Elderly Users’ Emotional and Behavioral Responses to Self-Service Technology in Fast-Food Restaurants
Abstract
:1. Introduction
2. Research Background
2.1. SST in South Korea
2.2. SST Literature
2.3. Negative Emotions: Social Anxiety and Helplessness
2.4. Coping Behavior
2.5. SST-Associated Coping Behaviors Mediated by Negative Emotions
2.6. Influences of Elderly-Specific Characteristics on Emotions and Behaviors
2.6.1. Perceived Physical Condition (PPC)
2.6.2. Cognitive Losses
2.7. Influences of Technical Characteristics on Emotions and Behaviors
2.7.1. SST’s Reduction
2.7.2. Perceived Ease of Use of SST
2.8. Influences of Situational Characteristics on Emotions and Behaviors
2.8.1. Perceived Time Pressure
2.8.2. Perceived Crowding
3. Methodology
3.1. Data Collection
3.2. Measures
3.3. Measurement Model
4. Results
5. Discussion
5.1. Key Findings
5.2. Implications for Theory and Practice
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeon, H.M.; Sung, H.J.; Kim, H.Y. Customers’ acceptance intention of self-service technology of restaurant industry: Expanding UTAUT with perceived risk and innovativeness. Serv. Bus. 2020, 14, 533–551. [Google Scholar]
- Gounaris, S.; Dimitriadis, S.; Stathakopoulos, V. An examination of the effects of service quality and satisfaction on customers’ behavioral intentions in e-shopping. J. Serv. Mark. 2010, 24, 142–156. [Google Scholar]
- Lee, J.-W.; Song, E. Aging labor, ICT capital, and productivity in Japan and Korea. J. Jpn. Int. Econ. 2020, 58, 101095. [Google Scholar]
- GRI. Shadow of the Non-Face-to-Face Era, Digital Alienation; Gyeonggi Research Institute: Seoul, Republic of Korea, 2021. [Google Scholar]
- MSIT. 2020 The Report on the Digital Divide; Ministry of Science and ICT: Seoul, Republic of Korea, 2020. [Google Scholar]
- Susskind, A.M.; Curry, B. An examination of customers’ attitudes about tabletop technology in full-service restaurants. Serv. Sci. 2016, 8, 203–217. [Google Scholar]
- Jamil, S. From digital divide to digital inclusion: Challenges for wide-ranging digitalization in Pakistan. Telecommun. Policy 2021, 45, 102206. [Google Scholar] [CrossRef]
- Immonen, M.; Sintonen, S.; Koivuniemi, J. The value of human interaction in service channels. Comput. Hum. Behav. 2018, 78, 316–325. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.; Hyun, H. Understanding self-service technology adoption by “older” consumers. J. Serv. Mark. 2021, 35, 78–97. [Google Scholar] [CrossRef]
- Iancu, I.; Iancu, B. Designing mobile technology for elderly. A theoretical overview. Technol. Forecast. Soc. Chang. 2020, 155, 119977. [Google Scholar] [CrossRef]
- Meuter, M.L.; Ostrom, A.L.; Roundtree, R.I.; Bitner, M.J. Self-service technologies: Understanding customer satisfaction with technology-based service encounters. J. Mark. 2000, 64, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Sun, Q. Examining the usability of touch screen gestures for older and younger adults. Hum. Factors 2015, 57, 835–863. [Google Scholar] [CrossRef]
- Acumen Research. Available online: https://www.grandviewresearch.com/industry-analysis/self-service-technology-market (accessed on 10 March 2022).
