. Immun. 2016, 52, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Ben-Zion, Z.; Zeevi, Y.; Jackob Keynan, N.; Admon, R.; Sharon, H.; Halpern, P.; Liberzon, I.; Shalev, A.Y.; Benjamini, Y.; Hendler, T. Multi-domain potential biomarkers for post traumatic stress disorder (PTSD) severity in recent trauma survivors. BioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 2009, 65, 732–741. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.; Tam, W.W.; Zhang, M.W.; Ho, C.S.; Hussain, S.F.; McIntyre, R.S.; Ho, R.C. IL-1beta, IL-6, TNF- alpha and CRP in elderly patients with depression or Alzheimer’s disease: Systematic review and meta-analysis. Sci. Rep. 2018, 8, 12050. [Google Scholar] [CrossRef]
- Lu, Y.; Ho, C.S.; Liu, X.; Chua, A.N.; Wang, W.; McIntyre, R.S.; Ho, R.C. Chronic administration of fluoxetine and pro-inflammatory cytokine change in a rat model of depression. PLoS ONE 2017, 12, e0186700. [Google Scholar] [CrossRef] [Green Version]
Age | Sex | IL1β | CRP | IL18 | PTSD | Anxiety | Depression | |
---|---|---|---|---|---|---|---|---|
n | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
Mean | 36.639 | 0.556 | 4017.320 | 140.929 | 9952.472 | 38.327 | 1.845 | 1.928 |
Std. Deviation | 10.965 | 0.504 | 5223.862 | 180.076 | 8068.229 | 14.020 | 0.633 | 0.646 |
Minimum | 19.000 | 0.000 | 161.954 | 1.090 | 1338.796 | 17.000 | 1.000 | 1.000 |
Maximum | 65.000 | 1.000 | 18820.207 | 639.670 | 40018.593 | 81.000 | 3.412 | 3.144 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasser, L.R.; Burghardt, P.; Daugherty, A.M.; Amirsadri, A.; Javanbakht, A. Inflammation and Trauma-Related Psychopathology in Syrian and Iraqi Refugees. Behav. Sci. 2020, 10, 75. https://doi.org/10.3390/bs10040075
Grasser LR, Burghardt P, Daugherty AM, Amirsadri A, Javanbakht A. Inflammation and Trauma-Related Psychopathology in Syrian and Iraqi Refugees. Behavioral Sciences. 2020; 10(4):75. https://doi.org/10.3390/bs10040075
Chicago/Turabian StyleGrasser, Lana Ruvolo, Paul Burghardt, Ana M Daugherty, Alireza Amirsadri, and Arash Javanbakht. 2020. "Inflammation and Trauma-Related Psychopathology in Syrian and Iraqi Refugees" Behavioral Sciences 10, no. 4: 75. https://doi.org/10.3390/bs10040075
APA StyleGrasser, L. R., Burghardt, P., Daugherty, A. M., Amirsadri, A., & Javanbakht, A. (2020). Inflammation and Trauma-Related Psychopathology in Syrian and Iraqi Refugees. Behavioral Sciences, 10(4), 75. https://doi.org/10.3390/bs10040075