Validation of the Mental Health Literacy Scale in French University Students
Abstract
:1. Introduction
1.1. Measuring Mental Health Literacy
1.2. Students’ Mental Health
1.3. Students’ Mental Health Literacy: Data and Interventions
1.4. The Present Study
2. Materials and Methods
2.1. Translation of the MHLS and Item Adaptation
2.2. Participants and Data Collection
2.3. Measurement and Missing Values
2.4. Data Analyses
3. Results
3.1. Face Validity
3.2. Distribution of the Items
3.3. Test Retest
3.4. Dimensionality
3.5. Structural Validity
3.6. Internal Consistency
3.7. Convergent and Discriminant Validity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jorm, A.F.; Korten, A.E.; Jacomb, P.A.; Christensen, H.; Rodgers, B.; Pollitt, P. “Mental health literacy”: A survey of the public’s ability to recognise mental disorders and their beliefs about the effectiveness of treatment. Med. J. Aust. 1997, 166, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Jorm, A.F. Mental health literacy: Public knowledge and beliefs about mental disorders. Br. J. Psychiatry 2000, 177, 396–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.M.; Jorm, A.F.; Wright, A. Improving mental health literacy as a strategy to facilitate early intervention for mental disorders. Med. J. Aust. 2007, 187, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.; McCarthy, M. Measuring Health: A Step in the Development of City Health Profiles; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 1996; pp. 1–68. [Google Scholar]
- O’Connor, M.; Casey, L. The Mental Health Literacy Scale (MHLS): A new scale-based measure of mental health literacy. Psychiatry Res. 2015, 229, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; McGrath, P.J.; Hayden, J.; Kutcher, S. Measurement properties of tools measuring mental health knowledge: A systematic review. BMC Psychiatry 2016, 16, 297. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; McGrath, P.J.; Hayden, J.; Kutcher, S. Measurement properties of mental health literacy tools measuring help-seeking: A systematic review. J. Ment. Health 2017, 26, 543–555. [Google Scholar] [CrossRef]
- Cha, E.S.; Kim, K.H.; Erlen, J.A. Translation of scales in cross-cultural research: Issues and techniques. J. Adv. Nurs. 2007, 58, 386–395. [Google Scholar] [CrossRef]
- Blanco, C.; Okuda, M.; Wright, C.; Hasin, D.S.; Grant, B.F.; Liu, S.M.; Olfson, M. Mental health of college students and their non–college-attending peers: Results from the national epidemiologic study on alcohol and related conditions. Arch. Gen. Psychiatry 2008, 65, 1429–1437. [Google Scholar] [CrossRef] [Green Version]
- Hunt, J.; Eisenberg, D. Mental Health Problems and Help-Seeking Behavior Among College Students. J. Adolesc. Health 2010, 46, 3–10. [Google Scholar] [CrossRef]
- Reddy, P.V. Awareness on Mental Health Problems and Help Seeking Behavior among College Students. Int. J. Indian Psychol 2017, 5, e82. [Google Scholar] [CrossRef]
