Assessing Measurement Properties of a Simplified Chinese Version of Sleep Condition Indicator (SCI-SC) in Community Residents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedures
2.2. Measures
2.2.1. Sleep Condition Indicator (SCI)
2.2.2. Sleep Quality Questionnaire (SQQ)
2.3. Statistical Approach
2.3.1. Structural Validity
2.3.2. Measurement Invariance
2.3.3. Short Form of the SCI (SCI_SF)
2.3.4. Construct Validity
2.3.5. Internal Consistency
2.4. Analysis Software
3. Results
3.1. Sample Description
3.2. Descriptive Statistics
3.3. Structural Validity
3.4. Measurement Invariance
3.5. Short Form of the SCI (SCI_SF)
3.6. Construct Validity
3.7. Internal Consistency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buysse, D.J. Sleep Health: Can We Define It? Does It Matter? Sleep 2014, 37, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferini-Strambi, L.; Auer, R.; Bjorvatn, B.; Castronovo, V.; Franco, O.; Gabutti, L.; Galbiati, A.; Hajak, G.; Khatami, R.; Kitajima, T.; et al. Insomnia disorder: Clinical and research challenges for the 21st century. Eur. J. Neurol. 2021, 28, 2156–2167. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.P. Prevalence, Impact, and Burden of Insomnia and Discussing It with Patients. J. Clin. Psychiatry 2021, 82, EI20008BR1C. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Sateia, M.J. International Classification of Sleep Disorders-Third Edition. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Molnar, F.; Frank, C.; Chun, S.; Lee, E.K. Insomnia in older adults: Approaching a clinical challenge systematically. Can. Fam. Physician 2021, 67, 25–26. [Google Scholar] [CrossRef]
- Buysse, D.J.; Ancoli-Israel, S.; Edinger, J.D.; Lichstein, K.L.; Morin, C.M. Recommendations for a Standard Research Assessment of Insomnia. Sleep 2006, 29, 1155–1173. [Google Scholar] [CrossRef]
- Bayard, S.; Lebrun, C.; Maudarbocus, K.H.; Schellaert, V.; Joffre, A.; Ferrante, E.; Le Louedec, M.; Cournoulat, A.; Gely-Nargeot, M.-C.; Luik, A.I. Validation of a French version of the Sleep Condition Indicator: A clinical screening tool for insomnia disorder according to DSM-5 criteria. J. Sleep Res. 2017, 26, 702–708. [Google Scholar] [CrossRef]
- Wong, M.L.; Lau, K.N.T.; Espie, C.A.; Luik, A.I.; Kyle, S.D.; Lau, E.Y.Y. Psychometric properties of the Sleep Condition Indicator and Insomnia Severity Index in the evaluation of insomnia disorder. Sleep Med. 2017, 33, 76–81. [Google Scholar] [CrossRef]
- Espie, C.A.; Kyle, S.D.; Hames, P.; Gardani, M.; Fleming, L.; Cape, J. The Sleep Condition Indicator: A clinical screening tool to evaluate insomnia disorder. BMJ Open 2014, 4, e004183. [Google Scholar] [CrossRef]
- Espie, C.A.; Kyle, S.D.; Williams, C.; Ong, J.C.; Douglas, N.J.; Hames, P.; Brown, J.S.L. A Randomized, Placebo-Controlled Trial of Online Cognitive Behavioral Therapy for Chronic Insomnia Disorder Delivered via an Automated Media-Rich Web Application. Sleep 2012, 35, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Espie, C.A.; Kyle, S.D.; Hames, P.; Cyhlarova, E.; Benzeval, M. The daytime impact of DSM-5 insomnia disorder: Comparative analysis of insomnia subtypes from the Great British Sleep Survey. J. Clin. Psychiatry 2012, 73, e1478–e1484. [Google Scholar] [CrossRef]
- Voinescu, B.I.; Szentágotai, A. Categorical and dimensional assessment of insomnia in the general population. J. Cogn. Behav. Psychother. 2013, 13, 197–209. [Google Scholar]
