Negative Life Events on Depression of Vocational Undergraduates in the Partial Least Squares Structural Equation Modeling Approach Perspective: A Mediated Moderation Model
Abstract
:1. Introduction
2. Methods
2.1. Research Design
2.2. Survey Questionnaire
2.2.1. Control Variables and Socioeconomic Status
2.2.2. Negative Life Events Questionnaire
2.2.3. Loneliness Scale
2.2.4. Patient Health Questionnaire
2.3. Procedure and Samples
3. Results
3.1. Analytical Strategy
3.2. Measurement Model Assessment
3.3. Structural Model Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China’s Ministry of Education. The Guidelines for Deepening the Reform of Modern Vocational Education System Construction. 21 December 2022. Available online: http://www.gov.cn/gongbao/content/2023/content_5736711.htm (accessed on 15 May 2023).
- Pavlíková, M.; Sirotkin, A.; Králik, R.; Petrikovičová, L.; Martin, J.G. How to Keep University Active during COVID-19 Pandemic: Experience from Slovakia. Sustainability 2021, 13, 10350. [Google Scholar] [CrossRef]
- Horváth, L.; Balint, M.; Ferenczi-Dallos, G.; Farkas, L.; Gadoros, J.; Gyori, D.; Kereszteny, A.; Meszaros, G.; Szentivanyi, D.; Velo, S.; et al. Direct Self-Injurious Behavior (D-SIB) and Life Events among Vocational School and High School Students. Int. J. Environ. Res. Public Health 2018, 15, 1068. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Li, L.; Guan, Y.; Wang, W.; Liu, Y.; Wang, P.; Huang, X.; Tao, S.; Wang, Y. Prevalence and associated positive psychological variables of anxiety and depression among patients with central nervous system tumors in China: A cross-sectional study. Psycho-Oncology 2017, 26, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Rapee, R.M.; Oar, E.L.; Johnco, C.J.; Forbes, M.K.; Fardouly, J.; Magson, N.R.; Richardson, C.E. Adolescent development and risk for the onset of social-emotional disorders: A review and conceptual model. Behav. Res. Ther. 2019, 123, 103501. [Google Scholar] [CrossRef]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. 18 January 2017. Available online: https://apps.who.int/iris/ (accessed on 18 April 2023).
- Castaldelli-Maia, J.M.; Marziali, M.E.; Lu, Z.; Martins, S.S. Investigating the effect of national government physical distancing measures on depression and anxiety during the COVID-19 pandemic through meta-analysis and meta-regression. Psychol. Med. 2021, 51, 881–893. [Google Scholar] [CrossRef]
- Marziali, M.E.; Card, K.G.; McLinden, T.; Wang, L.; Trigg, J.; Hogg, R.S. Physical Distancing in COVID-19 May Exacerbate Experiences of Social Isolation among People Living with HIV. Aids Behav. 2020, 24, 2250–2252. [Google Scholar] [CrossRef]
- Torales, J.; Higgins, M.O.; Castaldelli-Maia, J.M.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry 2020, 66, 317–320. [Google Scholar] [CrossRef]
- Chen, B.; Sun, J.; Feng, Y. How have COVID-19 isolation policies affected young people’s mental health?—Evidence from Chinese college students. Front. Psychol. 2020, 11, 1529. [Google Scholar] [CrossRef]
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Glob. Health 2020, 16, 57–67. [Google Scholar] [CrossRef]
- Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Xiao, Y.; Du, N.; Li, Y. Mental health services in China: Challenges in the context of COVID-19. Asian J. Psychiatry 2023, 80, 103348. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ding, F.; Wu, Y.; Jing, W.; Yan, W.; Qin, C.; Li, F.; Zhang, Y.; Liu, M.; Liang, W.; et al. Trends of SARS-CoV-2 infection in sentinel community-based surveillance after the optimization of prevention and control measures—China, December 2022–January 2023. China CDC Wkly. 2023, 5, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Msemburi, W.; Karlinsky, A.; Knutson, V.; Aleshin-Guendel, S.; Chatterji, S.; Wakefield, J. The WHO estimates of excess mortality associated with the COVID-19 pandemic. Nature 2023, 613, 130–137. [Google Scholar] [CrossRef]
- World Health Organization. China: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/region/wpro/country/cn (accessed on 1 July 2023).
