The Influence of Geographical Environment on Public Social Trust: What Role Do Tourism Activities Play?
Abstract
:1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Geographical Environment and Social Trust
2.1.1. Clash (Class, Aggregation, and Self-Control in Humans) Theory
2.1.2. Rice Theory
2.1.3. Pathogen Stress Theory
2.2. Economic Development and Social Trust
2.3. Tourism Activities and Social Trust
2.3.1. Social Exchange Theory
2.3.2. Embodied Cognition Theory
2.4. Research Aims and Hypotheses
3. Method
3.1. Data Source and Sample
3.2. Variable
3.2.1. Social Trust
3.2.2. Temperature
3.2.3. Rice-Growing Areas
3.2.4. Pathogen Stress
3.2.5. Economic Development Level
3.2.6. Level of Tourist Reception
3.2.7. Level of Tourist Supply
4. Results
5. Discussion
5.1. Theoretical Contribution
5.2. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Item | Category | Frequency | Percentage |
---|---|---|---|
Shanghai | 991 | 7.9% | |
Yunnan | 418 | 3.3% | |
Beijing | 1082 | 8.7% | |
Jilin | 504 | 4.0% | |
Sichuan | 606 | 4.9% | |
Tianjin | 400 | 3.2% | |
Ningxia | 100 | 0.8% | |
Anhui | 418 | 3.3% | |
Shandong | 600 | 4.8% | |
Shanxi | 303 | 2.4% | |
Guangdong | 575 | 4.6% | |
Guangxi | 398 | 3.2% | |
Jiangsu | 498 | 4.0% | |
Province | Jiangxi | 503 | 4.0% |
Hebei | 295 | 2.4% | |
Henan | 600 | 4.8% | |
Zhejiang | 496 | 4.0% | |
Hubei | 605 | 4.8% | |
Hunan | 501 | 4.0% | |
Gansu | 200 | 1.6% | |
Fujian | 299 | 2.4% | |
Guizhou | 300 | 2.4% | |
Liaoning | 406 | 3.3% | |
Chongqing | 300 | 2.4% | |
Shanxi | 397 | 3.2% | |
Qinghai | 100 | 0.8% | |
Heilongjiang | 587 | 4.7% | |
Gender | Male | 5894 | 47.2% |
Female | 6588 | 52.8% | |
15–24 | 810 | 6.5% | |
25–34 | 1719 | 13.8% | |
35–44 | 1901 | 15.2% | |
Age (years) | 45–54 | 2656 | 21.3% |
55–64 | 2437 | 19.5% | |
65–74 | 1917 | 15.4% | |
75–84 | 875 | 7% | |
85 and above | 167 | 1.3% | |
No education | 1510 | 12.1% | |
Private schools and literacy classes | 91 | 0.7% | |
Primary school | 2686 | 21.5% | |
Junior middle school | 3483 | 27.9% | |
Vocational high school | 163 | 1.3% | |
Ordinary high school | 1468 | 11.8% | |
Educational level | Secondary specialized school | 539 | 4.3% |
Technical school | 72 | 0.6% | |
College (adult higher education) | 378 | 3.0% | |
College (formal higher education) | 672 | 5.4% | |
Undergraduate (adult higher education) | 299 | 2.4% | |
Undergraduate (formal higher education) | 948 | 7.6% | |
Graduate and above | 173 | 1.4% | |
10,000 and below | 4686 | 37.5% | |
10,001–20,000 | 1424 | 11.4% | |
20,001–40,000 | 3265 | 26.2% | |
40,001–60,000 | 1589 | 12.7% | |
60,001–80,000 | 492 | 3.9% | |
Income (yuan) | 80,001–100,000 | 470 | 3.8% |
100,001–120,000 | 114 | 0.9% | |
120,001–140,000 | 28 | 0.2% | |
140,001–160,000 | 102 | 0.8% | |
160,001–180,000 | 19 | 0.2% | |
180,001–200,000 | 119 | 1% | |
200,001 and above | 174 | 1.4% |
Province | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 14.2 | 13.8 | 13.7 | 14.1 | 12.8 | 12.9 | 13.4 | 12.6 | 13.3 | 13.4 | 14.0 |
Tianjin | 14.2 | 13.8 | 13.7 | 14.0 | 12.8 | 12.5 | 12.9 | 12.2 | 12.9 | 13.3 | 13.6 |
Hebei | 15.0 | 14.6 | 14.6 | 14.9 | 13.8 | 14.0 | 14.2 | 14.0 | 14.4 | 14.6 | 14.9 |
Shanxi | 11.5 | 11.2 | 11.3 | 10.9 | 11.2 | 10.7 | 10.8 | 11.3 | 11.1 | 10.9 | 11.4 |
Liaoning | 9.3 | 8.8 | 9.0 | 9.2 | 7.9 | 7.4 | 7.7 | 7.2 | 7.7 | 8.6 | 9.0 |
Jilin | 7.0 | 6.6 | 7.2 | 7.1 | 5.6 | 5.2 | 5.9 | 5.2 | 6.1 | 7.2 | 7.7 |
Heilongjiang | 5.1 | 5.0 | 5.6 | 5.1 | 4.3 | 4.6 | 5.2 | 4.5 | 5.0 | 6.6 | 6.7 |
Shanghai | 17.7 | 17.6 | 17.0 | 17.0 | 17.6 | 16.9 | 16.9 | 17.2 | 17.4 | 17.2 | 18.2 |
Jiangsu | 17.0 | 16.8 | 16.4 | 16.4 | 16.8 | 16.0 | 16.1 | 16.2 | 16.4 | 16.1 | 17.3 |
Zhejiang | 18.3 | 18.2 | 17.5 | 17.5 | 18.0 | 17.1 | 17.2 | 17.4 | 17.8 | 17.5 | 18.4 |
Anhui | 17.1 | 17.0 | 16.7 | 16.5 | 17.0 | 16.5 | 16.3 | 16.4 | 16.7 | 16.4 | 17.3 |
Fujian | 21.2 | 21.0 | 20.7 | 20.8 | 20.4 | 20.2 | 20.2 | 20.4 | 20.7 | 20.4 | 21.0 |
Jiangxi | 19.2 | 19.0 | 18.7 | 18.8 | 19.0 | 18.0 | 18.4 | 18.5 | 18.8 | 18.5 | 19.2 |
Shandong | 15.7 | 15.4 | 15.0 | 15.4 | 14.7 | 14.3 | 14.1 | 14.3 | 14.8 | 14.6 | 15.0 |
Henan | 16.8 | 16.4 | 15.9 | 16.3 | 16.1 | 15.5 | 15.1 | 15.6 | 15.5 | 15.6 | 15.9 |
Hubei | 17.3 | 17.3 | 16.8 | 16.7 | 17.1 | 16.4 | 16.3 | 16.6 | 17.9 | 17.6 | 18.5 |
Hunan | 17.7 | 17.5 | 17.4 | 18.6 | 19.2 | 17.6 | 17.9 | 18.2 | 18.5 | 18.3 | 18.8 |
