The Recognition of Cross-Cultural Emotional Faces Is Affected by Intensity and Ethnicity in a Japanese Sample
Abstract
:1. Introduction
Significance
2. Methods and Materials
2.1. Participants
2.2. Stimuli
2.3. EEG
2.4. Facial Expression Recognition Task
3. Methods and Techniques
3.1. Behavioral Response: Processing and Statistics
3.2. EEG Processing
3.3. Arousal Index
3.4. Frontal Asymmetry Index
3.5. EEG Statistics
4. Results and Analysis
4.1. Behavioral Results
4.1.1. Main Effects: Student’s t-Tests
4.1.2. Interaction Effects: Student’s t-Tests
4.1.3. Logistic Regression
4.2. Neurophysiological Results
5. Discussion
5.1. Limitations
5.2. Applications and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsikandilakis, M.; Bali, P.; Derrfuss, J.; Chapman, P. Anger and hostility: Are they different? An analytical exploration of facial-expressive differences, and physiological and facial-emotional responses. Cogn. Emot. 2020, 34, 581–595. [Google Scholar] [CrossRef]
- Charles, D. The Expression of the Emotions in Man and Animals; John Murray: London, UK, 1872. [Google Scholar]
- Tomkins, S.S.; McCarter, R. What and where are the primary affects? Some evidence for a theory. Percept. Mot. Skills 1964, 18, 119–158. [Google Scholar] [CrossRef]
- Ekman, P. Cross-cultural studies of facial expression. Darwin Facial Expr. A Century Res. Rev. 1973, 169222, 1. [Google Scholar]
- Izard, C.E.C.E. The Face of Emotion; Appleton-Century-Crofts: New York, NY, USA, 1971. [Google Scholar]
- Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 1971, 17, 124. [Google Scholar] [CrossRef] [Green Version]
- Elfenbein, H.A.; Ambady, N. On the universality and cultural specificity of emotion recognition: A meta-analysis. Psychol. Bull. 2002, 128, 203–235. [Google Scholar] [CrossRef] [Green Version]
- Anastassiou-Hadjicharalambous, X.; Essau, C.A. Culture and Emotion. In The Encyclopedia of Child and Adolescent Development; John Wiley & Sons, Inc.: New York, NY, USA, 2019; pp. 1–18. [Google Scholar]
- Franzoni, V.; Vallverdù, J.; Milani, A. Errors, biases and overconfidence in artificial emotional modeling. In Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence-Companion Volume, Thessaloniki, Greece, 14–17 October 2019; pp. 86–90. [Google Scholar]
- Ekman, P.; Cordaro, D. What is meant by calling emotions basic. Emot. Rev. 2011, 3, 364–370. [Google Scholar] [CrossRef]
- Tracy, J.L.; Randles, D. Four models of basic emotions: A review of Ekman and Cordaro, Izard, Levenson, and Panksepp and Watt. Emot. Rev. 2011, 3, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Schirmer, A.; Adolphs, R. Emotion perception from face, voice, and touch: Comparisons and convergence. Trends Cogn. Sci. 2017, 21, 216–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mühlenbeck, C.; Pritsch, C.; Wartenburger, I.; Telkemeyer, S.; Liebal, K. Attentional bias to facial expressions of different emotions—A cross-cultural comparison of≠ Akhoe Hai|| om and German children and adolescents. Front. Psychol. 2020, 11, 795. [Google Scholar] [CrossRef]
- Lee, K.U.; Khang, H.S.; Kim, K.T.; Kim, Y.J.; Kweon, Y.S.; Shin, Y.W.; Kwon, J.S.; Ho, S.H.; Garfinkel, S.N.; Chae, J.H.; et al. Distinct processing of facial emotion of own-race versus other-race. Neuroreport 2008, 19, 1021–1025. [Google Scholar] [CrossRef]
- Doi, H.; Amamoto, T.; Okishige, Y.; Kato, M.; Shinohara, K. The own-sex effect in facial expression recognition. Neuroreport 2010, 21, 564–568. [Google Scholar] [CrossRef]