- Erzen, E.; Çikrikci, Ö. The effect of loneliness on depression: A meta-analysis. Int. J. Soc. Psychiatry 2018, 64, 427–435. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, M.; Ouyang, J.; Chen, Y.; Xia, H.; Yang, F.; Wu, T.; Yin, C. The influence of changes in the Chinese COVID-19 prevention and control policies on mental health of medical staff: A network analysis. J. Affect. Disord. 2023, 335, 10–17. [Google Scholar] [CrossRef]
- Lv, S.; Chang, T.; Na, S.; Lu, L.; Zhao, E. Association between Negative Life Events and Somatic Symptoms: A Mediation Model through Self-Esteem and Depression. Behav. Sci. 2023, 13, 243. [Google Scholar] [CrossRef]
- Beck, A.T.; Haigh, E.A.P. Advances in cognitive theory and therapy: The generic cognitive model. Annu. Rev. Clin. Psychol. 2014, 10, 1–24. [Google Scholar] [CrossRef]
- Switsers, L.; Dierckx, E.; Domènech-Abella, J.; De Donder, L.; Dury, S. Negative old-age life events and well-being in later life: The moderating and mediating role of loneliness. Int. Psychogeriatr. 2021, 33, 1265–1276. [Google Scholar] [CrossRef]
- Sirois, F.M.; Owens, J. A meta-analysis of loneliness and use of primary health care. Health Psychol. Rev. 2023, 17, 193–210. [Google Scholar] [CrossRef]
- Dunn, C.; Sicouri, G. The relationship between loneliness and depressive symptoms in children and adolescents: A meta-analysis. Behav. Change 2022, 39, 134–145. [Google Scholar] [CrossRef]
- Mann, F.; Wang, J.; Pearce, E.; Ma, R.; Schlief, M.; Lloyd-Evans, B.; Ikhtabi, S.; Johnson, S. Loneliness and the onset of new mental health problems in the general population. Soc. Psychiatry Psychiatr. Epidemiol. 2022, 57, 2161–2178. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liu, D.; Cheng, J.; Wang, D.B.; Liu, Y.; Wu, Y. Negative life events increase the risk of suicidal ideation in 6653 Chinese freshmen: From a 1-year longitudinal study. J. Affect. Disord. 2022, 299, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Sher, L. The impact of the COVID-19 pandemic on suicide rates. QJM Int. J. Med. 2020, 113, 707–712. [Google Scholar] [CrossRef]
- Dalen, J.D. The association between school class composition and suicidal ideation in late adolescence: Findings from the Young-HUNT 3 study. Child Adolesc. Psychiatry Ment. Health 2012, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.; Ding, F.; Sun, Y.; Zhang, S.; Li, N. Comparing Depression Prevalence and Associated Symptoms with Intolerance of Uncertainty among Chinese Urban and Rural Adolescents: A Network Analysis. Behav. Sci. 2023, 13, 662. [Google Scholar] [CrossRef]
- Wang, J.; Tigelaar, D.E.H.; Admiraal, W. Connecting rural schools to quality education: Rural teachers’ use of digital educational resources. Comput. Hum. Behav. 2019, 101, 68–76. [Google Scholar] [CrossRef]
- Bradley, R.H.; Corwyn, R.F. Socioeconomic status and child development. Annu. Rev. Psychol. 2002, 53, 371–399. [Google Scholar] [CrossRef]
- Gallo, L.C.; de Los, M.K.; Shivpuri, S. Socioeconomic status and health: What is the role of reserve capacity? Curr. Dir. Psychol. Sci. 2009, 18, 269–274. [Google Scholar] [CrossRef]
- Freeman, A.; Tyrovolas, S.; Koyanagi, A.; Chatterji, S.; Leonardi, M.; Ayuso-Mateos, J.L.; Tobiasz-Adamczyk, B.; Koskinen, S.; Rummel-Kluge, C.; Haro, J.M. The role of socio-economic status in depression: Results from the COURAGE (aging survey in Europe). BMC Public Health 2016, 16, 1098. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Li, D.; Liu, J. Loneliness in Chinese children across contexts. Dev. Psychol. 2014, 50, 2324–2333. [Google Scholar] [CrossRef]