- GRI. COVID-19, Accelerating the Untact Society; Gyeonggi Research Institute: Seoul, Republic of Korea, 2020. [Google Scholar]
- Köttl, H.; Gallistl, V.; Rohner, R.; Ayalon, L. “But at the age of 85? Forget it!”: Internalized ageism, a barrier to technology use. J. Aging Stud. 2021, 59, 100971. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-A.; Ferraro, K.F.; Kim, G. Digital technology use and depressive symptoms among older adults in Korea: Beneficial for those who have fewer social interactions? Aging Ment. Health 2021, 25, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Yap, Y.-Y.; Tan, S.-H.; Tan, S.-K.; Choon, S.-W. Integrating the capability approach and technology acceptance model to explain the elderly’s use intention of online grocery shopping. Telemat. Inform. 2022, 72, 101842. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Webster, N.J.; Bynum, J.P. A framework for aging-friendly services and supports in the age of COVID-19. J. Aging Soc. Policy 2020, 32, 450–459. [Google Scholar] [CrossRef]
- Choudrie, J.; Junior, C.-O.; McKenna, B.; Richter, S. Understanding and conceptualising the adoption, use and diffusion of mobile banking in older adults: A research agenda and conceptual framework. J. Bus. Res. 2018, 88, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Guner, H.; Acarturk, C. The use and acceptance of ICT by senior citizens: A comparison of technology acceptance model (TAM) for elderly and young adults. Univers. Access. Inf. Soc. 2020, 19, 311–330. [Google Scholar] [CrossRef]
- Perdana, A.; Mokhtar, I.A. Seniors’ adoption of digital devices and virtual event platforms in Singapore during Covid-19. Technol. Soc. 2022, 68, 101817. [Google Scholar] [CrossRef]
- Talukder, M.S.; Sorwar, G.; Bao, Y.; Ahmed, J.U.; Palash, M.A.S. Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-Neural Network approach. Technol. Forecast. Soc. Change 2020, 150, 119793. [Google Scholar] [CrossRef]
- Levy, H.; Janke, A.T.; Langa, K.M. Health literacy and the digital divide among older Americans. J. Gen. Intern. Med. 2015, 30, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Choi, N.G.; DiNitto, D.M.; Marti, C.N.; Choi, B.Y. Telehealth use among older adults during COVID-19: Associations with sociodemographic and health characteristics, technology device ownership, and technology learning. J. Appl. Gerontol. 2022, 41, 600–609. [Google Scholar] [CrossRef]
- Hargittai, E.; Piper, A.M.; Morris, M.R. From internet access to internet skills: Digital inequality among older adults. Univers. Access. Inf. Soc. 2019, 18, 881–890. [Google Scholar] [CrossRef]
- Schehl, B.; Leukel, J.; Sugumaran, V. Understanding differentiated internet use in older adults: A study of informational, social, and instrumental online activities. Comput. Hum. Behav. 2019, 97, 222–230. [Google Scholar] [CrossRef]
- Hänninen, R.; Taipale, S.; Luostari, R. Exploring heterogeneous ICT use among older adults: The warm experts’ perspective. New Media Soc. 2021, 23, 1584–1601. [Google Scholar] [CrossRef]
- Jeng, M.-Y.; Pai, F.-Y.; Yeh, T.-M. Antecedents for older adults’ intention to use smart health wearable devices-technology anxiety as a moderator. Behav. Sci. 2022, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef]
- Blok, M.; van Ingen, E.; de Boer, A.H.; Slootman, M. The use of information and communication technologies by older people with cognitive impairments: From barriers to benefits. Comput. Hum. Behav. 2020, 104, 106173. [Google Scholar] [CrossRef]
