Transfer Effect of Cognitive Advantages in Visual Working Memory Capacity: Evidence from Elite Football Players
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Participants
2.2. Experimental Materials
2.3. Experimental Design
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Comparison of VWMC under Different Stimulus Conditions
3.3. Comparison of Reaction Time under Different Stimulus Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baddeley, A. Working memory and language: An overview. J. Commun. Disord. 2003, 36, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working memory: Theories, models, and controversies. Ann. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Kent, P.L. Working memory: A selective review. Appl. Neuropsychol. Child 2016, 5, 163–172. [Google Scholar] [CrossRef]
- Veraksa, A.; Bukhalenkova, D.; Kartushina, N.; Oshchepkova, E. The relationship between executive functions and language production in 5–6-year-old children: Insights from working memory and storytelling. Behav. Sci. 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddeley, A.; Hitch, G.; Bower, G.A. Recent advances in learning and motivation. Work. Mem. 1974, 8, 647–667. [Google Scholar]
- Fukuda, K.; Awh, E.; Vogel, E.K. Discrete capacity limits in visual working memory. Curr. Opin. Neurobiol. 2010, 20, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, N. Visual and auditory working memory capacity. Trends Cogn. Sci. 1998, 2, 77–78. [Google Scholar] [CrossRef]
- Luck, S.J.; Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 1997, 390, 279–281. [Google Scholar] [CrossRef]
- Alvarez, G.A.; Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 2004, 15, 106–111. [Google Scholar] [CrossRef]
- Almarzouki, A.F.; Alghamdi, R.A.; Nassar, R.; Aljohani, R.R.; Nasser, A.; Bawadood, M.; Almalki, R.H. Social media usage, working memory, and depression: An experimental investigation among university students. Behav. Sci. 2022, 12, 16. [Google Scholar] [CrossRef]
- Mintzer, M.Z.; Snodgrass, J.G. The picture superiority effect: Support for the distinctiveness model. Am. J. Psychol. 1999, 112, 113–146. [Google Scholar] [CrossRef] [PubMed]
- Matsuki-Muramoto, Y.; Ogasawara, M.; Kawamoto, T.; Yamaji, K.; Tamura, N. Cognitive advantages effect as one of the potential advantages of musculoskeletal ultrasound complementation for verbal explanation. Mod. Rheumatol. 2020, 30, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Ensor, T.M.; Surprenant, A.M.; Neath, I. Increasing word distinctiveness eliminates the cognitive advantages effect in recognition: Evidence for the physical-distinctiveness account. Mem. Cogn. 2019, 47, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Ensor, T.M.; Bancroft, T.D.; Hockley, W.E. Listening to the picture-superiority effect evidence for the conceptual-distinctiveness account of cognitive advantages in recognition. Exp. Psychol. 2019, 66, 134–153. [Google Scholar] [CrossRef]
- Baadte, C.; Meinhardt-Injac, B. The cognitive advantages effect in associative memory: A developmental study. Br. J. Dev. Psychol. 2019, 37, 382–395. [Google Scholar] [CrossRef]
- Chandrasekharan, S.; Esfandiari, B.; Hassan, T. The advantages of the signaling strategy in a dynamic environment: Cognitive modeling using robocup. In Lecture Notes in Artificial Intelligence; Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4020, pp. 665–672. [Google Scholar]
- Eccles, D.W.; Arsal, G. How do they make it look so easy? The expert orienteer’s cognitive advantage. J. Sport Sci. 2015, 33, 609–615. [Google Scholar] [CrossRef]
- Karlinsky, A.; Lohse, K.R.; Hodges, N.J. The nature of the cognitive advantage: A quarter of a century later. Int. J. Sport Psychol. 2015, 46, 486–512. [Google Scholar]