- Verbeek, T.; Bockting, C.L.H.; Beijers, C.; Meijer, J.L.; van Pampus, M.G.; Burger, H. Low socioeconomic status increases effects of negative life events on antenatal anxiety and depression. Women Birth 2019, 32, e138–e143. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Corrigendum to “editorial partial least squares structural equation modeling: Rigorous applications, better results and higher acceptance”. Long Range Plan. 2014, 47, 392. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M. Data, measurement, and causal inferences in machine learning: Opportunities and challenges for marketing. J. Mark. Theory Pract. 2021, 29, 65–77. [Google Scholar] [CrossRef]
- Zhang, S.; Yong, S.; Tang, Y.; Feng, H.; Chen, L.; Zhang, L.; Deng, Y.; Chen, J. Intolerance of uncertainty fuels preservice teachers’ smartphone dependence through rumination and anxiety during the COVID-19 pandemic: A cross-sectional study. Heliyon 2023, 9, e17798. [Google Scholar] [CrossRef] [PubMed]
- Gefen, D.; Rigdon, E.; Straub, D. An update and extension to SEM guidelines for administrative and social science research. MIS Q. 2011, 35, 3–14. [Google Scholar]
- Bernerth, J.B.; Aguinis, H. A critical review and best-practice recommendations for control variable usage. Pers. Psychol. 2016, 69, 229–283. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Villberg, J.; Torsheim, T.; Tynjälä, J.; Lv, Y.; Kannas, L. Reliability and validity of family affluence scale (FAS II) among adolescents in Beijing, China. Child Indic. Res. 2012, 5, 235–251. [Google Scholar] [CrossRef]
- Corell, M.; Chen, Y.; Friberg, P.; Petzold, M.; Löfstedt, P. Does the family affluence scale reflect actual parental earned income, level of education, and occupational status? A validation study using register data in Sweden. BMC Public Health 2021, 21, 1995. [Google Scholar] [CrossRef]
- Zou, R.; Xu, X.; Hong, X.; Yuan, J. Higher socioeconomic status predicts less risk of depression in adolescence: Serial mediating roles of social support and optimism. Front. Psychol. 2020, 11, 1955. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Yang, J.; Chai, F.; Wang, A.; Sun, L.; Zhao, G.; Ma, D. The adolescent self-rating life events checklist and its reliability and validity. Chin. J. Clin. Psychol. 1997, 5, 34–36. [Google Scholar]
- De Jong Gierveld, J.; Van Tilburg, T. The de jong gierveld short scales for emotional and social loneliness: Tested on data from 7 countries in the UN generations and gender surveys. Eur. J. Ageing 2010, 7, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.Y.; Tam, W.S.W.; Goh, H.S.; Ow, C.C.; Wu, X.V. Impact of sense of coherence, resilience, and loneliness on quality of life amongst older adults in long-term care: A correlational study using the salutogenic model. J. Adv. Nurs. 2021, 77, 4471–4489. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, A.G.; Zhao, Z.; Sen, S. Peak-end bias in retrospective recall of depressive symptoms on the PHQ-9. Psychol. Assess. 2023, 35, 378–381. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M. Rethinking some of the rethinking of partial least squares. Eur. J. Mark. 2019, 53, 566–584. [Google Scholar] [CrossRef]
- Kock, N. Common Method Bias in PLS-SEM: A full collinearity assessment approach. Int. J. E-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Sarstedt, M.; Henseler, J.; Ringle, C. Multi-group analysis in partial least squares (PLS) path modeling: Alternative methods and empirical results. Adv. Int. Mark. 2011, 22, 195–218. [Google Scholar]
- Ali, F.; Rasoolimanesh, S.M.; Sarstedt, M.; Ringle, C.M.; Ryu, K. An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. Int. J. Contemp. Hosp. Manag. 2018, 30, 514–538. [Google Scholar] [CrossRef]