- Shapiro, M.; Morris, M.; Pumariega, A. Increased rates of mental health service utilization by US college students. Psychiatr. Serv. 2019, 70, 528. [Google Scholar] [CrossRef]
- Storrie, K.; Ahern, K.; Tuckett, A. A systematic review: Students with mental health problems—A growing problem. Int. J. Nurs. Pract. 2010, 16, 1–6. [Google Scholar] [CrossRef]
- Kohler Giancola, J.; Grawitch, M.J.; Borchert, D. Dealing with the stress of college: A model for adult students. Adult Educ. Q. 2009, 59, 246–263. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Torrano, D.; Ibrayeva, L.; Sparks, J.; Lim, N.; Clementi, A.; Almukhambetova, A.; Nurtayev, Y.; Muratkyzy, A. Mental health and well-being of university students: A bibliometric mapping of the literature. Front. Psychol. 2020, 11, 1226. [Google Scholar] [CrossRef]
- Quek, T.T.; Tam, W.W.; Tran, B.X.; Zhang, M.; Zhang, Z.; Ho, C.S.; Ho, R.C. The Global Prevalence of Anxiety Among Medical Students: A Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 2735. [Google Scholar] [CrossRef] [Green Version]
- Auerbach, R.P.; Mortier, P.; Bruffaerts, R.; Alonso, J.; Benjet, C.; Cuijpers, P.; Demyttenaere, K.; Ebert, D.D.; Green, J.G.; Hasking, P.; et al. WHO World Mental Health Surveys International College Student Project: Prevalence and distribution of mental disorder. J. Abnorm. Psychol. 2018, 127, 623. [Google Scholar] [CrossRef]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef]
- Li, Y.; Wang, A.; Wu, Y.; Han, N.; Huang, H. Impact of the COVID-19 Pandemic on the Mental Health of College Students: A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 12, 669119. [Google Scholar] [CrossRef]
- Arsandaux, J.; Montagni, I.; Macalli, M.; Texier, N.; Pouriel, M.; Germain, R.; Mebarki, A.; Kinouani, S.; Tournier, M.; Schuck, S.; et al. Mental health condition of college students compared to non-students during COVID-19 lockdown: The CONFINS study. BMJ Open 2021, 11, e053231. [Google Scholar] [CrossRef]
- Marwood, M.R.; Hearn, J.H. Evaluating mental health literacy in medical students in the United Kingdom. J. Ment. Health Train. Educ. Pract. 2019, 14, 339–347. [Google Scholar] [CrossRef]
- Gorczynski, P.; Sims-schouten, W.; Hill, D.; Wilson, J.C. Examining mental health literacy, help seeking behaviours, and mental health outcomes in UK university students. J. Ment. Health Train. Educ. Pract. 2017, 12, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Mahmoodi, S.M.H.; Ahmadzad-Asl, M.; Eslami, M.; Abdi, M.; Hosseini Kahnamoui, Y.; Rasoulian, M. Mental Health Literacy and Mental Health Information-Seeking Behavior in Iranian University Students. Front. Psychiatry 2022, 13, 893534. [Google Scholar] [CrossRef]
- Kaneko, Y.; Motohashi, Y. Male gender and low education with poor mental health literacy: A population-based study. J. Epidemiol. 2007, 17, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Zaki, R.A.; Farid, N.D.N.; Kaur, K. The Determinants of Mental Health Literacy among Young Adolescents in Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 3242. [Google Scholar] [CrossRef]