- Chaouali, W.; Souiden, N. The role of cognitive age in explaining mobile banking resistance among elderly people. J. Retail. Consum. Serv. 2019, 50, 342–350. [Google Scholar] [CrossRef]
- Guan, X.; Xie, L.; Shen, W.-G.; Huan, T.-C. Are you a tech-savvy person? Exploring factors influencing customers using self-service technology. Technol. Soc. 2021, 65, 101564. [Google Scholar] [CrossRef]
- Ahn, J.A.; Seo, S. Consumer responses to interactive restaurant self-service technology (IRSST): The role of gadget-loving propensity. Int. J. Hosp. Manag. 2018, 74, 109–121. [Google Scholar] [CrossRef]
- Nicholls, R. ‘Consumption as Work’-Questioning the Meaning of ‘Retirement’ in the Self-Service Economy. J. Popul. Ageing 2020, 15, 493–513. [Google Scholar] [CrossRef]
- Ha, J.-H.; Kim, S.-I. A study on the increase of kiosk user experience in Non-face-to-face Era for the Elderly-Focused on the McDonald Kiosk. J. Digit. Converg. 2021, 19, 285–292. [Google Scholar]
- Na, T.-K.; Lee, S.-H.; Yang, J.-Y. Moderating Effect of Gender on the Relationship between Technology Readiness Index and Consumers’ Continuous Use Intention of Self-Service Restaurant Kiosks. Inf. 2021, 12, 280. [Google Scholar] [CrossRef]
- Lee, H.-J.; Lyu, J. Exploring factors which motivate older consumers’ self-service technologies (SSTs) adoption. Int. Rev. Retail Distrib. Consum. Res 2019, 29, 218–239. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Lazarus, R.S. Emotion and Adaptation; Oxford University Press on Demand: New York, NY, USA, 1991. [Google Scholar]
- Beaudry, A.; Pinsonneault, A. The other side of acceptance: Studying the direct and indirect effects of emotions on information technology use. MIS Q. 2010, 34, 689–710. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.A.; Lazarus, R.S. Appraisal components, core relational themes, and the emotions. Cogn Emot. 1993, 7, 233–269. [Google Scholar] [CrossRef]
- Fenigstein, A.; Scheier, M.F.; Buss, A.H. Public and private self-consciousness: Assessment and theory. J. Consult. Clin. Psychol 1975, 43, 522. [Google Scholar] [CrossRef] [Green Version]
- Frijda, N.H.; Kuipers, P.; Ter Schure, E. Relations among emotion, appraisal, and emotional action readiness. J. Pers. Soc. Psychol. 1989, 57, 212. [Google Scholar] [CrossRef]
- Carver, C.S.; Scheier, M.F.; Weintraub, J.K. Assessing coping strategies: A theoretically based approach. J. Pers. Soc. Psychol. 1989, 56, 267. [Google Scholar] [CrossRef]
- Lazarus, R.S.; Folkman, S. Stress, Appraisal, and Coping; Springer Publishing Company: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Dabholkar, P.A. Consumer evaluations of new technology-based self-service options: An investigation of alternative models of service quality. Int. J. Res. Mark. 1996, 13, 29–51. [Google Scholar] [CrossRef]
- Cheung, C.M.; Liu, I.L.; Lee, M.K. How online social interactions influence customer information contribution behavior in online social shopping communities: A social learning theory perspective. J. Assoc. Inf. Sci. Technol 2015, 66, 2511–2521. [Google Scholar] [CrossRef]
- Goussinsky, R. Coping with customer aggression. J. Serv. Manag. 2012, 23, 170–196. [Google Scholar] [CrossRef]
- Plutchik, R. Emotion, a Psychoevolutionary Synthesis; Harper & Row: New York, NY, USA, 1980. [Google Scholar]
- Monin, B.; Pizarro, D.A.; Beer, J.S. Deciding versus reacting: Conceptions of moral judgment and the reason-affect debate. Rev. Gen. Psychol. 2007, 11, 99–111. [Google Scholar] [CrossRef]