- Conder, J.; Humphreys, K.R.; Watter, S. Expert video game players show no cognitive control advantage in task switching. Can. J. Exp. Psychol. 2015, 69, 354-354. [Google Scholar]
- Ozimic, A.S.; Repovs, G. Visual working memory capacity is limited by two systems that change across lifespan. J. Mem. Lang. 2020, 112, 104090. [Google Scholar] [CrossRef]
- Burris, K.; Liu, S.; Appelbaum, L. Visual-motor expertise in athletes: Insights from semiparametric modelling of 2317 athletes tested on the nike sparq sensory station. J. Sport Sci. 2020, 38, 320–329. [Google Scholar] [CrossRef]
- Marcen-Cinca, N.; Sanchez, X.; Otin, S.; Cimarras-Otal, C.; Bataller-Cervero, A.V. Visual perception in expert athletes: The case of rock climbers. Front. Psychol. 2022, 13, 903518. [Google Scholar] [CrossRef] [PubMed]
- Omar, R.; Kuan, Y.M.; Zuhairi, N.A.; Abd Manan, F.; Knight, V.F. Visual efficiency among teenaged athletes and non-athletes. Int. J. Ophthalmol. 2017, 10, 1460–1464. [Google Scholar] [PubMed]
- Krenn, B.; Finkenzeller, T.; Wuerth, S.; Amesberger, G. Sport type determines differences in executive functions in elite athletes. Psychol. Sport Exerc. 2018, 38, 72–79. [Google Scholar] [CrossRef]
- Koch, P.; Krenn, B. Executive functions in elite athletes-comparing open-skill and closed-skill sports and considering the role of athletes’ past involvement in both sport categories. Psychol. Sport Exerc. 2021, 55, 101925. [Google Scholar] [CrossRef]
- Holfelder, B.; Klotzbier, T.J.; Eisele, M.; Schott, N. Hot and cool executive function in elite- and amateur-adolescent athletes from open and closed skills sports. Front. Psychol. 2020, 11, 694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montuori, S.; D’Aurizio, G.; Foti, F.; Liparoti, M.; Lardone, A.; Pesoli, M.; Sorrentino, G.; Mandolesi, L.; Curcio, G.; Sorrentino, P. Executive functioning profiles in elite volleyball athletes: Preliminary results by a sport-specific task switching protocol. Hum. Mov. Sci. 2019, 63, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.A.; Cooper, S.B.; Dring, K.J.; Hatch, L.; Morris, J.G.; Sunderland, C.; Nevill, M.E. Effect of football activity and physical fitness on information processing, inhibitory control and working memory in adolescents. BMC Public Health. 2020, 20, 1398. [Google Scholar] [CrossRef]
- Mann, D.T.Y.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psy. 2007, 29, 457–478. [Google Scholar] [CrossRef]
- Yao, N.; Guo, Y.; Liu, Y.; Shen, M.; Gao, Z. Visual working-memory capacity load does not modulate distractor processing. Atten. Percept. Psychophys. 2020, 82, 3291–3313. [Google Scholar] [CrossRef]
- Swann, C.; Moran, A.; Piggott, D. Defining elite athletes: Issues in the study of expert performance in sport psychology. Psychol. Sport Exerc. 2015, 16, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Dodwell, G.; Mueller, H.J.; Toellner, T. Electroencephalographic evidence for improved visual working memory performance during standing and exercise. Brit. J. Psychol. 2019, 110, 400–427. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Cai, K.; Zhu, H.; Dong, X.; Xiong, X.; Zhu, L.; Sun, Z.; Chen, A. Football juggling learning alters the working memory and white matter integrity in early adulthood: A randomized controlled study. Appl. Sci. 2021, 11, 3843. [Google Scholar] [CrossRef]
- Jarrold, C.; Towse, J.N. Individual differences in working memory. Neuroscience 2006, 139, 39–50. [Google Scholar] [CrossRef]
- Sibley, B.A.; Beilock, S.L. Exercise and working memory: An individual differences investigation. J. Sport Exerc. Psy. 2007, 29, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Poledna, M.; Gomez-Morales, A.; Hagler, D. Nursing students’ cue recognition in educational simulation a scoping review. Nurse Educ. 2022, 47, 283–287. [Google Scholar] [CrossRef]