- Furnham, A.; Cook, R.; Martin, N.; Batey, M. Mental health literacy among university students. J. Public Ment. Health 2011, 10, 198–210. [Google Scholar] [CrossRef]
- Miles, R.; Rabin, L.; Krishnan, A.; Grandoit, E.; Kloskowski, K. Mental health literacy in a diverse sample of undergraduate students: Demographic, psychological, and academic correlates. BMC Public Health 2020, 20, 1699. [Google Scholar] [CrossRef]
- Lo, K.; Gupta, T.; Keating, J.L. Interventions to promote mental health literacy in university students and their clinical educators. A systematic review of randomised control trials. Health Prof. Educ. 2018, 4, 161–175. [Google Scholar] [CrossRef]
- Reis, A.C.; Saheb, R.; Moyo, T.; Smith, C.; Sperandei, S. The Impact of Mental Health Literacy Training Programs on the Mental Health Literacy of University Students: A Systematic Review. Prev. Sci. 2022, 23, 648–662. [Google Scholar] [CrossRef] [PubMed]
- Reavley, N.J.; McCann, T.V.; Jorm, A.F. Mental health literacy in higher education students. Early Interv. Psychiatry 2012, 6, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Ito-Jaeger, S.; Perez Vallejos, E.; Curran, T.; Spors, V.; Long, Y.; Liguori, A.; Warwick, M.; Wilson, M.; Crawford, P. Digital video interventions and mental health literacy among young people: A scoping review. J. Ment. Health 2021, 19, 1–11. [Google Scholar] [CrossRef]
- Liang, M.; Chen, Q.; Guo, J.; Mei, Z.; Wang, J.; Zhang, Y.; He, L.; Li, Y. Mental health first aid improves mental health literacy among college students: A meta-analysis. J. Am. Coll. Health 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Kurki, M.; Gilbert, S.; Mishina, K.; Lempinen, L.; Luntamo, T.; Hinkka-Yli-Salomäki, S.; Sinokki, A.; Upadhyaya, S.; Wei, Y.; Sourander, A. Digital mental health literacy program for the first-year medical students’ wellbeing: A one group quasi-experimental study. BMC Med. Educ. 2021, 21, 563. [Google Scholar] [CrossRef]
- Balula Chaves, C.; Sequeira, C.; Carvalho Duarte, J.; Nelas, P.; Gonçalves, A.; Santos, E. Alfabetización en salud mental: Una revisión sistemática de los instrumentos de medición. Int. J. Educ. Psychol. 2022, 3, 181–194. [Google Scholar] [CrossRef]
- Sperber, A.D.; Devellis, R.F.; Boehlecke, B. Cross-Cultural Translation: Methodology and validation. J. Cross-Cult. Psychol. 1994, 25, 501–524. [Google Scholar] [CrossRef]
- Mokkink, L.B.; Terwee, C.B.; Knol, D.L.; Stratford, P.W.; Alonso, J.; Patrick, D.L.; Bouter, L.M.; De Vet, H.C. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: A clarification of its content. BMC Med. Res. Methodol. 2010, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Terwee, C.B.; Prinsen, C.A.C.; Chiarotto, A.; Westerman, M.J.; Patrick, D.L.; Alonso, J.; Bouter, L.M.; de Vet, H.C.W.; Mokkink, L.B. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: A Delphi study. Qual. Life Res. 2018, 27, 1159–1170. [Google Scholar] [CrossRef] [Green Version]
- Fleiss, J.L. Design and Analysis of Clinical Experiments, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 306–347. [Google Scholar] [CrossRef]