- Brown, S.P.; Westbrook, R.A.; Challagalla, G. Good cope, bad cope: Adaptive and maladaptive coping strategies following a critical negative work event. J. Appl. Psychol. 2005, 90, 792. [Google Scholar] [CrossRef] [PubMed]
- Gelbrich, K.; Sattler, B. Anxiety, crowding, and time pressure in public self-service technology acceptance. J. Serv. Mark. 2014, 28, 82–94. [Google Scholar] [CrossRef]
- Kinard, B.R.; Capella, M.L.; Kinard, J.L. The impact of social presence on technology based self-service use: The role of familiarity. Serv. Mark. Q 2009, 30, 303–314. [Google Scholar] [CrossRef]
- Minge, M.; Bürglen, J.; Cymek, D.H. Exploring the potential of gameful interaction design of ICT for the elderly. In Proceedings of the International Conference on Human-Computer Interaction, Heraklion, Greece, 22–27 June 2014; pp. 304–309. [Google Scholar]
- Gelbrich, K. Beyond just being dissatisfied: How angry and helpless customers react to failures when using self-service technologies. Schmalenbach Bus. Rev 2009, 61, 40–59. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, K.Z.; Chen, C.; Cheung, C.M.; Lee, M.K. Antecedents and consequences of excessive online social gaming: A social learning perspective. Inf. Technol. People 2019, 33, 657–688. [Google Scholar] [CrossRef]
- Krone, A.; Hamborg, K.-C.; Gediga, G. About error-related emotional reactions in human-computer interaction. Z. Arb. Organ 2002, 46, 185–200. [Google Scholar]
- Lee, C.; Coughlin, J.F. PERSPECTIVE: Older adults’ adoption of technology: An integrated approach to identifying determinants and barriers. J. Prod. Innov. Manag. 2015, 32, 747–759. [Google Scholar] [CrossRef]
- Iancu, I.; Iancu, B. Elderly in the digital era. Theoretical perspectives on assistive technologies. Technology 2017, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Park, W. Enhancing the Usability of Self-service Kiosks for Older Adults: Effects of Using Privacy Partitions and Chairs. arXiv 2021, arXiv:2105.07445. [Google Scholar] [CrossRef]
- Caprani, N.; O’Connor, N.E.; Gurrin, C. Touch screens for the older user. In Assistive Technologies; InTech: London, UK, 2012; pp. 95–118. [Google Scholar]
- Ryu, M.-H.; Kim, S.; Lee, E. Understanding the factors affecting online elderly user’s participation in video UCC services. Comput. Hum. Behav. 2009, 25, 619–632. [Google Scholar] [CrossRef]
- Hauk, N.; Göritz, A.S.; Krumm, S. The mediating role of coping behavior on the age-technostress relationship: A longitudinal multilevel mediation model. PLoS ONE 2019, 14, e0213349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, M.K.; Wahl, H.-W. Awareness of age-related change: Examination of a (mostly) unexplored concept. J. Gerontol.-B Psychol. Sci. Soc. Sci 2010, 65, 340–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, S.; Ukoumunne, O.C.; Ballard, C.; Collins, R.; Anstey, K.J.; Diehl, M.; Brothers, A.; Wahl, H.-W.; Corbett, A.; Hampshire, A. Cross-sectional association between objective cognitive performance and perceived age-related gains and losses in cognition. Int. Psychogeriatr 2021, 33, 727–741. [Google Scholar] [CrossRef]
- Maier, C. Technostress: Theoretical Foundation and Empirical Evidence. Doctoral Dissertation, Otto-Friedrich-Universität Bamberg, Fakultät Wirtschaftsinformatik und Angewandte Informatik, 2014. Available online: https://fis.uni-bamberg.de/handle/uniba/21166 (accessed on 12 March 2023).