- Ringle, C.M.; Sarstedt, M.; Mitchell, R.; Gudergan, S.P. Partial least squares structural equation modeling in HRM research. Int. J. Hum. Resour. Manag. 2020, 31, 1617–1643. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: London, UK, 1988. [Google Scholar]
- Kocalevent, R.; Hinz, A.; Brähler, E. Standardization of the depression screener Patient Health Questionnaire (PHQ-9) in the general population. Gen. Hosp. Psychiatry 2013, 35, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Fu, Z.; Bo, Q.; Mao, Z.; Ma, X.; Wang, C. The reliability and validity of PHQ-9 in patients with major depressive disorder in psychiatric hospital. BMC Psychiatry 2020, 20, 474. [Google Scholar] [CrossRef] [PubMed]
- Cerra, V.; Fatas, A.; Saxena, S.C. Fighting the scarring effects of COVID-19. Ind. Corp. Chang. 2021, 30, 459–466. [Google Scholar] [CrossRef]
- Cohen-Mansfield, J.; Hazan, H.; Lerman, Y.; Shalom, V. Correlates and predictors of loneliness in older-adults: A review of quantitative results informed by qualitative insights. Int. Psychogeriatr. 2016, 28, 557–576. [Google Scholar] [CrossRef]
- Hong, Z.; Zhang, H.; Xu, L.; Zhou, J.; Kong, F.; Li, J.; Hu, F.; Gao, Z. Negative life events and self-harm among the elderly: Result from a survey of 7070 people aged ≥ 60 in China. Psychiatry Res. 2021, 298, 113727. [Google Scholar] [CrossRef] [PubMed]
- Miech, R.A.; Caspi, A.; Moffitt, T.E.; Wright, B.R.E.; Silva, P.A. Low socioeconomic status and mental disorders: A longitudinal study of selection and causation during young adulthood1. Am. J. Sociol. 1999, 104, 1096–1131. [Google Scholar] [CrossRef]
- Twenge, J.M.; Nolen-Hoeksema, S. Age, gender, race, socioeconomic status, and birth cohort difference on the children’s depression inventory: A meta-analysis. J. Abnorm. Psychol. 2002, 111, 578–588. [Google Scholar] [CrossRef]
- Xie, J.; Liu, M.; Ding, S.; Zhong, Z.; Zeng, S.; Liu, A.; He, S.; Zhou, J. Attitudes toward depression among rural primary healthcare providers in Human areas, China: A cross sectional study. BMC Med. Educ. 2023, 23, 226. [Google Scholar] [CrossRef]
- Tkáčová, H.; Pavliková, M.; Stranovská, E.; Králik, R. Individual (none) resilience of university students to digital media manipulation after COVID-19 (case study of Slovak initiatives). Int. J. Environ. Res. Public Health 2023, 20, 1605. [Google Scholar] [CrossRef]
- Petrikovičová, L.; Kurilenko, V.; Akimjak, A.; Akimjaková, B.; Majda, P.; Ďatelinka, A.; Biryukova, Y.; Hlad, Ľ.; Kondrla, P.; Maryanovich, D.; et al. Is the size of the city important for the quality of urban life? Comparison of a small and a large city. Sustainability 2022, 14, 15589. [Google Scholar] [CrossRef]
- Králik, R. The influence of family and school in shaping the values of children and young people in the theory of free time and pedagogy. J. Educ. Cult. Soc. 2023, 14, 249–268. [Google Scholar] [CrossRef]
- Budayová, Z.; Pavliková, M.; Samed Al-Adwan, A.; Klasnja, K. The impact of modern technologies on life in a pandemic situation. J. Educ. Cult. Soc. 2022, 13, 213–224. [Google Scholar] [CrossRef]
- Li, J.; Xue, E.Y.; He, Y.S. Adjustment to Chinese culture and mental health issues among foreign students on Chinese university campuses during the COVID-19 pandemic: A collaborative ethnographic study. Behav. Sci. 2023, 13, 526. [Google Scholar] [CrossRef]
- Meng, W.H.; Feng, M.X.; Yu, H.H.; Hou, Y.B. The impact of the Chinese thinking style of relations on mental health: The mediating role of coping styles. Behav. Sci. 2023, 13, 442. [Google Scholar] [CrossRef]