Guangdong | 22.1 | 21.9 | 22.3 | 21.7 | 21.5 | 21.7 | 21.4 | 22.5 | 23.0 | 22.4 | 23.2 |
Guangxi | 21.9 | 22.3 | 22.2 | 21.6 | 21.6 | 21.4 | 20.7 | 21.8 | 22.2 | 20.8 | 21.7 |
Chongqing | 19.4 | 19.5 | 19.6 | 18.6 | 19.8 | 18.3 | 18.8 | 18.6 | 19.0 | 18.5 | 19.0 |
Sichuan | 16.6 | 16.8 | 16.8 | 16.0 | 16.9 | 15.9 | 15.9 | 16.0 | 16.8 | 16.3 | 16.8 |
Guizhou | 15.2 | 15.3 | 15.2 | 14.7 | 15.1 | 13.7 | 14.0 | 14.6 | 14.9 | 14.1 | 14.9 |
Yunnan | 15.7 | 15.8 | 16.2 | 16.4 | 16.0 | 16.3 | 15.5 | 16.7 | 16.6 | 15.4 | 15.6 |
Shaanxi | 15.6 | 15.8 | 15.2 | 15.2 | 15.8 | 14.2 | 14.1 | 14.6 | 15.1 | 14.9 | 15.6 |
Gansu | 8.0 | 8.2 | 8.3 | 7.7 | 8.3 | 7.5 | 7.7 | 7.9 | 8.0 | 10.6 | 11.1 |
Qinghai | 6.3 | 6.6 | 6.4 | 5.7 | 6.1 | 5.2 | 5.7 | 6.4 | 6.2 | 5.7 | 6.1 |
Ningxia | 11.0 | 10.7 | 10.7 | 10.7 | 11.2 | 9.8 | 9.9 | 10.3 | 10.5 | 9.9 | 10.4 |
Province | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 |
Beijing | 13.4 | 13.2 | 13.5 | 12.8 | 13.1 | 12.9 | 12.8 | 13.1 | 13.1 | 13.1 | 12.7 |
Tianjin | 13.2 | 12.9 | 13.2 | 12.7 | 13.2 | 13.0 | 12.9 | 13.1 | 13.4 | 13.1 | 12.2 |
Hebei | 14.6 | 14.3 | 14.3 | 13.6 | 14.4 | 14.4 | 13.9 | 14.7 | 15.0 | 14.4 | 13.5 |
Shanxi | 11.8 | 10.9 | 10.9 | 10.1 | 10.9 | 11.0 | 10.7 | 11.5 | 11.5 | 10.1 | 9.8 |
Liaoning | 8.3 | 8.0 | 9.6 | 9.0 | 9.2 | 8.4 | 8.3 | 8.9 | 9.7 | 8.8 | 8.1 |
Jilin | 6.6 | 5.6 | 7.1 | 7.0 | 6.8 | 6.1 | 5.6 | 6.0 | 7.4 | 6.7 | 5.9 |
Heilongjiang | 5.3 | 4.7 | 5.8 | 5.9 | 5.4 | 4.8 | 4.6 | 4.8 | 5.5 | 5.7 | 5.0 |
Shanghai | 17.9 | 17.1 | 17.5 | 17.0 | 17.5 | 17.2 | 17.2 | 16.6 | 17.8 | 16.9 | 16.2 |
Jiangsu | 16.9 | 16.3 | 16.9 | 16.0 | 16.6 | 16.6 | 16.4 | 15.7 | 16.7 | 16.2 | 15.4 |
Zhejiang | 18.2 | 17.5 | 17.8 | 17.4 | 17.4 | 17.3 | 17.2 | 16.7 | 17.9 | 17.1 | 16.5 |
Anhui | 17.0 | 16.2 | 16.6 | 16.3 | 17.2 | 16.8 | 16.7 | 16.3 | 17.1 | 16.7 | 15.8 |
Fujian | 20.8 | 20.3 | 20.8 | 20.9 | 20.9 | 20.6 | 20.5 | 20.4 | 21.1 | 20.1 | 19.9 |
Jiangxi | 18.6 | 18.2 | 18.8 | 18.5 | 18.3 | 18.2 | 17.9 | 18.1 | 18.8 | 17.8 | 17.6 |
Shandong | 15.3 | 14.4 | 14.8 | 13.8 | 15.0 | 14.6 | 14.5 | 15.1 | 16.0 | 15.4 | 14.7 |
Henan | 15.8 | 14.9 | 15.5 | 14.4 | 15.4 | 15.1 | 15.0 | 15.4 | 15.5 | 14.9 | 14.2 |
Hubei | 18.3 | 17.8 | 18.3 | 17.4 | 17.9 | 18.0 | 17.7 | 17.5 | 18.2 | 17.5 | 16.8 |
Hunan | 18.5 | 17.7 | 18.3 | 17.6 | 17.7 | 17.6 | 17.1 | 17.2 | 18.1 | 17.2 | 16.8 |
Guangdong | 23.2 | 22.8 | 22.8 | 22.9 | 22.9 | 22.5 | 22.5 | 22.4 | 22.8 | 22.0 | 21.6 |
Guangxi | 22.0 | 21.4 | 21.5 | 22.0 | 21.7 | 21.3 | 21.5 | 21.7 | 23.0 | 22.2 | 21.7 |
Chongqing | 19.2 | 18.6 | 18.4 | 18.8 | 18.7 | 18.8 | 18.2 | 18.4 | 19.2 | 18.5 | 17.7 |
Sichuan | 16.9 | 16.2 | 16.2 | 17.2 | 17.4 | 17.3 | 16.6 | 16.7 | 17.4 | 16.8 | 16.0 |
Guizhou | 14.8 | 14.1 | 14.6 | 14.8 | 14.6 | 14.5 | 13.8 | 15.9 | 17.3 | 15.4 | 15.0 |
Yunnan | 16.4 | 16.7 | 15.6 | 16.4 | 16.1 | 16.0 | 15.6 | 16.3 | 16.5 | 15.4 | 15.6 |
Shaanxi | 15.2 | 15.0 | 15.4 | 14.3 | 15.4 | 15.0 | 14.5 | 15.0 | 15.0 | 14.8 | 13.7 |
Gansu | 8.5 | 7.2 | 10.9 | 10.8 | 11.0 | 11.0 | 11.0 | 11.1 | 11.4 | 10.9 | 9.6 |
Qinghai | 6.4 | 5.8 | 5.8 | 6.0 | 6.1 | 6.0 | 5.8 | 6.1 | 6.3 | 5.5 | 4.9 |
Ningxia | 10.9 | 10.1 | 10.3 | 9.7 | 10.0 | 10.1 | 9.6 | 9.5 | 10.5 | 10.2 | 9.6 |
Province | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.4 | 0.4 | 0.5 |
Tianjin | 30.5 | 26.5 | 22.2 | 22.3 | 22.3 | 18.6 | 17.4 | 17.9 | 18.1 | 16.3 | 14.9 |
Hebei | 75.0 | 76.3 | 79.9 | 80.5 | 82.9 | 82.6 | 80.3 | 77.6 | 83.4 | 80.5 | 84.0 |
Shanxi | 0.8 | 0.8 | 0.8 | 1.0 | 1.1 | 1.1 | 1.1 | 1.1 | 1.2 | 1.2 | 1.5 |
Liaoning | 492.7 | 476.4 | 469.2 | 492.1 | 577.9 | 599.0 | 607.0 | 633.9 | 624.8 | 637.2 | 649.7 |
Jilin | 820.8 | 800.2 | 778.8 | 757.0 | 739.4 | 711.6 | 697.7 | 680.2 | 667.6 | 665.5 | 671.6 |
Heilongjiang | 3948.9 | 3925.3 | 3918.4 | 3968.5 | 3860.8 | 3630.7 | 3437.3 | 3139.4 | 2695.4 | 2629.2 | 2287.8 |
Shanghai | 104.1 | 106.3 | 110.2 | 111.3 | 114.8 | 117.6 | 118.6 | 120.5 | 120.5 | 115.0 | 115.0 |
Jiangsu | 2237.7 | 2256.3 | 2250.3 | 2236.7 | 2229.9 | 2228.9 | 2227.7 | 2224.9 | 2223.8 | 2222.6 | 2220.8 |
Zhejiang | 620.7 | 613.1 | 634.2 | 654.2 | 677.1 | 700.1 | 774.5 | 822.5 | 860.8 | 884.9 | 927.1 |
Anhui | 2605.2 | 2537.4 | 2476.4 | 2422.0 | 2320.9 | 2333.6 | 2333.9 | 2338.6 | 2356.5 | 2254.2 | 2205.6 |
Fujian | 628.6 | 630.9 | 659.9 | 686.4 | 711.5 | 734.7 | 765.5 | 789.6 | 814.6 | 827.7 | 851.6 |
Jiangxi | 3504.7 | 3527.1 | 3541.3 | 3522.6 | 3501.9 | 3476.5 | 3441.3 | 3410.4 | 3344.2 | 3313.1 | 3245.6 |