- Maeda, J. The Laws of Simplicity; The MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Lee, D.; Moon, J.; Kim, Y.J.; Mun, Y.Y. Antecedents and consequences of mobile phone usability: Linking simplicity and interactivity to satisfaction, trust, and brand loyalty. Inf. Manag. 2015, 52, 295–304. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Kleijnen, M.; Wetzels, M.; De Ruyter, K. Consumer acceptance of wireless finance. J. Financ. Serv. Mark 2004, 8, 206–217. [Google Scholar] [CrossRef] [Green Version]
- Petrie, H.; Darzentas, J.S.; Power, C. Self-Service terminals for older and disabled users: Attitudes of key stakeholders. In Proceedings of the International conference on computers for handicapped persons, Paris, France, 9–11 July 2014; pp. 340–347. [Google Scholar]
- Hui, M.K.; Bateson, J.E. Perceived control and the effects of crowding and consumer choice on the service experience. J. Consum. Res. 1991, 18, 174–184. [Google Scholar] [CrossRef]
- Kulviwat, S.; Guo, C.; Engchanil, N. Determinants of online information search: A critical review and assessment. Internet Res. 2004, 14, 245–253. [Google Scholar] [CrossRef]
- Alreck, P.L.; DiBartolo, G.R.; Diriker, M.; Dover, H.F.; Passyn, K.A.; Settle, R.B. Time pressure, time saving and online shopping: Exploring a contradiction. J. Appl. Bus. Res. 2009, 25, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Maule, A.J.; Hockey, G.R.J.; Bdzola, L. Effects of time-pressure on decision-making under uncertainty: Changes in affective state and information processing strategy. Acta Psychol 2000, 104, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, A. Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. J. Serv. Res. 2000, 2, 307–320. [Google Scholar] [CrossRef]
- Eroglu, S.; Harrell, G.D. Retail crowding: Theoretical and strategic implications. J. Retail. 1986, 62, 346–363. [Google Scholar]
- Langer, E.J.; Saegert, S. Crowding and cognitive control. J. Pers. Soc. Psychol. 1977, 35, 175. [Google Scholar] [CrossRef]
- Rapoport, A. Toward a redefinition of density. Environ. Behav. 1975, 7, 133–158. [Google Scholar] [CrossRef]
- Kim, H.; Lee, Y.S.; Park, K.S. The psychology of queuing for self-service: Reciprocity and social pressure. Adm. Sci. 2018, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Narushima, M.; Liu, J.; Diestelkamp, N. Lifelong learning in active ageing discourse: Its conserving effect on wellbeing, health and vulnerability. Ageing Soc. 2018, 38, 651–675. [Google Scholar] [CrossRef] [Green Version]
- Peek, S.; Luijkx, K.; Vrijhoef, H.; Nieboer, M.; Aarts, S.; Van Der Voort, C.; Rijnaard, M.; Wouters, E. Understanding changes and stability in the long-term use of technologies by seniors who are aging in place: A dynamical framework. BMC Geriatr. 2019, 19, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hultsch, D.F.; MacDonald, S.W.; Hunter, M.A.; Maitland, S.B.; Dixon, R.A. Sampling and generalisability in developmental research: Comparison of random and convenience samples of older adults. Int. J. Behav. Dev. 2002, 26, 345–359. [Google Scholar] [CrossRef]
- Losada, A.; Márquez-González, M.; García-Ortiz, L.; Gómez-Marcos, M.A.; Fernández-Fernández, V.; Rodríguez-Sánchez, E. Loneliness and mental health in a representative sample of community-dwelling Spanish older adults. J. Psychol. 2012, 146, 277–292. [Google Scholar] [CrossRef]