- Asparouhov, T.; Muthén, B. Exploratory structural equation modeling. Struct. Equ. Modeling 2009, 16, 397–438. [Google Scholar] [CrossRef]
- Marsh, H.W.; Morin, A.J.S.; Parker, P.D.; Kaur, G. Exploratory Structural Equation Modeling: An Integration of the Best Features of Exploratory and Confirmatory Factor Analysis. Annu. Rev. Clin. Psychol. 2014, 10, 85–110. [Google Scholar] [CrossRef] [Green Version]
- Drasgow, F. Polychoric and Polyserial Correlations. Stats. Ref. 2014, 7, 68–74. [Google Scholar] [CrossRef]
- Meredith, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika 1993, 58, 525–543. [Google Scholar] [CrossRef]
- Millsap, R.E.; Yun-Tein, J. Assessing factorial invariance in ordered-categorical measures. Multivar. Behav. Res. 2004, 39, 479–515. [Google Scholar] [CrossRef] [Green Version]
- Muthén, B.O.; Asparouhov, T. Latent Variable Analysis With Categorical Outcomes: Multiple-Group and Growth Modeling in Mplus. Mplus. Web. Note 2002, 4, 1–22. [Google Scholar]
- Wang, J.; Wang, X. Structural equation modeling: Applications using mplus. In Structural Equation Modeling: Applications Using Mplus, 2nd ed.; Wang, J., Wang, X., Eds.; Wiley: Hoboken, NJ, USA, 2019; pp. 1–248. [Google Scholar] [CrossRef]
- Reise, S.P.; Widaman, K.F.; Pugh, R.H. Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychological Bulletin 1993, 114, 552. [Google Scholar] [CrossRef] [PubMed]
- Chen, F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Modeling 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R. Evaluating goodness-of-fit indexes for testing measurement invariance. Struct. Equ. Modeling 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef] [Green Version]
- Zwick, R.; McDonald, R.P. Test Theory: A Unified Treatment. J. Am. Stat. Assoc. 2000, 95, 102–1013. [Google Scholar] [CrossRef]
- Nunnally, J.; Bernstein, I. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994; pp. 1–752. [Google Scholar]
- Terwee, C.B.; Bot, S.D.M.; de Boer, M.R.; van der Windt, D.A.W.M.; Knol, D.L.; Dekker, J.; Bouter, L.M.; de Vet, H.C.W. Quality criteria were proposed for measurement properties of health status questionnaires. J. Clin. Epidemiol. 2007, 60, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, I.N. Mental Health Literacy Scale: Translation and Validation in Pakistani Context. Pak. Soc. Sci. Rev. 2020, 4, 722–735. [Google Scholar] [CrossRef]
- Nejatian, M.; Tehrani, H.; Momeniyan, V.; Jafari, A. A modified version of the mental health literacy scale (MHLS) in Iranian people. BMC Psychiatry 2021, 21, 53. [Google Scholar] [CrossRef]
- Alshehri, E.; Alosaimi, D.; Rufaidi, E.; Alsomali, N.; Tumala, R. Mental Health Literacy Scale Arabic Version: A Validation Study Among Saudi University Students. Front. Psychiatry 2021, 12, 741146. [Google Scholar] [CrossRef]
- Chen, S.; Chen, K.; Wang, S.; Wang, W.; Li, Y. Initial Validation of a Chinese Version of the Mental Health Literacy Scale Among Chinese Teachers in Henan Province. Front. Psychiatry 2021, 12, 661903. [Google Scholar] [CrossRef]