- Thomas, D.; Wells, D. Student perceptions of mobile automated speech recognition for pronunciation study and testing. Engl. Teach. 2021, 76, 101–122. [Google Scholar]
- Wegerer, M.; Kerschbaum, H.; Blechert, J.; Wilhelm, F.H. Low levels of estradiol are associated with elevated conditioned responding during fear extinction and with intrusive memories in daily life. Neurobiol. Learn. Mem. 2014, 116, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Hein, E.; Stepper, M.Y.; Hollingworth, A.; Moore, C.M. Visual working memory content influences correspondence processes. J. Exp. Psychol. Hum. Percept. Perform. 2021, 47, 331–343. [Google Scholar] [CrossRef]
- Lin, Y.; Kong, G.; Fougnie, D. Object-based selection in visual working memory. Psychon. Bull. Rev. 2021, 28, 1961–1971. [Google Scholar] [CrossRef]
- Roberts, S.D.; Wilson, A.; Rahimi, A.; Gorbet, D.; Sergio, L.; Stevens, W.D.; Wojtowicz, M. Investigation of baseline attention, executive control, and performance variability in female varsity athletes. Brain Imaging Behav. 2022, 16, 1636–1645. [Google Scholar] [CrossRef]
- Xue, T.; Lyu, T.; Xue, T.; Yu, M.; Fu, T.; Guo, H. The influence of state anxiety and working memory capacity on attention control of high-level athletes. Rev. Psicol. Deporte 2021, 30, 175–182. [Google Scholar]
Elite Football Players | Novices | p | |
---|---|---|---|
Age (years) | 20.46 ± 1.49 | 21.15 ± 1.69 | 0.431 |
Gender (male/female) | 30/12 | 32/13 | 0.974 |
Body height (cm) | 175.23 ± 3.13 | 176.48 ± 2.12 | 0.323 |
Body weight (kg) | 65.32 ± 6.14 | 68.25 ± 7.13 | 0.167 |
Education time (years) | 11.23 ± 1.22 | 10.21 ± 1.13 | 0.265 |
Professional | Daily | Meaningless | ||||
---|---|---|---|---|---|---|
K-Maximum Value | K-Mean Value | K-Maximum Value | K-Mean Value | K-Maximum Value | K-Mean Value | |
Elite football players | 3.68 ± 1.03 | 2.51 ± 0.56 | 2.90 ± 0.92 | 1.84 ± 0.62 | 3.21 ± 0.85 | 1.84 ± 0.67 |
Novices | 3.09 ± 0.92 | 2.09 ± 0.66 | 2.95 ± 0.87 | 1.82 ± 0.55 | 2.53 ± 0.90 | 1.35 ± 0.59 |
p | 0.000 * | 0.000 * | 0.437 | 0.523 | 0.002 * | 0.003 * |
Stimulus Quantity | Stimulus Condition | Elite Football Players | Novices | p |
---|---|---|---|---|
2 | Professional | 1.85 ± 0.13 | 1.76 ± 0.15 | 0.102 |
Daily | 1.78 ± 0.15 | 1.69 ± 0.21 | 0.167 | |
Meaningless | 1.77 ± 0.20 | 1.82 ± 0.13 | 0.203 | |
4 | Professional | 1.73 ± 0.68 | 1.54 ± 0.63 | 0.074 |
Daily | 1.68 ± 0.72 | 1.54 ± 0.60 | 0.215 | |
Meaningless | 2.73 ± 0.91 | 2.64 ± 0.49 | 0.113 | |
6 | Professional | 1.96 ± 1.43 | 1.32 ± 1.39 | 0.021 * |
Daily | 1.98 ± 1.39 | 1.87 ± 1.42 | 0.226 | |
Meaningless | 2.64 ± 1.52 | 2.53 ± 1.51 | 0.325 | |
8 | Professional | 2.42 ± 1.25 | 1.13 ± 1.38 | 0.000 * |
Daily | 1.53 ± 1.33 | 1.47 ± 1.67 | 0.136 | |
Meaningless | 2.32 ± 1.40 | 1.43 ± 1.99 | 0.002 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, Z.; Zhang, H.; Ji, C. Transfer Effect of Cognitive Advantages in Visual Working Memory Capacity: Evidence from Elite Football Players. Behav. Sci. 2023, 13, 464. https://doi.org/10.3390/bs13060464
Wang X, Liu Z, Zhang H, Ji C. Transfer Effect of Cognitive Advantages in Visual Working Memory Capacity: Evidence from Elite Football Players. Behavioral Sciences. 2023; 13(6):464. https://doi.org/10.3390/bs13060464
Chicago/Turabian StyleWang, Xiaomei, Zhigang Liu, Huanyu Zhang, and Chaoxin Ji. 2023. "Transfer Effect of Cognitive Advantages in Visual Working Memory Capacity: Evidence from Elite Football Players" Behavioral Sciences 13, no. 6: 464. https://doi.org/10.3390/bs13060464
APA StyleWang, X., Liu, Z., Zhang, H., & Ji, C. (2023). Transfer Effect of Cognitive Advantages in Visual Working Memory Capacity: Evidence from Elite Football Players. Behavioral Sciences, 13(6), 464. https://doi.org/10.3390/bs13060464