- Wang, H.; Han, C.; Hahn, A.C.; Fasolt, V.; Morrison, D.K.; Holzleitner, I.J.; DeBruine, L.M.; Jones, B.C. A data-driven study of Chinese participants’ social judgments of Chinese faces. PLoS ONE 2019, 14, e0210315. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.V.; Ray, S.B.; Srinivasan, N. Cross-cultural emotion recognition and evaluation of Radboud faces database with an Indian sample. PLoS ONE 2018, 13, e0203959. [Google Scholar] [CrossRef] [PubMed]
- Hugenberg, K.; Sczesny, S. On Wonderful Women and Seeing Smiles: Social Categorization Moderates the Happy Face Response Latency Advantage. Soc. Cogn. 2006, 24, 516–539. [Google Scholar] [CrossRef]
- Gray, K.L.; Barber, L.; Murphy, J.; Cook, R. Social interaction contexts bias the perceived expressions of interactants. Emotion 2017, 17, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.; Ji, L.J.; Marks, M.; Zhang, Z. Two sides of emotion: Exploring positivity and negativity in six basic emotions across cultures. Front. Psychol. 2017, 8, 610. [Google Scholar] [CrossRef]
- Hugenberg, K.; Bodenhausen, G.V. Facing prejudice: Implicit prejudice and the perception of facial threat. Psychol. Sci. 2003, 14, 640–643. [Google Scholar] [CrossRef] [Green Version]
- Plant, E.A.; Kling, K.C.; Smith, G.L. The Influence of Gender and Social Role on the Interpretation of Facial Expressions. Sex Roles 2004, 51, 187–196. [Google Scholar] [CrossRef]
- Aviezer, H.; Ensenberg, N.; Hassin, R.R. The inherently contextualized nature of facial emotion perception. Curr. Opin. Psychol. 2017, 17, 47–54. [Google Scholar] [CrossRef]
- Hassin, R.R.; Aviezer, H.; Bentin, S. Inherently ambiguous: Facial expressions of emotions, in context. Emot. Rev. 2013, 5, 60–65. [Google Scholar] [CrossRef]
- Krumhuber, E.G.; Kappas, A.; Manstead, A.S. Effects of dynamic aspects of facial expressions: A review. Emot. Rev. 2013, 5, 41–46. [Google Scholar] [CrossRef]
- Furey, E.; Blue, J. The Emotographic Iceberg: Modelling Deep Emotional Affects Utilizing Intelligent Assistants and the IoT. In Proceedings of the 2019 19th International Conference on Computational Science and Its Applications (ICCSA), St. Petersburg, Russia, 1–4 July 2019; pp. 175–180. [Google Scholar]
- Venturoso, L.; Gabrieli, G.; Truzzi, A.; Azhari, A.; Setoh, P.; Bornstein, M.H.; Esposito, G. Effects of Baby Schema and Mere Exposure on Explicit and Implicit Face Processing. Front. Psychol. 2019, 10, 2649. [Google Scholar] [CrossRef]
- Schindler, S.; Bublatzky, F. Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex 2020, 130, 362–386. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Jones, E.; Gable, P.A.; Peterson, C.K. The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biol. Psychol. 2010, 84, 451–462. [Google Scholar] [CrossRef]
- Palmiero, M.; Piccardi, L. Frontal EEG asymmetry of mood: A mini-review. Front. Behav. Neurosci. 2017, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Grimshaw, G.M.; Carmel, D. An asymmetric inhibition model of hemispheric differences in emotional processing. Front. Psychol. 2014, 5, 489. [Google Scholar] [CrossRef]
- Gross, T.F. Own-ethnicity bias in the recognition of Black, East Asian, Hispanic, and White faces. Basic Appl. Soc. Psychol. 2009, 31, 128–135. [Google Scholar] [CrossRef]
- Lim, N. Cultural differences in emotion: Differences in emotional arousal level between the East and the West. Integr. Med. Res. 2016, 5, 105–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, J.A.; Levenson, R.W. Emotion recognition across cultures: The influence of ethnicity on empathic accuracy and physiological linkage. Emotion 2009, 9, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundqvist, D.; Flykt, A.; Öhman, A. The Karolinska directed emotional faces (KDEF). CD ROM Dep. Clin. Neurosci. Psychol. Sect. Karolinska Inst. 1998, 91, 630. [Google Scholar]