Shandong | 108.9 | 106.7 | 117.2 | 123.2 | 123.9 | 124.5 | 125.1 | 128.7 | 135.0 | 130.9 | 130.6 |
Henan | 615.0 | 614.1 | 616.4 | 614.7 | 611.0 | 621.8 | 616.3 | 610.8 | 598.7 | 596.4 | 595.9 |
Hubei | 2368.1 | 2358.7 | 2383.4 | 2201.8 | 2202.6 | 2086.4 | 2081.1 | 2087.8 | 2093.6 | 1956.9 | 2027.2 |
Hunan | 4238.7 | 4277.6 | 4287.8 | 4275.0 | 4218.5 | 4209.6 | 4160.8 | 4105.3 | 4103.4 | 3968.3 | 3915.2 |
Guangdong | 1805.4 | 1806.0 | 1804.8 | 1826.8 | 1850.0 | 1898.2 | 1898.0 | 1918.1 | 1933.6 | 1930.7 | 1930.4 |
Guangxi | 1801.7 | 1836.7 | 1871.4 | 1923.8 | 1955.8 | 1979.0 | 2012.2 | 2040.8 | 2084.0 | 2091.9 | 2112.9 |
Chongqing | 658.9 | 660.9 | 647.1 | 650.8 | 652.4 | 654.8 | 656.8 | 658.1 | 661.2 | 658.9 | 644.3 |
Sichuan | 1874.9 | 1874.0 | 1878.7 | 1892.4 | 1905.4 | 1929.8 | 1943.2 | 1966.9 | 1990.9 | 2011.6 | 2024.0 |
Guizhou | 700.5 | 714.3 | 711.1 | 714.1 | 712.6 | 707.0 | 701.4 | 712.0 | 710.4 | 699.2 | 680.1 |
Yunnan | 870.6 | 881.4 | 909.3 | 942.2 | 979.7 | 943.9 | 966.5 | 933.1 | 978.5 | 977.0 | 969.9 |
Shaanxi | 105.6 | 107.4 | 107.5 | 108.7 | 114.3 | 113.9 | 113.1 | 115.3 | 121.8 | 121.4 | 113.8 |
Gansu | 4.0 | 4.2 | 4.1 | 4.7 | 4.9 | 5.2 | 5.3 | 5.6 | 5.5 | 5.4 | 5.2 |
Qinghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ningxia | 81.1 | 80.9 | 74.3 | 78.1 | 82.1 | 84.3 | 83.9 | 83.2 | 78.3 | 80.3 | 77.0 |
Province | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 |
Beijing | 0.7 | 0.8 | 0.8 | 1.6 | 4.5 | 6.8 | 14.1 | 19.2 | 19.4 | 23.2 | 23.1 |
Tianjin | 14.1 | 16.7 | 13.7 | 7.0 | 14.9 | 11.4 | 35.4 | 61.1 | 54.4 | 66.4 | 61.7 |
Hebei | 88.7 | 87.7 | 83.5 | 75.6 | 111.0 | 94.1 | 143.9 | 154.7 | 153.2 | 155.3 | 141.8 |
Shanxi | 1.5 | 2.7 | 2.6 | 3.1 | 3.5 | 5.1 | 4.5 | 5.9 | 6.1 | 6.1 | 5.8 |
Liaoning | 624.9 | 568.4 | 544.2 | 500.6 | 556.4 | 515.5 | 489.7 | 501.5 | 496.0 | 491.7 | 478.1 |
Jilin | 656.3 | 654.0 | 600.1 | 541.0 | 666.1 | 686.9 | 584.8 | 465.2 | 459.0 | 453.1 | 434.1 |
Heilongjiang | 1992.2 | 1650.3 | 1587.8 | 1290.9 | 1564.4 | 1567.0 | 1605.9 | 1614.9 | 1566.7 | 1396.9 | 1107.5 |
Shanghai | 110.6 | 112.7 | 111.8 | 106.2 | 133.1 | 153.9 | 176.1 | 200.8 | 203.3 | 208.4 | 210.5 |
Jiangsu | 2216.0 | 2209.3 | 2112.9 | 1840.9 | 1982.1 | 2010.3 | 2203.5 | 2398.5 | 2369.7 | 2377.6 | 2335.9 |
Zhejiang | 994.5 | 1028.5 | 1028.1 | 979.4 | 1172.3 | 1340.0 | 1598.0 | 1940.4 | 2007.9 | 2085.9 | 2138.2 |
Anhui | 2207.7 | 2149.1 | 2129.7 | 1972.4 | 2044.1 | 1950.1 | 2236.7 | 2145.5 | 2158.3 | 2212.1 | 2238.5 |
Fujian | 890.6 | 951.6 | 985.1 | 962.6 | 1082.9 | 1156.5 | 1222.3 | 1373.2 | 1387.9 | 1401.6 | 1405.2 |
Jiangxi | 3239.3 | 3129.0 | 3029.7 | 2685.3 | 2786.6 | 2808.3 | 2832.0 | 3050.0 | 2900.8 | 3063.5 | 3052.6 |
Shandong | 127.3 | 119.8 | 124.4 | 112.6 | 155.3 | 173.6 | 176.8 | 195.8 | 157.6 | 164.7 | 151.6 |
Henan | 571.3 | 511.1 | 508.5 | 503.0 | 469.4 | 415.9 | 459.6 | 508.5 | 498.4 | 489.5 | 479.9 |
Hubei | 1975.1 | 2077.4 | 1989.6 | 1805.1 | 1932.0 | 1987.9 | 1995.3 | 2285.0 | 2239.3 | 2466.0 | 2448.6 |
Hunan | 3931.7 | 3795.2 | 3716.8 | 3410.0 | 3541.5 | 3691.6 | 3896.1 | 3984.5 | 3976.4 | 4075.8 | 4064.1 |
Guangdong | 1941.9 | 2137.6 | 2139.0 | 2130.6 | 2195.5 | 2369.3 | 2467.4 | 2557.5 | 2686.0 | 2704.1 | 2713.4 |
Guangxi | 2238.1 | 2360.4 | 2356.0 | 2356.3 | 2412.6 | 2423.6 | 2301.6 | 2388.7 | 2433.5 | 2434.3 | 2430.8 |
Chongqing | 672.3 | 748.0 | 749.3 | 750.5 | 755.2 | 764.0 | 776.6 | 788.6 | 794.7 | 803.9 | 795.7 |
Sichuan | 2081.9 | 2087.5 | 2063.8 | 2040.3 | 2076.1 | 2093.1 | 2123.8 | 2176.0 | 2167.4 | 2196.1 | 3020.1 |
Guizhou | 679.6 | 721.7 | 716.5 | 720.5 | 734.6 | 750.0 | 750.5 | 748.0 | 746.8 | 742.9 | 741.3 |
Yunnan | 1029.7 | 1049.3 | 1086.2 | 1043.1 | 1083.0 | 1100.3 | 1073.6 | 903.0 | 919.6 | 921.2 | 939.2 |
Shaanxi | 120.9 | 147.1 | 145.8 | 139.5 | 130.5 | 140.8 | 144.8 | 154.6 | 160.0 | 153.9 | 156.9 |
Gansu | 5.3 | 5.1 | 4.9 | 4.8 | 6.3 | 7.1 | 7.2 | 7.0 | 8.4 | 6.8 | 6.7 |
Qinghai | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Ningxia | 88.3 | 71.3 | 64.4 | 46.7 | 76.4 | 74.2 | 76.7 | 71.0 | 66.5 | 67.2 | 64.0 |
Province | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 11.3 | 15.9 | 20.8 | 23.6 | 36.2 | 52.2 | 58.1 | 61.6 | 60.6 | 63.9 | 41.4 |
Tianjin | 108.8 | 107.3 | 106.0 | 108.0 | 107.8 | 110.9 | 110.4 | 109.3 | 109.1 | 107.0 | 104.5 |
Hebei | 2373.4 | 2389.8 | 2394.2 | 2404.0 | 2432.0 | 2457.1 | 2435.0 | 2451.4 | 2397.8 | 2431.8 | 2420.2 |