- Pruchno, R.A.; Brill, J.E.; Shands, Y.; Gordon, J.R.; Genderson, M.W.; Rose, M.; Cartwright, F. Convenience samples and caregiving research: How generalizable are the findings? Gerontologist 2008, 48, 820–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Sun, L. Self-neglect among older adults with disabilities in Liaoning Province during the COVID-19 outbreak: A cross-sectional study. Front. Psychol. 2022, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.W.; Ko, I.S.; Lee, K.J. Health promotion behaviors and quality of life among community-dwelling elderly in Korea: A cross-sectional survey. Int. J. Nurs. Stud 2006, 43, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Maly, R.C.; Frank, J.C.; Marshall, G.N.; DiMatteo, M.R.; Reuben, D.B. Perceived efficacy in patient-physician interactions (PEPPI): Validation of an instrument in older persons. J. Am. Geriatr. Soc. 1998, 46, 889–894. [Google Scholar] [CrossRef]
- Falvo, I.; Zufferey, M.C.; Albanese, E.; Fadda, M. Lived experiences of older adults during the first COVID-19 lockdown: A qualitative study. PLoS ONE 2021, 16, e0252101. [Google Scholar] [CrossRef]
- Kammerer, K.; Falk, K.; Herzog, A.; Fuchs, J. How to reach ‘hard-to-reach’ older people for research: The TIBaR model of recruitment. Surv. Methods Insights Field 2019, 1–15. [Google Scholar]
- Lieberman, D.Z. Evaluation of the stability and validity of participant samples recruited over the internet. Cyberpsychol. Behav. 2008, 11, 743–745. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.C.; Gerbing, D.W. The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika 1984, 49, 155–173. [Google Scholar] [CrossRef]
- Wong, K.K.-K. Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Mark. Bull. 2013, 24, 1–32. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Yang, T.; Liu, J.; Zhang, Y.; Zhang, Q.; Shangguan, L.; Li, Z.; Luo, X.; Gong, J. Coping style predicts sense of security and mediates the relationship between autistic traits and social anxiety: Moderation by a polymorphism of the FKBP5 gene. Behav. Brain Res. 2021, 404, 113142. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Lerner, J.S.; Keltner, D. Feelings and consumer decision making: The appraisal-tendency framework. J. Consum. Psychol. 2007, 17, 158–168. [Google Scholar] [CrossRef]
- Kumar, M. Technology and Social Anxieties, Attitudes and Behavioral Intentions of Singaporeans towards Using Self-Service Technology (SST). Master’s Thesis, University of Nevada, Las Vegas, NV, USA, 2007. [Google Scholar]
- Choi, S.J.; Kim, K.B. The internal structure of the Korean social face. Kor. J. Soc Pers. Psychol. 2000, 14, 185–202. [Google Scholar]
- Heinrichs, N.; Rapee, R.M.; Alden, L.A.; Bögels, S.; Hofmann, S.G.; Oh, K.J.; Sakano, Y. Cultural differences in perceived social norms and social anxiety. Behav. Res. Ther. 2006, 44, 1187–1197. [Google Scholar] [CrossRef]
- Gelbrich, K. Anger, frustration, and helplessness after service failure: Coping strategies and effective informational support. J. Acad. Mark. Sci. 2010, 38, 567–585. [Google Scholar]
- Timmermann, S. The role of information technology in older adult learning. New Dir. Adult Contin. Educ 1998, 77, 61–71. [Google Scholar] [CrossRef]