- Doi, H.; Fujisawa, T.X.; Kanai, C.; Ohta, H.; Yokoi, H.; Iwanami, A.; Kato, N.; Shinohara, K. Recognition of facial expressions and prosodic cues with graded emotional intensities in adults with Asperger syndrome. J. Autism Dev. Disord. 2013, 43, 2099–2113. [Google Scholar] [CrossRef]
- Goeleven, E.; De Raedt, R.; Leyman, L.; Verschuere, B. The Karolinska directed emotional faces: A validation study. Cogn. Emot. 2008, 22, 1094–1118. [Google Scholar] [CrossRef]
- Noguchi, K.; Abel, R.S.; Marmolejo-Ramos, F.; Konietschke, F. Nonparametric multiple comparisons. Behav. Res. Methods 2020, 52, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Variable selection with stepwise and best subset approaches. Ann. Transl. Med. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Goj, R.; Jas, M.; Brooks, T.; Parkkonen, L.; et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 2013, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Gramfort, A.; Luessi, M.; Larson, E.; Engemann, D.A.; Strohmeier, D.; Brodbeck, C.; Parkkonen, L.; Hämäläinen, M.S. MNE software for processing MEG and EEG data. Neuroimage 2014, 86, 446–460. [Google Scholar] [CrossRef] [Green Version]
- Jas, M.; Engemann, D.; Raimondo, F.; Bekhti, Y.; Gramfort, A. Automated rejection and repair of bad trials in MEG/EEG. In Proceedings of the 2016 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Trento, Italy, 22–24 June 2016; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Jas, M.; Engemann, D.A.; Bekhti, Y.; Raimondo, F.; Gramfort, A. Autoreject: Automated artifact rejection for MEG and EEG data. NeuroImage 2017, 159, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Freeman, W.; Quiroga, R.Q. Imaging Brain Function with EEG: Advanced Temporal and Spatial Analysis of Electroencephalographic Signals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Güntekin, B.; Başar, E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014, 58, 33–51. [Google Scholar] [CrossRef]
- Dong, Q.; Li, Y.; Hu, B.; Liu, Q.; Li, X.; Liu, L. A solution on ubiquitous EEG-based biofeedback music therapy. In Proceedings of the 5th International Conference on Pervasive Computing and Applications, Maribor, Slovenia, 1–3 December 2010; pp. 32–37. [Google Scholar] [CrossRef]
- Woodruff, C.C.; Daut, R.; Brower, M.; Bragg, A. Electroencephalographic α-band and β-band correlates of perspective-taking and personal distress. Neuroreport 2011, 22, 744–748. [Google Scholar] [CrossRef]
- Navea, R.F.; Dadios, E. Beta/Alpha power ratio and alpha asymmetry characterization of EEG signals due to musical tone stimulation. In Proceedings of the Project Einstein 2015, De La Salle University, Florence, Italy, 25 September–1 October 2015. [Google Scholar]
- Lin, Y.P.; Wang, C.H.; Jung, T.P.; Wu, T.L.; Jeng, S.K.; Duann, J.R.; Chen, J.H. EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [Google Scholar]
- Harmon-Jones, E.; Allen, J.J. The role of affect in the mere exposure effect: Evidence from psychophysiological and individual differences approaches. Personal. Soc. Psychol. Bull. 2001, 27, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Winkler, I.; Jäger, M.; Mihajlovic, V.; Tsoneva, T. Frontal EEG asymmetry based classification of emotional valence using common spatial patterns. World Acad. Sci. Eng. Technol. 2010, 45, 373–378. [Google Scholar]