- Dias Neto, D.; Rocha, I.; Figueiras, M.J.; da Silva, A.N. Measuring mental health literacy: Adaptation and validation of the Portuguese version of the mental health literacy scale (MHLS). Eur. J. Ment. Health 2021, 16, 64–77. [Google Scholar] [CrossRef]
- Korhonen, J.; Axelin, A.; Grobler, G.; Lahti, M. Content validation of Mental Health Literacy Scale (MHLS) for primary health care workers in South Africa and Zambia ─ a heterogeneous expert panel method. Glob. Health Action 2019, 12, 1668215. [Google Scholar] [CrossRef] [Green Version]
- Almanasef, M. Mental Health Literacy and Help-Seeking Behaviours Among Undergraduate Pharmacy Students in Abha, Saudi Arabia. Risk. Manag. Healthc. Policy 2021, 14, 1281–1286. [Google Scholar] [CrossRef]
- Kutcher, S.; Wei, Y.; Coniglio, C. Mental Health Literacy: Past, Present, and Future. Can. J. Psychiatry 2016, 61, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Foss, E.; Druin, A.; Guha, M.L. Recruiting and retaining young participants: Strategies from five years of field research. In Proceedings of the 12th International Conference on Interaction Design and Children, New York, NY, USA, 24–27 June 2013. [Google Scholar] [CrossRef]
- Henderson, M.; Wight, D.; Nixon, C.; Hart, G. Retaining young people in a longitudinal sexual health survey: A trial of strategies to maintain participation. BMC Med. Res. Methodol. 2010, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Bonett, D.G. Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 2002, 21, 1331–1335. [Google Scholar] [CrossRef]
Chi-Squ. Base | Chi-Squ | df | RMSEA | 90 CI | CFI | TLI | SMRM | ||
---|---|---|---|---|---|---|---|---|---|
MODEL 1 | ESEM 35 items; 6 factors | 5,339,633 | 630,037 | 400 | 0.035 | 0.029 0.040 | 0.952 | 0.928 | 0.041 |
MODEL 2 | ESEM 35 items; 7 factors | 5,339,633 | 554,691 | 371 | 0.032 | 0.026 0.037 | 0.961 | 0.938 | 0.038 |
MODEL 3 | ESEM 35 items; 8 factors | 5,339,633 | 490,922 | 343 | 0.03 | 0.024 0.036 | 0.969 | 0.946 | 0.033 |
MODEL 4 | ESEM 32 items; 8 factors Elim: DEPRESS, DIF_ANX, DANGER | 5,205,246 | 371,601 | 343 | 0.028 | 0.021 0.035 | 0.978 | 0.959 | 0.031 |
MODEL 5 | ESEM 28 items; 8 factors Elim: CONFI_PROB_ENT, SOMM, VOU_SOR, DIR_PER | 4,850,961 | 233,366 | 297 | 0.024 | 0.014 0.033 | 0.989 | 0.976 | 0.026 |
Factors of the MHLS-FR | R Square | O’Connor and Casey’s MHLS Dimensions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | |||
PHO_SOC_1 | 0.625 | 0.031 | 0.117 | −0.006 | 0.012 | −0.007 | −0.020 | −0.022 | 0.451 | Ability to recognize disorders |
ANX_GEN_2 | 0.575 | 0.094 | −0.007 | 0.046 | −0.028 | 0.007 | −0.049 | −0.009 | 0.394 | |
TROU_PERSO_4 | 0.083 | 0.407 | 0.126 | 0.165 | −0.073 | 0.021 | −0.050 | −0.045 | 0.309 | |
DYS_5 | 0.005 | 0.538 | −0.024 | 0.166 | −0.040 | −0.203 | 0.047 | −0.066 | 0.295 | |
AGORA_6 | 0.083 | 0.635 | −0.047 | −0.103 | 0.024 | 0.039 | 0.040 | −0.001 | 0.449 | |
BIPOL_7 | 0.091 | 0.447 | 0.041 | 0.017 | 0.039 | 0.052 | −0.011 | −0.123 | 0.281 | |
DRUG_8 | 0.018 | 0.660 | 0.020 | 0.001 | 0.088 | 0.010 | 0.002 | 0.057 | 0.474 | |