Shanxi | 560.5 | 564.0 | 575.9 | 585.1 | 598.7 | 619.7 | 650.1 | 678.8 | 689.9 | 673.2 | 699.8 |
Liaoning | 3.6 | 2.9 | 3.0 | 3.3 | 3.5 | 4.5 | 4.9 | 5.7 | 7.2 | 9.0 | 11.6 |
Jilin | 2.4 | 0.4 | 0.4 | 4.0 | 0.0 | 4.1 | 3.9 | 4.2 | 4.6 | 6.2 | 5.6 |
Heilongjiang | 101.8 | 78.6 | 70.1 | 144.0 | 131.7 | 208.2 | 295.7 | 278.4 | 291.8 | 238.1 | 232.7 |
Shanghai | 21.0 | 35.6 | 47.3 | 46.7 | 46.6 | 58.0 | 62.9 | 52.7 | 62.5 | 45.9 | 39.5 |
Jiangsu | 2412.8 | 2436.8 | 2410.7 | 2374.1 | 2344.3 | 2304.4 | 2245.8 | 2200.2 | 2145.2 | 2117.0 | 2039.3 |
Zhejiang | 103.7 | 85.3 | 99.0 | 89.5 | 81.5 | 79.5 | 76.7 | 69.1 | 62.4 | 55.5 | 49.8 |
Anhui | 2822.8 | 2887.6 | 2858.0 | 2802.5 | 2801.2 | 2733.9 | 2681.1 | 2619.2 | 2605.8 | 2484.4 | 2448.0 |
Fujian | 0.2 | 0.2 | 0.3 | 0.4 | 0.5 | 0.7 | 0.9 | 1.5 | 1.9 | 2.8 | 3.6 |
Jiangxi | 14.5 | 14.4 | 12.9 | 12.7 | 12.6 | 12.7 | 11.5 | 10.8 | 10.0 | 10.2 | 11.0 |
Shandong | 4083.9 | 4068.0 | 4034.8 | 3924.8 | 3831.4 | 3759.3 | 3703.4 | 3648.7 | 3609.8 | 3567.9 | 3540.3 |
Henan | 5714.6 | 5704.9 | 5623.1 | 5581.2 | 5518.0 | 5468.8 | 5430.1 | 5364.6 | 5326.4 | 5302.0 | 5234.1 |
Hubei | 1153.2 | 1140.7 | 1122.2 | 1099.4 | 1117.1 | 1084.1 | 1028.3 | 1011.7 | 1002.0 | 1006.4 | 1099.4 |
Hunan | 28.3 | 22.8 | 34.1 | 34.9 | 36.2 | 38.9 | 43.8 | 41.9 | 29.8 | 14.1 | 13.8 |
Guangdong | 0.5 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.0 | 0.9 | 0.8 | 0.8 | 1.0 |
Guangxi | 3.1 | 3.2 | 2.7 | 0.8 | 1.1 | 1.0 | 1.1 | 3.2 | 3.3 | 3.2 | 3.6 |
Chongqing | 30.1 | 34.3 | 41.1 | 52.0 | 64.7 | 78.8 | 90.5 | 104.5 | 125.8 | 154.4 | 178.3 |
Sichuan | 652.7 | 684.0 | 746.9 | 814.3 | 878.7 | 934.1 | 998.5 | 1051.2 | 1111.5 | 1172.5 | 1257.1 |
Guizhou | 156.0 | 169.2 | 180.4 | 189.1 | 196.2 | 209.7 | 215.5 | 226.1 | 236.2 | 244.4 | 234.2 |
Yunnan | 343.7 | 344.2 | 356.6 | 369.4 | 391.7 | 403.2 | 417.3 | 416.8 | 423.6 | 420.2 | 423.0 |
Shaanxi | 963.2 | 980.8 | 1002.6 | 1000.6 | 1021.7 | 1078.7 | 1089.2 | 1119.7 | 1119.2 | 1117.7 | 1133.4 |
Gansu | 766.5 | 774.7 | 806.4 | 802.8 | 820.9 | 842.0 | 868.6 | 885.3 | 968.5 | 906.4 | 983.7 |
Qinghai | 82.6 | 84.7 | 82.8 | 80.2 | 84.7 | 86.1 | 90.9 | 96.0 | 95.7 | 98.4 | 99.6 |
Ningxia | 123.1 | 117.3 | 122.5 | 127.5 | 148.8 | 179.0 | 202.1 | 211.4 | 218.5 | 204.3 | 233.7 |
Province | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 |
Beijing | 63.1 | 53.3 | 39.2 | 35.8 | 47.4 | 72.6 | 121.7 | 168.0 | 171.2 | 171.3 | 171.2 |
Tianjin | 103.4 | 98.9 | 79.0 | 78.3 | 95.9 | 106.7 | 121.7 | 143.2 | 153.4 | 151.1 | 147.6 |
Hebei | 2504.5 | 2377.1 | 2161.5 | 2192.9 | 2449.6 | 2579.8 | 2678.8 | 2729.9 | 2764.0 | 2720.7 | 2591.2 |
Shanxi | 659.6 | 721.0 | 648.9 | 720.6 | 798.1 | 820.6 | 893.2 | 919.2 | 963.4 | 951.2 | 940.4 |
Liaoning | 8.0 | 22.3 | 20.6 | 20.1 | 49.8 | 98.8 | 117.6 | 153.0 | 150.2 | 167.9 | 177.9 |
Jilin | 1.1 | 9.5 | 11.4 | 22.1 | 23.0 | 53.8 | 77.3 | 67.5 | 74.5 | 63.5 | 76.6 |
Heilongjiang | 243.5 | 248.5 | 255.0 | 229.6 | 260.8 | 423.3 | 590.2 | 953.4 | 961.4 | 1074.4 | 1231.4 |
Shanghai | 31.4 | 29.9 | 21.9 | 21.7 | 31.4 | 32.0 | 57.1 | 97.2 | 103.9 | 83.3 | 65.3 |
Jiangsu | 1912.7 | 1684.4 | 1601.2 | 1620.5 | 1715.9 | 1712.8 | 1954.6 | 2251.7 | 2315.0 | 2341.4 | 2216.3 |
Zhejiang | 45.4 | 67.1 | 59.5 | 71.5 | 94.2 | 121.4 | 177.6 | 257.9 | 255.1 | 245.2 | 222.3 |
Anhui | 2307.8 | 2108.3 | 2059.9 | 2012.0 | 2056.9 | 1961.2 | 2126.4 | 2057.1 | 2095.0 | 2137.6 | 2065.8 |
Fujian | 4.9 | 5.9 | 6.2 | 8.8 | 23.5 | 30.4 | 38.7 | 50.2 | 55.0 | 60.3 | 64.1 |
Jiangxi | 11.8 | 15.9 | 19.1 | 20.6 | 28.5 | 38.3 | 51.4 | 61.5 | 65.8 | 73.5 | 72.0 |
Shandong | 3556.6 | 3278.7 | 2968.2 | 3105.1 | 3397.5 | 3545.8 | 3748.2 | 4006.8 | 3982.0 | 4037.6 | 4031.6 |
Henan | 5208.5 | 4962.7 | 4856.0 | 4804.6 | 4855.7 | 4801.6 | 4922.3 | 4884.6 | 4964.0 | 4927.3 | 4868.2 |
Hubei | 1016.9 | 716.2 | 602.9 | 603.2 | 700.1 | 735.9 | 845.1 | 1074.4 | 1211.2 | 1276.5 | 1230.1 |
Hunan | 13.5 | 65.7 | 76.2 | 86.3 | 99.8 | 110.0 | 118.6 | 129.7 | 144.6 | 163.1 | 170.4 |
Guangdong | 1.2 | 6.5 | 6.0 | 5.8 | 10.7 | 11.2 | 13.7 | 15.2 | 17.8 | 19.4 | 22.5 |
Guangxi | 3.9 | 10.7 | 11.7 | 12.3 | 12.8 | 14.7 | 19.5 | 19.8 | 25.5 | 31.9 | 25.2 |
Chongqing | 164.8 | 279.7 | 280.5 | 322.7 | 388.2 | 422.1 | 466.2 | 531.6 | 548.2 | 556.3 | 545.4 |
Sichuan | 1287.2 | 1262.3 | 1255.7 | 1318.7 | 1456.9 | 1498.6 | 1605.0 | 1818.3 | 1864.6 | 1824.5 | 2364.9 |