- Loveless, J.P.; Nicoletta, A.J.; Winters, A.R.; Carels, R.A.; Wuensch, K.L.; Whited, M.C.; McCubbin, J.A.; Everhart, D.E. Exploring the relationship between frontal asymmetry and emotional dampening. Int. J. Psychophysiol. 2018, 123, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Harmon-Jones, E. Contributions from research on anger and cognitive dissonance to understanding the motivational functions of asymmetrical frontal brain activity. Biol. Psychol. 2004, 67, 51–76. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.E.; Blais, C.; Scheepers, C.; Schyns, P.G.; Caldara, R. Cultural Confusions Show that Facial Expressions Are Not Universal. Curr. Biol. 2009, 19, 1543–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Sauter, D.A.; Van Kleef, G.A. Seeing mixed emotions: The specificity of emotion perception from static and dynamic facial expressions across cultures. J. Cross-Cult. Psychol. 2018, 49, 130–148. [Google Scholar] [CrossRef] [Green Version]
- Jack, R.E.; Garrod, O.G.B.; Yu, H.; Caldara, R.; Schyns, P.G. Facial expressions of emotion are not culturally universal. Proc. Natl. Acad. Sci. USA 2012, 109, 7241–7244. Available online: https://www.pnas.org/content/109/19/7241?sid= (accessed on 20 April 2021). [CrossRef] [Green Version]
- Schneider, J.N.; Brick, T.R.; Dziobek, I. Distance to the Neutral Face Predicts Arousal Ratings of Dynamic Facial Expressions in Individuals With and Without Autism Spectrum Disorder. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef]
- Wenzler, S.; Levine, S.; van Dick, R.; Oertel-Knöchel, V.; Aviezer, H. Beyond pleasure and pain: Facial expression ambiguity in adults and children during intense situations. Emotion 2016, 16, 807. [Google Scholar] [CrossRef]
- Yoshimura, N.; Morimoto, K.; Murai, M.; Kihara, Y.; Marmolejo-Ramos, F.; Kubik, V.; Yamada, Y. Age of smile: A cross-cultural replication report of Ganel and Goodale (2018). J. Cult. Cogn. Sci. 2021, 5, 1–15. [Google Scholar] [CrossRef]
- Mavratzakis, A.; Herbert, C.; Walla, P. Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: A simultaneous EEG and facial EMG study. Neuroimage 2016, 124, 931–946. [Google Scholar] [CrossRef]
- Reznik, S.J.; Allen, J.J. Frontal asymmetry as a mediator and moderator of emotion: An updated review. Psychophysiology 2018, 55, e12965. [Google Scholar] [CrossRef] [PubMed]
- Cheon, B.; Esposito, G. Brief exposure to infants activates social and intergroup vigilance. Behav. Sci. 2020, 10, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; van Kleef, G.A.; Sauter, D.A. Revisiting cultural differences in emotion perception between easterners and westerners: Chinese perceivers are accurate, but see additional non-intended emotions in negative facial expressions. J. Exp. Soc. Psychol. 2019, 82, 152–159. [Google Scholar] [CrossRef]
- Marmolejo-Ramos, F.; Murata, A.; Sasaki, K.; Yamada, Y.; Ikeda, A.; Hinojosa, J.A.; Watanabe, K.; Parzuchowski, M.; Tirado, C.; Ospina, R. Your Face and Moves Seem Happier When I Smile. Exp. Psychol. 2020. [Google Scholar] [CrossRef]
- Munshi, A.; Mishra, S.; Zhang, N.; Paquette, L.; Ocumpaugh, J.; Baker, R.; Biswas, G. Modeling the Relationships Between Basic and Achievement Emotions in Computer-Based Learning Environments. In International Conference on Artificial Intelligence in Education; Springer: Berlin/Heidelberg, Germany, 2020; pp. 411–422. [Google Scholar]
- Blanchette, I.; Richards, A.; Cross, A. Anxiety and the interpretation of ambiguous facial expressions: The influence of contextual cues. Q. J. Exp. Psychol. 2007, 60, 1101–1115. [Google Scholar] [CrossRef]
- Davis, F.C.; Neta, M.; Kim, M.J.; Moran, J.M.; Whalen, P.J. Interpreting ambiguous social cues in unpredictable contexts. Soc. Cogn. Affect. Neurosci. 2016, 11, 775–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, U.; Hareli, S. The social signal value of emotions: The role of contextual factors in social inferences drawn from emotion displays. In Oxford Series in Social Cognition and Social Neuroscience. The Science of Facial Expression; Oxford University Press Inc.: Oxford, UK, 2017. [Google Scholar]