FEM_RIS_MAL_9 | −0.040 | 0.224 | −0.011 | 0.024 | −0.562 | −0.017 | −0.029 | −0.022 | 0.368 | Knowledge of risk factors and causes |
HOM_RIS_ANX_10R | −0.066 | 0.101 | −0.030 | 0.036 | 0.645 | 0.018 | −0.005 | −0.039 | 0.433 | |
TCC_13 | 0.073 | 0.653 | 0.003 | 0.022 | −0.008 | −0.272 | 0.058 | 0.049 | 0.429 | Knowledge and beliefs about self-help interventions |
CONFI_DANG_IMM_14 | −0.169 | 0.516 | 0.120 | −0.019 | −0.018 | 0.169 | −0.093 | 0.135 | 0.377 | |
INFO_MAL_16 | −0.091 | 0.097 | 0.763 | −0.066 | 0.025 | −0.069 | 0.000 | −0.021 | 0.581 | Knowledge of where to seek information |
ORDI_INFO_17 | 0.012 | 0.000 | 0.683 | −0.015 | 0.025 | 0.053 | −0.025 | 0.110 | 0.504 | |
QUES_MAL_18 | 0.080 | −0.138 | 0.377 | 0.065 | −0.020 | −0.065 | 0.398 | 0.041 | 0.373 | |
RESS_INFO_19 | 0.036 | 0.000 | 0.648 | 0.069 | −0.036 | 0.154 | 0.086 | −0.051 | 0.516 | |
FRAG_PERS_21R | −0.018 | −0.005 | 0.030 | 0.106 | 0.027 | 0.460 | 0.040 | −0.040 | 0.251 | Stigmatisation |
MAL_MED_22R | 0.491 | 0.043 | 0.001 | −0.197 | 0.001 | 0.395 | 0.035 | 0.070 | 0.413 | |
FREQ_DEV_24R | 0.000 | −0.019 | −0.005 | 0.298 | 0.068 | 0.566 | −0.012 | 0.036 | 0.498 | |
PAS_FORT_26R | 0.097 | 0.020 | −0.024 | 0.118 | −0.021 | 0.523 | 0.436 | −0.043 | 0.597 | |
NO_AID_27R | −0.076 | 0.008 | 0.027 | −0.051 | 0.056 | 0.023 | 0.920 | 0.016 | 0.865 | |
TRAIT_PAS_EFF_28R | −0.045 | 0.057 | 0.009 | −0.033 | −0.017 | 0.357 | 0.390 | 0.013 | 0.336 | |
HAB_MAL_29 | −0.034 | 0.052 | 0.013 | 0.532 | 0.083 | 0.079 | −0.010 | 0.134 | 0.410 | |
DISC_MAL_30 | −0.031 | 0.164 | −0.016 | 0.806 | 0.029 | −0.008 | 0.031 | −0.010 | 0.705 | |
AMI_MAL_31 | 0.011 | 0.021 | 0.006 | 0.821 | −0.051 | 0.025 | −0.022 | 0.085 | 0.752 | |
TRAV_MAL_32 | 0.027 | −0.040 | 0.009 | 0.608 | −0.019 | 0.019 | 0.039 | 0.313 | 0.639 | |
MARIA_MAL_33 | 0.128 | −0.059 | 0.037 | 0.288 | 0.195 | −0.071 | −0.011 | 0.526 | 0.561 | |
POLI_MAL_34 | −0.017 | 0.074 | −0.010 | −0.008 | 0.003 | 0.035 | −0.013 | 0.806 | 0.661 | |
EMB_MAL_35 | −0.028 | 0.025 | −0.034 | 0.112 | −0.047 | 0.012 | 0.063 | 0.691 | 0.561 | |
Correlations between factors | ||||||||||
F1 | 1.000 | |||||||||
F2 | 0.401 * | 1.000 | ||||||||
F3 | 0.235 * | 0.267 * | 1.000 | |||||||
F4 | 0.192 * | 0.164 * | 0.145 * | 1.000 | ||||||
F5 | −0.073 | −0.022 | 0.013 | 0.050 | 1.000 | |||||
F6 | 0.010 | 0.372 * | 0.087 | 0.196 | 0.184 | 1.000 | ||||
F7 | 0.084 | 0.105 | 0.169 * | 0.154 * | 0.106 | 0.158 * | 1.000 | |||
F8 | 0.044 | 0.060 | 0.126 * | 0.407 * | 0.102 | 0.141 | 0.123 * | 1.000 |
Factors of the MHLS-FR | R Square | O’Connor and Casey’s MHLS Dimensions | ||||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | |||
PHO_SOC_1 | 0.434 | 0.188 | Ability to recognize disorders | |||||
ANX_GEN_2 | 0.427 | 0.183 | ||||||
TROU_PERSO_4 | 0.589 | 0.347 | ||||||
DYS_5 | 0.486 | 0.236 | ||||||
AGORA_6 | 0.585 | 0.342 | ||||||
BIPOL_7 | 0.490 | 0.240 | ||||||
DRUG_8 | 0.681 | 0.464 | ||||||
FEM_RIS_MAL_9 | 0.960 | 0.922 | Knowledge of risk factors and causes | |||||