Guizhou | 243.9 | 410.6 | 429.2 | 474.3 | 498.4 | 520.5 | 567.4 | 596.3 | 604.5 | 596.6 | 584.2 |
Yunnan | 437.7 | 532.3 | 543.3 | 567.4 | 604.2 | 640.7 | 645.6 | 724.9 | 706.8 | 697.5 | 664.3 |
Shaanxi | 1159.3 | 1211.5 | 1152.7 | 1233.3 | 1356.7 | 1424.2 | 1537.2 | 1589.5 | 1610.5 | 1602.8 | 1597.8 |
Gansu | 958.5 | 1000.8 | 933.5 | 961.3 | 1080.0 | 1124.0 | 1192.2 | 1222.7 | 1323.5 | 1320.1 | 1352.4 |
Qinghai | 151.8 | 96.8 | 102.2 | 107.0 | 142.5 | 156.2 | 165.6 | 182.9 | 211.9 | 213.5 | 210.6 |
Ningxia | 250.3 | 276.0 | 279.0 | 319.3 | 370.8 | 299.3 | 292.6 | 267.5 | 316.8 | 312.2 | 313.9 |
Province | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 49.7 | 64.3 | 76.3 | 88.6 | 114.5 | 132.0 | 140.5 | 149.8 | 150.8 | 146.2 | 139.0 |
Tianjin | 201.4 | 219.5 | 215.7 | 203.6 | 192.3 | 179.9 | 169.4 | 169.3 | 166.2 | 159.9 | 162.3 |
Hebei | 3544.1 | 3696.1 | 3654.4 | 3542.1 | 3428.5 | 3323.2 | 3264.7 | 3191.0 | 3080.4 | 2885.5 | 2903.2 |
Shanxi | 1806.9 | 1860.7 | 1894.5 | 1868.6 | 1836.3 | 1810.4 | 1762.2 | 1635.3 | 1511.5 | 1416.4 | 1287.8 |
Liaoning | 2692.0 | 2789.8 | 2922.4 | 2758.7 | 2603.1 | 2504.6 | 2372.2 | 2277.4 | 2092.5 | 1966.2 | 2041.2 |
Jilin | 4164.0 | 4242.0 | 4251.1 | 4062.6 | 3808.2 | 3534.2 | 3340.2 | 3215.0 | 3029.5 | 2987.6 | 2885.4 |
Heilongjiang | 5862.8 | 6528.4 | 7361.2 | 6707.8 | 6571.2 | 6100.5 | 5179.7 | 4756.2 | 4361.6 | 3849.4 | 4055.4 |
Shanghai | 3.0 | 4.0 | 4.3 | 4.9 | 4.4 | 4.5 | 4.8 | 4.9 | 4.5 | 3.8 | 4.0 |
Jiangsu | 543.2 | 540.2 | 541.0 | 519.7 | 467.5 | 453.9 | 448.2 | 439.6 | 433.8 | 432.7 | 393.1 |
Zhejiang | 51.9 | 49.9 | 51.6 | 51.1 | 50.3 | 50.8 | 26.2 | 23.9 | 24.5 | 24.3 | 22.9 |
Anhui | 1160.1 | 1203.3 | 1206.3 | 1098.7 | 1045.3 | 975.0 | 952.9 | 864.1 | 803.7 | 731.3 | 733.3 |
Fujian | 26.8 | 26.2 | 27.8 | 28.6 | 29.7 | 30.1 | 30.2 | 30.5 | 30.8 | 32.2 | 32.4 |
Jiangxi | 35.7 | 35.6 | 31.8 | 28.2 | 26.0 | 25.4 | 24.3 | 24.1 | 21.0 | 16.0 | 14.6 |
Shandong | 4000.1 | 4059.3 | 3943.8 | 3828.6 | 3663.1 | 3476.6 | 3370.6 | 3247.5 | 3131.1 | 3013.0 | 2855.6 |
Henan | 3998.9 | 4210.5 | 4189.9 | 4009.4 | 3823.6 | 3564.7 | 3398.4 | 3233.5 | 3104.9 | 2954.4 | 2844.7 |
Hubei | 794.8 | 797.3 | 813.5 | 745.7 | 653.4 | 663.6 | 603.4 | 572.5 | 536.5 | 488.2 | 444.6 |
Hunan | 365.8 | 370.5 | 366.9 | 361.9 | 358.4 | 354.0 | 336.6 | 299.8 | 286.9 | 244.1 | 221.5 |
Guangdong | 121.0 | 123.8 | 127.2 | 130.8 | 135.4 | 137.4 | 143.2 | 139.4 | 148.8 | 132.9 | 127.9 |
Guangxi | 591.2 | 603.3 | 617.0 | 579.3 | 583.5 | 577.0 | 563.0 | 536.5 | 533.0 | 488.7 | 490.0 |
Chongqing | 447.3 | 453.9 | 451.9 | 450.8 | 451.7 | 457.5 | 455.8 | 452.9 | 452.3 | 451.0 | 451.4 |
Sichuan | 1863.9 | 1866.0 | 1816.9 | 1739.1 | 1685.8 | 1629.8 | 1574.3 | 1520.9 | 1454.8 | 1402.3 | 1369.4 |
Guizhou | 1006.4 | 1041.6 | 1037.8 | 1034.8 | 988.5 | 951.4 | 934.5 | 895.5 | 832.6 | 786.6 | 756.6 |
Yunnan | 1763.8 | 1784.8 | 1762.6 | 1745.8 | 1703.5 | 1623.1 | 1559.3 | 1527.5 | 1444.8 | 1384.7 | 1309.6 |
Shaanxi | 1196.9 | 1341.8 | 1203.9 | 1212.8 | 1226.0 | 1241.6 | 1252.7 | 1257.5 | 1219.1 | 1193.8 | 1171.9 |
Gansu | 1041.0 | 1056.7 | 1065.0 | 1045.4 | 1014.0 | 932.6 | 861.8 | 853.9 | 668.6 | 563.3 | 494.7 |
Qinghai | 18.9 | 20.1 | 21.3 | 21.5 | 19.1 | 19.3 | 17.8 | 11.0 | 4.8 | 2.0 | 0.8 |
Ningxia | 306.3 | 313.2 | 301.8 | 288.8 | 262.0 | 245.9 | 231.1 | 223.4 | 215.1 | 208.5 | 206.0 |
Province | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 |
Beijing | 135.8 | 119.7 | 93.5 | 75.2 | 87.2 | 100.1 | 135.8 | 198.1 | 207.7 | 206.3 | 207.8 |
Tianjin | 150.9 | 138.8 | 134.8 | 124.9 | 146.5 | 140.9 | 131.2 | 168.6 | 163.0 | 152.2 | 162.9 |
Hebei | 2799.9 | 2677.4 | 2630.6 | 2488.8 | 2577.4 | 2543.4 | 2478.6 | 2663.8 | 2581.0 | 2425.9 | 2524.9 |
Shanxi | 1260.4 | 1183.7 | 1125.6 | 915.5 | 891.0 | 837.8 | 793.7 | 923.0 | 886.6 | 822.8 | 836.6 |
Liaoning | 1983.1 | 1792.5 | 1598.8 | 1434.9 | 1431.6 | 1566.8 | 1422.5 | 1677.8 | 1638.0 | 1573.4 | 1576.7 |
Jilin | 2880.7 | 2775.2 | 2901.5 | 2627.2 | 2579.5 | 2609.5 | 2197.3 | 2375.5 | 2421.3 | 2454.2 | 2481.3 |
Heilongjiang | 3305.1 | 2220.2 | 2179.5 | 2053.8 | 2285.6 | 2132.7 | 1801.3 | 2651.9 | 2487.2 | 2544.8 | 2663.7 |
Shanghai | 3.9 | 4.3 | 4.2 | 4.6 | 4.5 | 5.2 | 5.2 | 7.3 | 7.3 | 6.8 | 8.3 |
Jiangsu | 378.2 | 370.2 | 389.1 | 451.9 | 436.5 | 429.8 | 423.2 | 454.3 | 473.5 | 439.0 | 467.8 |