- Palagini, L.; Ragno, G.; Caccavale, L.; Gronchi, A.; Terzaghi, M.; Mauri, M.; Kyle, S.; Espie, C.A.; Manni, R. Italian validation of the Sleep Condition Indicator: A clinical screening tool to evaluate Insomnia Disorder according to DSM-5 criteria. Int. J. Psychophysiol. 2015, 98, 435–440. [Google Scholar] [CrossRef]
- Hellström, A.; Hagell, P.; Broström, A.; Ulander, M.; Luik, A.I.; Espie, C.A.; Årestedt, K. A classical test theory evaluation of the Sleep Condition Indicator accounting for the ordinal nature of item response data. PLoS ONE 2019, 14, e0213533. [Google Scholar] [CrossRef]
- Ranjkesh, F.; Nasiri, M.; Sharif Nia, S.H.; Goudarzian, A.H. Validation of the Persian Version of the Sleep Condition Indicator in Pregnant Women. Iran. J. Epidemiol. 2019, 14, 366–374. [Google Scholar]
- Khaled, S.M.; Petcu, C.; Al-Thani, M.A.; Al-Hamadi, A.M.H.A.; Daher-Nashif, S.; Zolezzi, M.; Woodruff, P. Prevalence and associated factors of DSM-5 insomnia disorder in the general population of Qatar. BMC Psychiatry 2021, 21, 84–93. [Google Scholar] [CrossRef]
- Prinsen, C.A.C.; Mokkink, L.B.; Bouter, L.M.; Alonso, J.; Patrick, D.L.; de Vet, H.C.W.; Terwee, C.B. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual. Life Res. 2018, 27, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
- Espie, C.A.; Farias Machado, P.; Carl, J.R.; Kyle, S.D.; Cape, J.; Siriwardena, A.N.; Luik, A.I. The Sleep Condition Indicator: Reference values derived from a sample of 200,000 adults. J. Sleep Res. 2018, 27, e12643. [Google Scholar] [CrossRef] [Green Version]
- Anthoine, E.; Moret, L.; Regnault, A.; Sébille, V.; Hardouin, J.-B. Sample size used to validate a scale: A review of publications on newly-developed patient reported outcomes measures. Health Qual. Life Outcomes 2014, 12, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Boateng, G.O.; Neilands, T.B.; Frongillo, E.A.; Melgar-Quiñonez, H.R.; Young, S.L. Best Practices for Developing and Validating Scales for Health, Social, and Behavioral Research: A Primer. Front. Public Health 2018, 6, 149. [Google Scholar] [CrossRef]
- Kato, T. Development of the Sleep Quality Questionnaire in healthy adults. J. Health Psychol. 2014, 19, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Meng, R. Development and Evaluation of the Chinese Version of the Sleep Quality Questionnaire. Ph.D. Thesis, Wuhan University, Wuhan, China, 2020. (In Chinese). [Google Scholar]
- Luo, Y.; Fei, S.; Gong, B.; Sun, T.; Meng, R. Understanding the Mediating Role of Anxiety and Depression on the Relationship Between Perceived Stress and Sleep Quality Among Health Care Workers in the COVID-19 Response. Nat. Sci. Sleep 2021, 13, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Kato, T.; Mastrotheodoros, S.; Dong, L.; Fong, D.Y.T.; Wang, F.; Cao, M.; Liu, X.; Yao, C.; Cao, J.; et al. Adaptation and validation of the Chinese version of the Sleep Quality Questionnaire. Qual. Life Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: Pearson New International Edition, 7th ed.; Pearson Higher Education: London, UK, 2014. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Publications: New York, NY, USA, 2016. [Google Scholar]