- Choi, J.H.; Lee, H.-J. Facets of simplicity for the smartphone interface: A structural model. Int. J. Hum. Comput. Stud 2012, 70, 129–142. [Google Scholar] [CrossRef]
- Yoon, C.; Choi, B. Role of situational dependence in the use of self-service technology. Sustainability 2020, 12, 4653. [Google Scholar] [CrossRef]
- Jang, M.; Aavakare, M.; Nikou, S.; Kim, S. The impact of literacy on intention to use digital technology for learning: A comparative study of Korea and Finland. Telecommun. Policy 2021, 45, 102154. [Google Scholar] [CrossRef]
- Schreier, S.S.; Heinrichs, N.; Alden, L.; Rapee, R.M.; Hofmann, S.G.; Chen, J.; Oh, K.J.; Bögels, S. Social anxiety and social norms in individualistic and collectivistic countries. Depress Anxiety 2010, 27, 1128–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Measures | Frequency | Percent | |
---|---|---|---|
Gender | Male | 52 | 46.4 |
Female | 48 | 42.9 | |
Age | 60–64 | 39 | 34.8 |
65–69 | 42 | 37.5 | |
70–74 | 13 | 11.6 | |
75–79 | 6 | 5.4 | |
Education | Elementary school | 1 | 1.0 |
Middle school | 3 | 3.0 | |
High school | 17 | 17.0 | |
College | 19 | 19.0 | |
University | 40 | 40.0 | |
Graduate school | 20 | 20.0 | |
Kiosk usage in | 1–2 times in a month | 72 | 64.3 |
fast-food restaurants | 3–4 times in a month | 15 | 13.4 |
5–6 times in a month | 3 | 2.7 | |
>7 times in a month | 2 | 1.8 | |
Once in a 2–3 month | 3 | 2.7 | |
Once in 6 months | 5 | 4.5 | |
Time spent for | 1–3 min | 57 | 50.9 |
kiosk completion | 4–6 min | 36 | 32.1 |
7–9 min | 2 | 1.8 | |
10–15 min | 5 | 4.5 |
Construct | No. of Items | Item Loading | Cronbach’s Alpha | CR | AVE |
---|---|---|---|---|---|
Perceived physical condition | 4 | 0.894–0.945 | 0.940 | 0.957 | 0.848 |
Cognitive losses | 4 | 0.826–0.916 | 0.910 | 0.937 | 0.789 |
Reduction | 4 | 0.911–0.947 | 0.953 | 0.966 | 0.876 |
Perceived ease of use | 4 | 0.839–0.897 | 0.894 | 0.927 | 0.760 |
Perceived time pressure | 4 | 0.801–0.895 | 0.880 | 0.917 | 0.736 |
Perceived crowding | 4 | 0.909–0.953 | 0.948 | 0.962 | 0.864 |
Social anxiety | 4 | 0.901–0.957 | 0.945 | 0.960 | 0.859 |
Helplessness | 4 | 0.939–0.970 | 0.972 | 0.979 | 0.921 |
Seeking interaction | 4 | 0.655–0.803 | 0.753 | 0.826 | 0.544 |
Observing others | 4 | 0.838–0.970 | 0.942 | 0.958 | 0.851 |
Behavioral disengagement | 4 | 0.816–0.889 | 0.871 | 0.911 | 0.718 |
Constructs | PPC | LIC | R | PEOU | PTP | PC | SA | H | NI | OO | BD |
---|---|---|---|---|---|---|---|---|---|---|---|
Perceived physical condition | 0.921 | ||||||||||
Cognitive losses | 0.663 | 0.888 | |||||||||
Reduction | −0.096 | −0.055 | 0.936 | ||||||||
Perceived ease of use | −0.214 | −0.200 | 0.457 | 0.872 | |||||||
Perceived time pressure | 0.307 | 0.199 | −0.357 | −0.464 | 0.858 | ||||||
Perceived crowding | 0.181 | 0.232 | −0.372 | −0.168 | 0.461 | 0.930 | |||||
Social anxiety | 0.390 | 0.390 | −0.486 | −0.536 | 0.621 | 0.469 | 0.927 | ||||
Helplessness | 0.244 | 0.170 | −0.477 | −0.646 | 0.649 | 0.253 | 0.586 | 0.960 | |||
Seeking interaction | 0.138 | 0.134 | −0.358 | −0.460 | 0.327 | 0.273 | 0.517 | 0.396 | 0.738 | ||
Observing others | 0.219 | 0.270 | −0.130 | −0.219 | 0.236 | 0.114 | 0.356 | 0.124 | 0.375 | 0.922 | |