Zhejiang | 22.0 | 62.9 | 54.5 | 51.9 | 52.2 | 51.8 | 52.2 | 46.8 | 43.8 | 42.1 | 38.8 |
Anhui | 623.2 | 670.2 | 662.3 | 627.4 | 651.4 | 589.3 | 485.9 | 588.5 | 570.3 | 512.2 | 614.8 |
Fujian | 33.3 | 39.1 | 37.8 | 36.9 | 36.2 | 35.4 | 36.8 | 36.7 | 35.5 | 32.7 | 31.6 |
Jiangxi | 14.8 | 16.5 | 14.4 | 17.5 | 16.8 | 19.9 | 25.3 | 27.3 | 32.7 | 31.0 | 40.2 |
Shandong | 2844.4 | 2731.4 | 2455.1 | 2405.9 | 2530.1 | 2505.2 | 2413.9 | 2768.2 | 2781.9 | 2626.8 | 2826.7 |
Henan | 2751.7 | 2508.3 | 2420.0 | 2386.7 | 2319.9 | 2200.0 | 2201.3 | 2193.7 | 2152.7 | 1952.4 | 2150.2 |
Hubei | 431.9 | 389.6 | 357.5 | 341.1 | 390.8 | 400.9 | 424.1 | 460.8 | 440.9 | 399.8 | 405.1 |
Hunan | 196.1 | 277.3 | 276.5 | 289.8 | 272.9 | 269.8 | 278.5 | 280.1 | 221.8 | 171.8 | 163.3 |
Guangdong | 118.8 | 136.7 | 137.9 | 135.7 | 141.9 | 164.6 | 189.3 | 177.7 | 156.1 | 133.6 | 103.7 |
Guangxi | 516.3 | 575.7 | 586.6 | 531.1 | 520.3 | 556.9 | 610.7 | 594.0 | 578.7 | 561.1 | 558.5 |
Chongqing | 440.5 | 460.3 | 460.4 | 455.5 | 476.9 | 489.9 | 500.6 | 519.9 | 526.1 | 513.2 | 519.7 |
Sichuan | 1291.7 | 1196.6 | 1172.6 | 1161.3 | 1207.9 | 1200.8 | 1235.5 | 1359.2 | 1364.8 | 1290.4 | 1762.1 |
Guizhou | 734.9 | 719.5 | 706.5 | 686.3 | 703.8 | 721.8 | 727.3 | 725.6 | 728.8 | 629.5 | 636.0 |
Yunnan | 1251.2 | 1182.6 | 1111.1 | 1066.9 | 1128.9 | 1138.1 | 1129.7 | 1159.6 | 1095.7 | 979.5 | 993.8 |
Shaanxi | 1129.8 | 1097.1 | 1047.4 | 948.3 | 999.9 | 1005.1 | 1057.0 | 1123.4 | 1065.2 | 915.9 | 1087.4 |
Gansu | 517.7 | 484.8 | 487.7 | 490.5 | 503.5 | 467.1 | 464.4 | 531.2 | 511.7 | 486.2 | 430.5 |
Qinghai | 1.9 | 1.1 | 1.6 | 0 | 1.8 | 2.3 | 2.1 | 2.5 | 2.3 | 0 | 0 |
Ningxia | 182.5 | 178.3 | 187.9 | 176.3 | 155.1 | 147.8 | 131.1 | 162.7 | 143.2 | 131.8 | 121.5 |
Province | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | I | N | I | N | I | N | I | N | I | N | I | N | I | |
Beijing | 37,439 | 172.2997 | 20,279 | 93.4301 | 3439 | 15.9835 | 10,376 | 49.0637 | 2368 | 11.4435 | 1003 | 4.9688 | 391 | 1.9936 |
Tianjin | 6149 | 39.3632 | 2387 | 15.4304 | 1001 | 6.5994 | 2313 | 15.7111 | 631 | 4.4652 | 1004 | 7.4119 | 415 | 3.2075 |
Hebei | 39,054 | 52.2752 | 28,814 | 38.8072 | 22,537 | 30.5224 | 25,054 | 34.1679 | 21,082 | 28.9289 | 20,734 | 28.6361 | 16,423 | 22.8559 |
Shanxi | 7463 | 20.2709 | 7484 | 20.4251 | 6232 | 17.0835 | 8109 | 22.3401 | 5954 | 16.4893 | 6209 | 17.2795 | 1584 | 4.4355 |
Liaoning | 2031 | 4.6393 | 2026 | 4.623 | 1498 | 3.4115 | 1751 | 3.9886 | 1313 | 2.9916 | 898 | 2.0488 | 242 | 0.5532 |
Jilin | 997 | 3.648 | 878 | 3.1889 | 645 | 2.3434 | 1063 | 3.8637 | 584 | 2.1233 | 886 | 3.2225 | 266 | 0.9686 |
Heilongjiang | 1318 | 3.4693 | 1052 | 2.7597 | 431 | 1.1244 | 796 | 2.0756 | 154 | 0.4017 | 454 | 1.1841 | 267 | 0.6969 |
Shanghai | 6215 | 25.685 | 4771 | 19.7535 | 6031 | 24.8631 | 4872 | 20.1727 | 2120 | 8.9060 | 4034 | 17.1845 | 1315 | 5.7126 |
Jiangsu | 10,113 | 12.6435 | 5218 | 6.5419 | 4102 | 5.1532 | 3998 | 5.0356 | 2450 | 3.0934 | 2809 | 3.5562 | 1006 | 1.2789 |
Zhejiang | 30,434 | 54.4437 | 14,394 | 25.9866 | 7970 | 14.4699 | 9700 | 17.6428 | 3302 | 6.0288 | 2903 | 5.3139 | 1995 | 3.6655 |
Anhui | 19,572 | 31.5904 | 14,451 | 23.522 | 11,256 | 18.5043 | 9652 | 16.0072 | 5983 | 9.9917 | 5660 | 9.4839 | 3264 | 5.4857 |
Fujian | 9625 | 24.8451 | 10,332 | 26.9133 | 8236 | 21.6395 | 8503 | 22.5305 | 4775 | 12.7401 | 4571 | 12.2876 | 2278 | 6.1744 |
Jiangxi | 12,868 | 28.0211 | 9462 | 20.7245 | 8377 | 18.4428 | 8036 | 17.7703 | 5773 | 12.8178 | 5222 | 11.6344 | 3845 | 8.6273 |
Shandong | 11,200 | 11.2601 | 7187 | 7.2986 | 4919 | 5.0248 | 6153 | 6.3215 | 3877 | 4.0032 | 4148 | 4.3041 | 2313 | 2.4146 |
Henan | 20,418 | 21.4196 | 22,148 | 23.3629 | 17,522 | 18.5693 | 15,639 | 16.6136 | 13,505 | 14.3579 | 11,018 | 11.7363 | 6262 | 6.6595 |
Hubei | 35,767 | 60.7766 | 11,610 | 19.8411 | 9201 | 15.8202 | 5065 | 8.7343 | 3469 | 6.0028 | 5474 | 9.5068 | 3113 | 5.4387 |
Hunan | 27,597 | 40.4529 | 15,874 | 23.4289 | 8705 | 12.9207 | 10,617 | 15.8685 | 8136 | 12.2550 | 6593 | 9.9961 | 5256 | 8.0020 |
Guangdong | 110,879 | 100.8084 | 84,209 | 77.6189 | 46,219 | 43.0987 | 50,788 | 47.7151 | 17,327 | 16.3555 | 12,947 | 12.3246 | 4599 | 4.4093 |
Guangxi | 19,633 | 40.5818 | 8595 | 17.9212 | 4464 | 9.3900 | 5438 | 11.5236 | 3043 | 6.4994 | 2474 | 5.3262 | 1241 | 2.6963 |
Chongqing | 5434 | 17.8256 | 3152 | 10.449 | 2357 | 7.8793 | 2084 | 7.0168 | 1966 | 6.6757 | 2560 | 8.7701 | 1152 | 3.9936 |