- Putnick, D.L.; Bornstein, M.H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Struct. Equ. Modeling 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Nelemans, S.A.; Meeus, W.H.J.; Branje, S.J.T.; van Leeuwen, K.; Colpin, H.; Verschueren, K.; Goossens, L. Social Anxiety Scale for Adolescents (SAS-A) Short Form: Longitudinal Measurement Invariance in Two Community Samples of Youth. Assessment 2019, 26, 235–248. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B. Mplus User’s Guide: Statistical Analysis with Latent Variables, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Rosseel, Y. The lavaan Tutorial; Department of Data Analysis, Ghent University: Ghent, Belgium, 2021. [Google Scholar]
- Streiner, D.L.; Norman, G.R.; Cairney, J. Health Measurement Scales: A Practical Guide to Their Development and Use, 5th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Revelle, W.; Condon, D.M. Reliability from α to ω: A tutorial. Psychol. Assess. 2019, 31, 1395–1411. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.A. How can I deal with missing data in my study? Aust. N. Z. J. Public Health 2001, 25, 464–469. [Google Scholar] [CrossRef]
- Korkmaz, S.; Göksülük, D.; Zararsiz, G.J.R.J. MVN: An R package for assessing multivariate normality. R J. 2014, 6, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, T.D.; Pornprasertmanit, S.; Schoemann, A.M.; Rosseel, Y. semTools: Useful Tools for Structural Equation Modeling. R Package Version 0.5-5. Available online: https://CRAN.R-project.org/package=semTools (accessed on 8 July 2021).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Ministry of Health of the People’s Republic of China. Guidelines for the Prevention and Control of Overweight and Obesity in Chinese Adults. Acta Nutr. Sin. 2004, 26, 1–4. (In Chinese) [Google Scholar]
- National Health Commission of the People’s Republic of China. Screening for overweight and obesity among school-age children and adolescents. In Health Industry Standard of the People’s Republic of China (WS/T 586—2018); National Health Commission of the People’s Republic of China: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Curran, P.J.; West, S.G.; Finch, J.F. The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychol. Methods 1996, 1, 16–29. [Google Scholar] [CrossRef]
- Mardia, K.V. Measures of multivariate skewness and kurtosis with applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Cheng, A.S.K.; Imani, V.; Saffari, M.; Ohayon, M.M.; Pakpour, A.H. Advanced psychometric testing on a clinical screening tool to evaluate insomnia: Sleep condition indicator in patients with advanced cancer. Sleep Biol. Rhythm. 2020, 18, 343–349. [Google Scholar] [CrossRef]
- Schmitt, N.; Kuljanin, G. Measurement invariance: Review of practice and implications. Hum. Resour. Manag. Rev. 2008, 18, 210–222. [Google Scholar] [CrossRef]
- Meredith, W.; Teresi, J.A. An Essay on Measurement and Factorial Invariance. Medical Care 2006, 44, S69–S77. [Google Scholar] [CrossRef]
- Luik, A.I.; Machado, P.F.; Siriwardena, N.; Espie, C.A. Screening for insomnia in primary care: Using a two-item version of the Sleep Condition Indicator. Br. J. Gen. Pract. 2019, 69, 79–80. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.A.; Zaragoza Domingo, S.; Hamdache, L.Z.; Manchaiah, V.; Thammaiah, S.; Evans, C.; Wong, L.L.N. A good practice guide for translating and adapting hearing-related questionnaires for different languages and cultures. Int. J. Audiol. 2018, 57, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Hubley, A.M.; Zumbo, B.D. Validity and the Consequences of Test Interpretation and Use. Soc. Indic. Res. 2011, 103, 219–230. [Google Scholar] [CrossRef]
Variables | N = 751 | Missing (%) |
---|---|---|
Gender (n, % female) | 426 (56.724) | 1.198 |