Behavioral disengagement | 0.195 | 0.269 | −0.294 | −0.480 | 0.460 | 0.210 | 0.520 | 0.388 | 0.332 | 0.171 | 0.847 |
Constructs | PPC | LIC | R | PEOU | PTP | PC | SA | H | NI | OO | BD |
---|---|---|---|---|---|---|---|---|---|---|---|
Perceived physical condition | |||||||||||
Cognitive losses | 0.218 | ||||||||||
Reduction | 0.100 | 0.072 | |||||||||
Perceived ease of use | 0.233 | 0.218 | 0.490 | ||||||||
Perceived time pressure | 0.334 | 0.218 | 0.386 | 0.518 | |||||||
Perceived crowding | 0.192 | 0.248 | 0.388 | 0.179 | 0.497 | ||||||
Social anxiety | 0.41 | 0.418 | 0.508 | 0.584 | 0.677 | 0.493 | |||||
Helplessness | 0.254 | 0.179 | 0.492 | 0.690 | 0.704 | 0.260 | 0.612 | ||||
Seeking interaction | 0.137 | 0.139 | 0.387 | 0.509 | 0.342 | 0.252 | 0.499 | 0.446 | |||
Observing others | 0.230 | 0.298 | 0.130 | 0.227 | 0.243 | 0.120 | 0.358 | 0.120 | 0.435 | ||
Behavioral disengagement | 0.215 | 0.286 | 0.309 | 0.540 | 0.504 | 0.229 | 0.558 | 0.402 | 0.327 | 0.175 |
Hypothesis | β | t | Results |
---|---|---|---|
H1a: Social anxiety → Seeking interaction | 0.437 *** | 3.496 | Supported |
H1b: Social anxiety → Observing others | 0.457 *** | 4.507 | Supported |
H1c: Social anxiety → Behavioral disengagement | 0.448 *** | 4.505 | Supported |
H2a: Helplessness → Seeking interaction | 0.129 | 0.861 | Not supported |
H2b: Helplessness → Observing others | −0.169 | 1.350 | Not supported |
H2c: Helplessness → Behavioral disengagement | 00.122 | 0.890 | Not supported |
H3a: Perceived physical condition → Social anxiety | .074 | 0.793 | Not supported |
H3b: Perceived physical condition → Helplessness | 0.026 | 0.257 | Not supported |
H4a: Cognitive losses → Social anxiety | 0.187 * | 2.003 | Supported |
H4b: Cognitive losses → Helplessness | 0.001 | 0.014 | Not supported |
H5a: Reduction → Social anxiety | −0.196 ** | 2.390 | Supported |
H5b: Reduction → Helplessness | −0.181 ** | 2.164 | Supported |
H6a: Perceived ease of use → Social anxiety | −0.220 ** | 2.287 | Supported |
H6b: Perceived ease of use → Helplessness | −0.365 *** | 3.722 | Supported |
H7a: Perceived time pressure → Social anxiety | 0.318 *** | 3.815 | Supported |
H7b: Perceived time pressure → Helplessness | 0.447 *** | 4.031 | Supported |
H8a: Perceived crowding → Social anxiety | 0.156 | 1.858 | Not supported |
H8b: Perceived crowding → Helplessness | −0.087 | 0.851 | Not supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, J.; Kim, S.; Jung, Y. Elderly Users’ Emotional and Behavioral Responses to Self-Service Technology in Fast-Food Restaurants. Behav. Sci. 2023, 13, 284. https://doi.org/10.3390/bs13040284
Nam J, Kim S, Jung Y. Elderly Users’ Emotional and Behavioral Responses to Self-Service Technology in Fast-Food Restaurants. Behavioral Sciences. 2023; 13(4):284. https://doi.org/10.3390/bs13040284
Chicago/Turabian StyleNam, Jinyoung, Seongcheol Kim, and Yoonhyuk Jung. 2023. "Elderly Users’ Emotional and Behavioral Responses to Self-Service Technology in Fast-Food Restaurants" Behavioral Sciences 13, no. 4: 284. https://doi.org/10.3390/bs13040284
APA StyleNam, J., Kim, S., & Jung, Y. (2023). Elderly Users’ Emotional and Behavioral Responses to Self-Service Technology in Fast-Food Restaurants. Behavioral Sciences, 13(4), 284. https://doi.org/10.3390/bs13040284