- Bringmann, L.F.; Albers, C.; Bockting, C.; Borsboom, D.; Ceulemans, E.; Cramer, A.; Epskamp, S.; Eronen, M.I.; Hamaker, E.; Kuppens, P.; et al. Psychopathological networks: Theory, methods, and practice. Behav. Res. Ther. 2022, 149, 104011. [Google Scholar] [CrossRef]
- Lenferink, L.I.M.; Eisma, M.C.; Smid, G.E.; de Keijser, J.; Boelen, P.A. Valid measurement of DSM-5 persistent complex bereavement disorder and DSM-5-TR and ICD-11 prolonged grief disorder: The traumatic grief inventory-self report plus (TGI-SR+). Compr. Psychiatry 2022, 112, 152281. [Google Scholar] [CrossRef]
Demographic Variables | N (%) | Demographic Variables | N (%) | ||
---|---|---|---|---|---|
Gender | Male | 844 (56.8) | Birthplace | Rural | 1045 (70.3) |
Female | 643 (43.2) | Urban | 442 (29.7) | ||
Race | Han Chinese | 1182 (79.4) | Grade | One | 948 (63.8) |
Mongolian | 236 (15.9) | Two | 311 (20.9) | ||
Other | 69 (4.6) | Three | 152 (10.2) | ||
Only child family | 891 (59.9) | Four | 76 (5.1) | ||
Loss | 457 (30.7) | ||||
Age | Mean (SD) | 20.1 (1.6) |
M | SD | α | rho_A | CR | AVE | |
---|---|---|---|---|---|---|
Negative Life Events | 1.97 | 0.93 | 0.88 | 0.89 | 0.92 | 0.68 |
Loneliness | 1.79 | 0.76 | 0.91 | 0.91 | 0.96 | 0.92 |
Depression | 0.68 | 0.66 | 0.93 | 0.93 | 0.94 | 0.65 |
Socioeconomic Status | 1.64 | 0.39 | 1.00 | 1.00 | 1.00 | 1.00 |
Depression | Negative Life Events | Loneliness | |
---|---|---|---|
Depression | - | ||
Negative Life Events | 0.638 | - | |
Loneliness | 0.588 | 0.651 | - |
Socioeconomic Status | 0.016 | 0.054 | 0.036 |
Hs | Paths | β | SE | t | BCCI | Decision | Inner VIF | f2 | R2 | Q2 |
---|---|---|---|---|---|---|---|---|---|---|
H1 | NLEs→DIS | 0.399 | 0.029 | 13.77 *** | [0.339, 0.452] | Supported | 1.541 | 0.174 | 0.406 | 0.260 |
H2 | NLEs→LLS | 0.591 | 0.019 | 30.86 *** | [0.550, 0.626] | Supported | 1.005 | 0.533 | 0.350 | 0.317 |
H3 | LLS→DIS | 0.308 | 0.030 | 10.16 *** | [0.249, 0.369] | Supported | 1.537 | 0.104 | ||
H4 | SES→DIS | 0.004 | 0.022 | 0.17 | [0.040, 0.045] | Not supported | 1.005 | 0.000 | ||
H5 | SES→LLS | −0.048 | 0.020 | 2.41 * | [−0.088, −0.010] | Supported | 1.001 | 0.004 | ||
H6 | SES * NLEs→DIS | 0.051 | 0.023 | 2.26 * | [0.004, 0.092] | Supported | 1.005 | 0.005 | ||
H7 | SES * NLEs→LLS | 0.001 | 0.020 | 0.06 | [0.043, 0.037] | Not supported | 1.005 | 0.000 | ||
H8 | NLEs→LLS→DIS | 0.182 | 0.019 | 9.52 *** | [0.145, 221] | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Ding, F.; Sun, Y.; Jing, Z.; Li, N. Negative Life Events on Depression of Vocational Undergraduates in the Partial Least Squares Structural Equation Modeling Approach Perspective: A Mediated Moderation Model. Behav. Sci. 2023, 13, 895. https://doi.org/10.3390/bs13110895
Zhang S, Ding F, Sun Y, Jing Z, Li N. Negative Life Events on Depression of Vocational Undergraduates in the Partial Least Squares Structural Equation Modeling Approach Perspective: A Mediated Moderation Model. Behavioral Sciences. 2023; 13(11):895. https://doi.org/10.3390/bs13110895
Chicago/Turabian StyleZhang, Sensen, Fengqin Ding, Yishu Sun, Zhi Jing, and Ning Li. 2023. "Negative Life Events on Depression of Vocational Undergraduates in the Partial Least Squares Structural Equation Modeling Approach Perspective: A Mediated Moderation Model" Behavioral Sciences 13, no. 11: 895. https://doi.org/10.3390/bs13110895
APA StyleZhang, S., Ding, F., Sun, Y., Jing, Z., & Li, N. (2023). Negative Life Events on Depression of Vocational Undergraduates in the Partial Least Squares Structural Equation Modeling Approach Perspective: A Mediated Moderation Model. Behavioral Sciences, 13(11), 895. https://doi.org/10.3390/bs13110895