Age (median, IQR) | 28 (22.500) | 0.266 |
Marital status (n, % married) | 413 (54.993) | 0.399 |
Body mass index (median, IQR) | 22.039 (4.732) | 0 |
Napping habits (n, % yes) | 563 (74.967) | 0.133 |
Generic exercise (n, % yes) | 344 (45.806) | 0 |
Hobby (n, % yes) | 394 (52.463) | 1.465 |
Administered (n, % Self-) | 565 (75.223) | 0 |
Mean | SD | Skewness | Kurtosis | Alpha | Omega | |
---|---|---|---|---|---|---|
| 2.996 | 1.164 | −1.272 | 0.924 | 0.813 | 0.798 |
| 3.298 | 1.190 | −1.712 | 1.802 | 0.826 | 0.812 |
| 3.237 | 1.203 | −1.560 | 1.327 | 0.785 | 0.771 |
| 2.470 | 0.886 | −0.134 | 0.091 | 0.785 | 0.758 |
| 2.968 | 0.901 | −0.726 | 0.417 | 0.791 | 0.791 |
| 2.956 | 0.904 | −0.726 | 0.453 | 0.793 | 0.794 |
| 3.095 | 0.893 | −0.941 | 0.803 | 0.781 | 0.783 |
| 3.142 | 1.451 | −1.443 | 0.429 | 0.793 | 0.774 |
Sleep Pattern | 15.144 | 4.152 | −1.079 | 0.595 | 0.734 | 0.746 |
Daytime Impact | 9.019 | 2.413 | −0.850 | 1.056 | 0.874 | 0.874 |
SCI_total | 24.162 | 5.783 | −0.923 | 0.559 | 0.817 | 0.799 |
SCI_SF | 6.332 | 1.783 | −1.224 | 0.933 | 0.587 | N/A |
Factor 1, Sleep Pattern | Factor 2, Daytime Impact | |
---|---|---|
SCI01 | 0.563 | −0.016 |
SCI02 | 0.470 | −0.050 |
SCI03 | 0.778 | −0.039 |
SCI04 | 0.625 | 0.172 |
SCI05 | −0.028 | 0.865 |
SCI06 | −0.077 | 0.863 |
SCI07 | 0.155 | 0.743 |
SCI08 | 0.646 | 0.078 |
Variance | 0.257 | 0.270 |
Hypothesis | χ2 (df) | p | Scaled Chi-Squared Difference Test | CFI | ΔCFI | TLI | ΔTLI | RMSEA (CI 90%) | ΔRMSEA | |
---|---|---|---|---|---|---|---|---|---|---|
Δχ2 (Δdf) | p | |||||||||
Gender (female vs. male) | ||||||||||
Configural | 105.380 (38) | <0.001 | 0.956 | 0.935 | 0.069 (0.055, 0.083) | |||||
Metric | 108.497 (44) | <0.001 | 2.905 (6) | 0.821 | 0.958 | 0.002 | 0.946 | 0.011 | 0.062 (0.049, 0.076) | −0.007 |
Scalar | 115.642 (50) | <0.001 | 5.258 (6) | 0.511 | 0.957 | −0.001 | 0.952 | 0.006 | 0.059 (0.046, 0.072) | −0.003 |
Strict | 134.615 (58) | <0.001 | 18.896 (8) | 0.015 | 0.950 | −0.007 | 0.952 | 0.000 | 0.059 (0.048, 0.071) | 0.000 |
Age (≤18 years vs. >18 years) | ||||||||||
Configural | 93.658 (38) | <0.001 | 0.962 | 0.944 | 0.062 (0.048, 0.077) | |||||
Metric | 95.802 (44) | <0.001 | 4.742 (6) | 0.577 | 0.965 | 0.003 | 0.955 | 0.011 | 0.056 (0.042, 0.070) | −0.006 |
Scalar | 125.828 (50) | <0.001 | 50.235 (6) | <0.001 | 0.949 | −0.016 | 0.942 | −0.013 | 0.064 (0.051, 0.076) | 0.008 |
Strict | 158.709 (58) | <0.001 | 31.048 (8) | <0.001 | 0.932 | −0.017 | 0.934 | −0.008 | 0.068 (0.057, 0.080) | 0.004 |
Marital Status (married vs. non-married) | ||||||||||
Configural | 111.858 (38) | <0.001 | 0.950 | 0.927 | 0.072 (0.058, 0.086) | |||||
Metric | 114.214 (44) | <0.001 | 2.008 (6) | 0.919 | 0.953 | 0.003 | 0.940 | 0.013 | 0.065 (0.052, 0.078) | −0.007 |
Scalar | 135.564 (50) | <0.001 | 23.156 (6) | <0.001 | 0.943 | −0.010 | 0.936 | −0.004 | 0.068 (0.055, 0.080) | 0.003 |
Strict | 172.915 (58) | <0.001 | 34.781 (8) | <0.001 | 0.923 | −0.020 | 0.926 | −0.010 | 0.073 (0.062, 0.084) | 0.005 |
BMI (thinness vs. normal vs. overweight vs. obesity) | ||||||||||
Configural | 146.126 (76) | <0.001 | 0.954 | 0.933 | 0.070 (0.054, 0.086) | |||||
Metric | 162.495 (94) | <0.001 | 16.993 (18) | 0.524 | 0.955 | 0.001 | 0.947 | 0.014 | 0.062 (0.047, 0.077) | −0.008 |
Scalar | 187.336 (112) | <0.001 | 22.896 (18) | 0.195 | 0.951 | −0.004 | 0.951 | 0.004 | 0.060 (0.046, 0.074) | −0.002 |
Strict | 201.283 (136) | <0.001 | 20.364 (24) | 0.676 | 0.958 | 0.007 | 0.965 | 0.014 | 0.051 (0.037, 0.063) | −0.009 |