- Diano, M.; Tamietto, M.; Celeghin, A.; Weiskrantz, L.; Tatu, M.K.; Bagnis, A.; Duca, S.; Geminiani, G.; Cauda, F.; Costa, T. Dynamic changes in amygdala psychophysiological connectivity reveal distinct neural networks for facial expressions of basic emotions. Sci. Rep. 2017, 7, 45260. [Google Scholar] [CrossRef] [PubMed]
- Gerber, A.J.; Posner, J.; Gorman, D.; Colibazzi, T.; Yu, S.; Wang, Z.; Kangarlu, A.; Zhu, H.; Russell, J.; Peterson, B.S. An affective circumplex model of neural systems subserving valence, arousal, and cognitive overlay during the appraisal of emotional faces. Neuropsychologia 2008, 46, 2129–2139. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.S.; Weekes, N.Y.; Wang, T.H. The effect of a naturalistic stressor on frontal EEG asymmetry, stress, and health. Biol. Psychol. 2007, 75, 239–247. [Google Scholar] [CrossRef] [PubMed]
Behavioral Variables | Total | Males | Females |
---|---|---|---|
All Faces | 0.80 (0.01) | 0.80 (0.02) | 0.80 (0.02) |
Male Faces | 0.81 (0.01) | 0.80 (0.02) | 0.81 (0.02) |
Female Faces | 0.79 (0.01) | 0.80 (0.02) | 0.79 (0.02) |
Japanese Neutral Faces | 0.88 (0.03) | 0.92 (0.04) | 0.84 (0.05) |
Caucasian Neutral Faces | 0.94 (0.02) | 0.96 (0.02) | 0.93 (0.04) |
Happy Faces | 0.75 (0.03) | 0.75 (0.04) | 0.75 (0.04) |
Angry Faces | 0.74 (0.02) | 0.71 (0.02) | 0.76 (0.02) |
Japanese Emotional Faces | 0.65 (0.03) | 0.61 (0.03) | 0.69 (0.03) |
Caucasian Emotional Faces | 0.84 (0.02) | 0.85 (0.02) | 0.83 (0.02) |
Low Intensity Faces | 0.51 (0.03) | 0.50 (0.05) | 0.53 (0.04) |
High Intensity Faces | 0.98 (0.01) | 0.96 (0.02) | 0.99 (0.01) |
Japanese Low Intensity Happy Faces | 0.53 (0.07) | 0.44 (0.10) | 0.61 (0.09) |
Caucasian Low Intensity Happy Faces | 0.50 (0.06) | 0.60 (0.07) | 0.41 (0.08) |
Japanese Low Intensity Angry Faces | 0.16 (0.05) | 0.12 (0.06) | 0.20 (0.07) |
Caucasian Low Intensity Angry Faces | 0.86 (0.03) | 0.83 (0.05) | 0.89 (0.03) |
Japanese High Intensity Happy Faces | 0.99 (0.01) | 0.98 (0.02) | 1.00 (0.00) |
Caucasian High Intensity Happy Faces | 0.98 (0.01) | 0.96 (0.03) | 1.00 (0.00) |
Japanese High Intensity Angry Faces | 0.94 (0.03) | 0.90 (0.05) | 0.96 (0.02) |
Caucasian High Intensity Angry Faces | 1.00 (0.00) | 1.00 (0.00) | 1.00 (0.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonassi, A.; Ghilardi, T.; Gabrieli, G.; Truzzi, A.; Doi, H.; Borelli, J.L.; Lepri, B.; Shinohara, K.; Esposito, G. The Recognition of Cross-Cultural Emotional Faces Is Affected by Intensity and Ethnicity in a Japanese Sample. Behav. Sci. 2021, 11, 59. https://doi.org/10.3390/bs11050059
Bonassi A, Ghilardi T, Gabrieli G, Truzzi A, Doi H, Borelli JL, Lepri B, Shinohara K, Esposito G. The Recognition of Cross-Cultural Emotional Faces Is Affected by Intensity and Ethnicity in a Japanese Sample. Behavioral Sciences. 2021; 11(5):59. https://doi.org/10.3390/bs11050059
Chicago/Turabian StyleBonassi, Andrea, Tommaso Ghilardi, Giulio Gabrieli, Anna Truzzi, Hirokazu Doi, Jessica L. Borelli, Bruno Lepri, Kazuyuki Shinohara, and Gianluca Esposito. 2021. "The Recognition of Cross-Cultural Emotional Faces Is Affected by Intensity and Ethnicity in a Japanese Sample" Behavioral Sciences 11, no. 5: 59. https://doi.org/10.3390/bs11050059
APA StyleBonassi, A., Ghilardi, T., Gabrieli, G., Truzzi, A., Doi, H., Borelli, J. L., Lepri, B., Shinohara, K., & Esposito, G. (2021). The Recognition of Cross-Cultural Emotional Faces Is Affected by Intensity and Ethnicity in a Japanese Sample. Behavioral Sciences, 11(5), 59. https://doi.org/10.3390/bs11050059