Sichuan | 7104 | 8.5984 | 3991 | 4.8647 | 2543 | 3.1240 | 2171 | 2.6779 | 1971 | 2.4405 | 2455 | 3.0497 | 1467 | 1.8242 |
Guizhou | 3946 | 11.0999 | 3419 | 9.6869 | 3329 | 9.4897 | 2274 | 6.493 | 2781 | 7.9822 | 1834 | 5.2868 | 878 | 2.5269 |
Yunnan | 3496 | 7.3276 | 2656 | 5.6012 | 1958 | 4.1537 | 1736 | 3.7042 | 2839 | 6.0936 | 2071 | 4.4720 | 971 | 2.1124 |
Shaanxi | 12,076 | 31.6695 | 5975 | 15.7532 | 3592 | 9.5149 | 5344 | 14.1977 | 4936 | 13.1518 | 4218 | 11.2702 | 1348 | 3.6113 |
Gansu | 7296 | 27.954 | 8479 | 32.6172 | 5056 | 19.5154 | 6344 | 24.5684 | 4916 | 19.0724 | 5194 | 20.2559 | 2724 | 10.6509 |
Qinghai | 1226 | 20.6746 | 767 | 13.0347 | 276 | 4.7307 | 707 | 12.2363 | 487 | 8.4966 | 254 | 4.4705 | 148 | 2.6303 |
Ningxia | 1475 | 21.8551 | 1434 | 21.4709 | 925 | 13.9825 | 1469 | 22.4553 | 1030 | 15.9150 | 1416 | 22.1440 | 444 | 7.0461 |
Province | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | |||||||
N | I | N | I | N | I | N | I | N | I | N | I | N | I | |
Beijing | 830 | 4.7293 | 5147 | 30.3658 | 335 | 2.0514 | 221 | 1.3978 | 290 | 1.8855 | 120 | 0.7811 | 8 | 0.0540 |
Tianjin | 523 | 4.2584 | 707 | 6.0119 | 597 | 5.3542 | 831 | 7.7302 | 1676 | 16.0690 | 377 | 3.6197 | 13 | 0.1399 |
Hebei | 13,679 | 19.4459 | 15,081 | 21.5786 | 11,615 | 16.7291 | 8679 | 12.5819 | 7117 | 10.3883 | 3916 | 5.7508 | 1923 | 2.8283 |
Shanxi | 787 | 2.2962 | 2456 | 7.2011 | 172 | 0.5069 | 265 | 0.7852 | 721 | 2.1490 | 79 | 0.2369 | 57 | 0.1720 |
Liaoning | 1240 | 2.8710 | 775 | 1.7962 | 62 | 0.1443 | 129 | 0.3020 | 89 | 0.2109 | 66 | 0.1565 | 4 | 0.0096 |
Jilin | 717 | 2.6172 | 343 | 1.2546 | 149 | 0.5458 | 167 | 0.6133 | 50 | 0.1841 | 30 | 0.1107 | 4 | 0.0150 |
Heilongjiang | 537 | 1.4036 | 1407 | 3.6785 | 84 | 0.2197 | 52 | 0.1360 | 24 | 0.0628 | 65 | 0.1706 | 17 | 0.0453 |
Shanghai | 2429 | 12.6444 | 1391 | 7.3658 | 269 | 1.4478 | 404 | 2.2259 | 77 | 0.4331 | 8 | 0.0450 | 15 | 0.1121 |
Jiangsu | 2267 | 2.9346 | 5255 | 6.8449 | 575 | 0.7541 | 1969 | 2.6079 | 4658 | 6.2314 | 1028 | 1.3783 | 370 | 0.4889 |
Zhejiang | 3257 | 6.2876 | 7288 | 14.2344 | 894 | 1.7668 | 936 | 1.8795 | 4298 | 8.7750 | 1998 | 4.0997 | 3780 | 8.0430 |
Anhui | 2664 | 4.3451 | 3490 | 5.6887 | 675 | 1.1033 | 925 | 1.5139 | 1431 | 2.3382 | 1097 | 1.8036 | 744 | 1.1547 |
Fujian | 2101 | 5.7927 | 6041 | 16.6301 | 884 | 2.4686 | 361 | 1.0146 | 614 | 1.7369 | 477 | 1.3574 | 685 | 1.9051 |
Jiangxi | 2550 | 5.7534 | 6257 | 14.2205 | 1680 | 3.8461 | 1093 | 2.5189 | 2039 | 4.7298 | 1266 | 2.9597 | 1497 | 3.4948 |
Shandong | 3075 | 3.2470 | 4559 | 4.8411 | 429 | 0.4580 | 292 | 0.3137 | 163 | 0.1763 | 96 | 0.1044 | 157 | 0.1712 |
Henan | 3936 | 4.1488 | 8849 | 9.3849 | 3594 | 3.8397 | 2710 | 2.8854 | 2991 | 3.1887 | 1885 | 2.0201 | 772 | 0.7965 |
Hubei | 1994 | 3.4860 | 15,444 | 27.0425 | 1834 | 3.2181 | 1802 | 3.1653 | 1565 | 2.7408 | 1205 | 2.1168 | 159 | 0.2646 |
Hunan | 4390 | 6.8529 | 19,514 | 30.5633 | 3621 | 5.6979 | 1918 | 3.0243 | 894 | 1.4132 | 664 | 1.0550 | 1010 | 1.5121 |
Guangdong | 5957 | 6.1807 | 20,155 | 21.1180 | 3334 | 3.5284 | 2800 | 3.0095 | 8070 | 8.7775 | 5913 | 6.4765 | 4973 | 6.2520 |
Guangxi | 1233 | 2.5391 | 11,969 | 24.8526 | 955 | 2.0029 | 931 | 1.9729 | 1999 | 4.2897 | 3234 | 6.9965 | 8605 | 17.7209 |
Chongqing | 960 | 3.3578 | 11,640 | 41.0004 | 1787 | 6.3459 | 669 | 2.3825 | 1161 | 4.1494 | 2343 | 8.3989 | 3351 | 10.7057 |
Sichuan | 1530 | 1.8693 | 9517 | 11.6308 | 1707 | 2.1004 | 1732 | 2.1202 | 2054 | 2.5012 | 5157 | 6.2981 | 12,560 | 14.4138 |
Guizhou | 1256 | 3.3070 | 10,472 | 27.6398 | 1612 | 4.2850 | 1063 | 2.8293 | 1764 | 4.7292 | 6838 | 18.4677 | 5583 | 14.6039 |
Yunnan | 723 | 1.5817 | 7664 | 16.8699 | 395 | 0.8751 | 435 | 0.9703 | 4487 | 10.0833 | 3753 | 8.5011 | 3 | 0.0069 |
Shaanxi | 640 | 1.6967 | 6287 | 16.7119 | 346 | 0.9232 | 348 | 0.9317 | 354 | 0.9516 | 342 | 0.9230 | 1050 | 2.8703 |
Gansu | 2276 | 8.6361 | 7966 | 30.3106 | 2522 | 9.6369 | 3689 | 14.1557 | 4212 | 16.2374 | 1110 | 4.3049 | 978 | 3.7416 |
Qinghai | 97 | 1.7405 | 211 | 3.8066 | 47 | 0.8515 | 103 | 1.8796 | 177 | 3.2597 | 190 | 3.5323 | 230 | 4.2627 |
Ningxia | 1348 | 21.5610 | 2870 | 47.3922 | 684 | 11.2132 | 547 | 9.0563 | 315 | 5.2852 | 265 | 4.4951 | 193 | 3.3051 |
Province | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 |
---|---|---|---|---|---|---|---|---|---|---|---|