HOM_RIS_ANX_10 | 0.368 | 0.136 | ||||||
TCC_13 | 0.560 | 0.314 | Knowledge and beliefs about self-help interventions | |||||
CONFI_DANG_IMM_14 | 0.514 | 0.264 | ||||||
INFO_MAL_16 | 0.615 | 0.378 | Knowledge of where to seek information | |||||
ORDI_INFO_17 | 0.697 | 0.485 | ||||||
QUES_MAL_18 | 0.507 | 0.257 | ||||||
RESS_INFO_19 | 0.756 | 0.571 | ||||||
FREQ_DEV_24R | 0.653 | 0.427 | Stigmatisation | |||||
PAS_FORT_26R | 0.775 | 0.601 | ||||||
NO_AID_27R | 0.560 | 0.314 | ||||||
TRAIT_PAS_EFF_28R | 0.526 | 0.277 | ||||||
HAB_MAL_29 | 0.623 | 0.388 | ||||||
DISC_MAL_30 | 0.790 | 0.625 | ||||||
AMI_MAL_31 | 0.819 | 0.670 | ||||||
TRAV_MAL_32 | 0.783 | 0.612 | ||||||
MARIA_MAL_33 | 0.655 | 0.430 | ||||||
POLI_MAL_34 | 0.618 | 0.382 | ||||||
EMB_MAL_35 | 0.620 | 0.384 | ||||||
Correlations between factors | ||||||||
F1 | 1.000 | |||||||
F2 | 0.177 * | 1.000 | ||||||
F3 | 0.993 * | 0.187 | 1.000 | |||||
F4 | 0.383 * | 0.004 | 0.428 * | 1.000 | ||||
F5 | 0.319 * | −0.132 | 0.306 * | 0.378 * | 1.000 | |||
F6 | 0.257 * | −0.062 | 0.321 * | 0.252 * | 0.413 * | 1.000 |
WLSMV χ2 (df) | CFI | RMSEA | SRMR | χ2 (df) | p | CFI | RMSEA | SRMR | |
---|---|---|---|---|---|---|---|---|---|
Baseline Models | |||||||||
Males (n = 152) | 462,441 (284) | 0.852 | 0.064 | 0.09 | |||||
Females (n = 330) | 526,535 (289) | 0.922 | 0.05 | 0.066 | |||||
Measurement Invariance for sex | |||||||||
Scalar model (H0) | 1,063,427 (653) | 0.898 | 0.051 | 0.078 | |||||
Configural model (H1) | 1,002,902 (580) | 0.895 | 0.055 | 0.076 | 92.519 (73) | 0.0612 | −0.003 | 0.004 | −0.002 |
Total Mean (SD) | Range | Cronbach’s Alpha | McDonald Omega | ICC: IC95% (n = 51) | |
---|---|---|---|---|---|
F1 | 22.08 (2.78) | 10–28 | 0.643 | 0.872 | 0.772 IC95% = (0.601; 0.870) |
F2 | 4.56 (1.33) | 2–8 | 0.453 | 0.625 | 0.637 IC95% = (0.365; 0.793) |
F3 | 6.35 (1.10) | 2–8 | 0.343 | 0.666 | 0.291 IC95% = (−0.242; 0.595) |
F4 | 15.05 (2.77) | 5–20 | 0.608 | 0.797 | 0.908 IC95% = (0.838; 0.947) |
F5 | 17.12 (2.40) | 8–20 | 0.595 | 0.796 | 0.793 IC95% = (0.637; 0.882) |
F6 | 25.36 (5.15) | 11–35 | 0.815 | 0.873 | 0.867 IC95% = (0.7671; 0.924) |
Total Scale | 90.52 (8.95) | 60–115 | 0.765 | 0.961 | 0.869 IC95% = (0.770; 0.925) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montagni, I.; González Caballero, J.L. Validation of the Mental Health Literacy Scale in French University Students. Behav. Sci. 2022, 12, 259. https://doi.org/10.3390/bs12080259
Montagni I, González Caballero JL. Validation of the Mental Health Literacy Scale in French University Students. Behavioral Sciences. 2022; 12(8):259. https://doi.org/10.3390/bs12080259
Chicago/Turabian StyleMontagni, Ilaria, and Juan Luis González Caballero. 2022. "Validation of the Mental Health Literacy Scale in French University Students" Behavioral Sciences 12, no. 8: 259. https://doi.org/10.3390/bs12080259
APA StyleMontagni, I., & González Caballero, J. L. (2022). Validation of the Mental Health Literacy Scale in French University Students. Behavioral Sciences, 12(8), 259. https://doi.org/10.3390/bs12080259