Threshold | N/A | >0.05 | N/A | >0.05 | >0.90 | ≤0.010 | >0.90 | ≤0.010 | <0.08 | ≤0.015 |
Hypothesis | χ2 (df) | p | Scaled Chi-Squared Difference Test | CFI | ΔCFI | TLI | ΔTLI | RMSEA (CI 90%) | ΔRMSEA | |
---|---|---|---|---|---|---|---|---|---|---|
Δχ2 (Δdf) | p | |||||||||
Napping Habits (yes vs. no) | ||||||||||
Configural | 103.300 (38) | <0.001 | 0.957 | 0.936 | 0.068 (0.054, 0.082) | |||||
Metric | 105.323 (44) | <0.001 | 2.771 (6) | 0.837 | 0.959 | 0.002 | 0.948 | 0.012 | 0.061 (0.048, 0.074) | −0.007 |
Scalar | 109.004 (50) | <0.001 | 1.284 (6) | 0.973 | 0.961 | 0.002 | 0.956 | 0.008 | 0.056 (0.043, 0.069) | −0.005 |
Strict | 109.064 (58) | <0.001 | 6.639 (8) | 0.576 | 0.966 | 0.005 | 0.967 | 0.011 | 0.048 (0.036, 0.060) | −0.008 |
Exercise (yes vs. no) | ||||||||||
Configural | 89.550 (38) | <0.001 | 0.964 | 0.947 | 0.060 (0.046, 0.075) | |||||
Metric | 94.365 (44) | <0.001 | 4.491 (6) | 0.611 | 0.965 | 0.001 | 0.956 | 0.009 | 0.055 (0.041, 0.069) | −0.005 |
Scalar | 103.668 (50) | <0.001 | 8.471 (6) | 0.206 | 0.963 | −0.002 | 0.958 | 0.002 | 0.053 (0.040, 0.067) | −0.002 |
Strict | 122.227 (58) | <0.001 | 18.268 (8) | 0.019 | 0.955 | −0.008 | 0.957 | −0.001 | 0.054 (0.042, 0.066) | 0.001 |
Hobby (yes vs. no) | ||||||||||
Configural | 86.918 (38) | <0.001 | 0.967 | 0.952 | 0.059 (0.044, 0.073) | |||||
Metric | 96.350 (44) | <0.001 | 9.249 (6) | 0.160 | 0.965 | -0.002 | 0.956 | 0.004 | 0.056 (0.043, 0.070) | −0.003 |
Scalar | 100.199 (50) | <0.001 | 1.845 (6) | 0.933 | 0.967 | 0.002 | 0.963 | 0.007 | 0.052 (0.038, 0.065) | −0.004 |
Strict | 107.410 (58) | <0.001 | 9.318 (8) | 0.316 | 0.967 | 0.000 | 0.968 | 0.005 | 0.048 (0.035, 0.060) | −0.004 |
Administered Survey (self-administered vs. interviewer-administered) | ||||||||||
Configural | 103.677 (38) | <0.001 | 0.952 | 0.930 | 0.068 (0.054, 0.082) | |||||
Metric | 112.127 (44) | <0.001 | 7.958 (6) | 0.241 | 0.950 | −0.002 | 0.937 | 0.007 | 0.064 (0.051, 0.077) | −0.004 |
Scalar | 132.636 (50) | <0.001 | 22.555 (6) | <0.001 | 0.940 | −0.010 | 0.933 | −0.004 | 0.066 (0.054, 0.079) | 0.002 |
Strict | 160.884 (58) | <0.001 | 25.558 (8) | 0.001 | 0.925 | −0.015 | 0.928 | −0.005 | 0.069 (0.058, 0.080) | 0.003 |
Threshold | N/A | >0.05 | N/A | >0.05 | >0.90 | ≤0.010 | >0.90 | ≤0.010 | <0.08 | ≤0.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, R.; Lau, E.Y.Y.; Spruyt, K.; Miller, C.B.; Dong, L. Assessing Measurement Properties of a Simplified Chinese Version of Sleep Condition Indicator (SCI-SC) in Community Residents. Behav. Sci. 2022, 12, 433. https://doi.org/10.3390/bs12110433
Meng R, Lau EYY, Spruyt K, Miller CB, Dong L. Assessing Measurement Properties of a Simplified Chinese Version of Sleep Condition Indicator (SCI-SC) in Community Residents. Behavioral Sciences. 2022; 12(11):433. https://doi.org/10.3390/bs12110433
Chicago/Turabian StyleMeng, Runtang, Esther Yuet Ying Lau, Karen Spruyt, Christopher B. Miller, and Lu Dong. 2022. "Assessing Measurement Properties of a Simplified Chinese Version of Sleep Condition Indicator (SCI-SC) in Community Residents" Behavioral Sciences 12, no. 11: 433. https://doi.org/10.3390/bs12110433
APA StyleMeng, R., Lau, E. Y. Y., Spruyt, K., Miller, C. B., & Dong, L. (2022). Assessing Measurement Properties of a Simplified Chinese Version of Sleep Condition Indicator (SCI-SC) in Community Residents. Behavioral Sciences, 12(11), 433. https://doi.org/10.3390/bs12110433