Beijing | 137,596 | 124,516 | 114,662 | 107,472 | 101,023 | 93,078 | 86,365 | 78,307 | 71,059 | 68,541 | 63,629 |
Tianjin | 79,837 | 73,830 | 71,021 | 71,198 | 68,937 | 65,346 | 61,137 | 54,053 | 47,497 | 45,242 | 37,976 |
Hebei | 40,883 | 38,233 | 35,653 | 34,260 | 33,187 | 31,770 | 29,631 | 25,308 | 21,831 | 20,385 | 17,561 |
Shanxi | 39,232 | 32,526 | 32,375 | 33,237 | 33,111 | 32,435 | 30,400 | 25,434 | 20,906 | 21,234 | 17,542 |
Liaoning | 49,603 | 46,557 | 46,069 | 45,608 | 43,758 | 40,694 | 37,350 | 31,888 | 29,611 | 28,185 | 24,022 |
Jilin | 40,077 | 38,011 | 36,391 | 36,218 | 34,273 | 31,558 | 28,146 | 23,370 | 19,858 | 17,696 | 14,966 |
Heilongjiang | 32,454 | 31,258 | 30,583 | 31,744 | 30,901 | 28,732 | 25,915 | 21,694 | 18,871 | 18,654 | 16,023 |
Shanghai | 13,6109 | 12,3628 | 11,1081 | 10,4402 | 96,773 | 90,127 | 86,061 | 79,396 | 72,363 | 69,154 | 63,951 |
Jiangsu | 10,7150 | 96,840 | 89,426 | 81,550 | 74,844 | 67,896 | 61,947 | 52,787 | 44,272 | 39,967 | 33,798 |
Zhejiang | 93,186 | 84,921 | 78,768 | 72,730 | 68,036 | 62,856 | 58,398 | 51,110 | 43,543 | 41,061 | 36,454 |
Anhui | 47,671 | 42,641 | 38,983 | 37,184 | 34,256 | 30,683 | 27,314 | 21,923 | 17,715 | 15,535 | 12,989 |
Fujian | 86,943 | 76,778 | 70,162 | 65,810 | 59,835 | 54,073 | 48,341 | 40,773 | 33,999 | 30,153 | 25,915 |
Jiangxi | 43,868 | 40,159 | 36,850 | 34,571 | 31,686 | 28,486 | 25,885 | 21,099 | 17,277 | 15,816 | 13,270 |
Shandong | 63,162 | 59,375 | 56,312 | 52,016 | 48,763 | 44,464 | 40,639 | 35,599 | 31,282 | 28,861 | 24,329 |
Henan | 46,959 | 42,341 | 39,209 | 36,686 | 33,618 | 30,820 | 28,009 | 23,984 | 20,280 | 18,879 | 15,811 |
Hubei | 63,180 | 56,836 | 52,015 | 48,630 | 43,838 | 39,163 | 34,738 | 28,359 | 23,081 | 20,153 | 16,593 |
Hunan | 49,448 | 45,356 | 42,216 | 38,549 | 35,328 | 32,048 | 28,734 | 24,005 | 19,979 | 17,758 | 14,626 |
Guangdong | 82,686 | 75,213 | 69,283 | 63,809 | 58,860 | 54,038 | 50,676 | 44,669 | 39,418 | 37,543 | 33,236 |
Guangxi | 36,595 | 33,458 | 30,990 | 28,687 | 26,483 | 24,238 | 22,258 | 18,070 | 14,708 | 13,471 | 11,542 |
Chongqing | 65,538 | 59,433 | 53,398 | 49,062 | 44,049 | 39,548 | 35,017 | 28,084 | 23,346 | 20,865 | 16,966 |
Sichuan | 45,768 | 40,251 | 37,129 | 35,565 | 32,772 | 29,669 | 26,163 | 21,230 | 17,387 | 15,685 | 12,963 |
Guizhou | 38,137 | 33,291 | 29,956 | 26,171 | 22,825 | 19,394 | 16,165 | 12,882 | 10,814 | 9697 | 7778 |
Yunnan | 38,629 | 34,416 | 31,642 | 29,874 | 27,447 | 23,891 | 20,629 | 16,866 | 14,427 | 13,286 | 11,287 |
Shaanxi | 56,154 | 50,081 | 47,301 | 46,167 | 42,318 | 37,733 | 32,562 | 26,388 | 21,485 | 19,331 | 15,342 |
Gansu | 28,026 | 26,520 | 25,264 | 25,202 | 23,313 | 20,978 | 18,801 | 15,421 | 12,802 | 12,048 | 10,501 |
Qinghai | 41,366 | 38,213 | 34,322 | 31,824 | 29,772 | 26,784 | 24,220 | 20,418 | 16,907 | 16,220 | 13,100 |
Ningxia | 47,177 | 41,427 | 38,805 | 37,605 | 35,772 | 33,125 | 30,365 | 24,984 | 20,382 | 18,554 | 14,458 |
Province | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 |
Beijing | 53,438 | 47,182 | 42,402 | 36,583 | 32,231 | 28,097 | 25,014 | 22,054 | 19,625 | 16,949 | 14,495 |
Tianjin | 33,411 | 30,567 | 25,761 | 22,371 | 19,161 | 17,523 | 16,236 | 14,985 | 14,086 | 13,142 | 11,734 |
Hebei | 14,609 | 12,845 | 11,178 | 9380 | 8216 | 7572 | 6966 | 6310 | 5994 | 5615 | 4950 |
Shanxi | 14,008 | 12,195 | 10,515 | 8639 | 7082 | 6226 | 5722 | 5230 | 5104 | 4724 | 4178 |
Liaoning | 19,760 | 17,210 | 15,355 | 14,041 | 13,000 | 12,015 | 11,177 | 10,086 | 9415 | 8725 | 7730 |
Jilin | 11,864 | 10,237 | 9073 | 7925 | 7581 | 7076 | 6646 | 6311 | 5983 | 5591 | 5178 |
Heilongjiang | 13,947 | 12,456 | 10,836 | 9464 | 8507 | 7990 | 7515 | 6707 | 6566 | 6412 | 5755 |
Shanghai | 54,996 | 49,377 | 44,998 | 39,117 | 34,277 | 32,089 | 30,307 | 27,293 | 25,405 | 23,573 | 20,808 |
Jiangsu | 27,868 | 23,984 | 19,790 | 16,743 | 14,369 | 12,879 | 11,765 | 10,695 | 10,049 | 9371 | 8471 |
Zhejiang | 30,415 | 26,277 | 23,476 | 20,249 | 16,918 | 14,726 | 13,467 | 12,229 | 11,395 | 10,615 | 9534 |
Anhui | 10,630 | 9193 | 8279 | 7001 | 6238 | 5732 | 5147 | 4819 | 4516 | 4160 | 3703 |
Fujian | 20,915 | 18,107 | 16,248 | 14,330 | 12,910 | 11,883 | 11,194 | 10,323 | 9603 | 8775 | 7658 |
Jiangxi | 10,859 | 9172 | 7960 | 6636 | 5829 | 5221 | 4851 | 4402 | 4124 | 3890 | 3452 |
Shandong | 20,443 | 17,308 | 14,540 | 11,977 | 11,120 | 10,063 | 9260 | 8483 | 7968 | 7461 | 6746 |
Henan | 12,761 | 10,978 | 9047 | 7376 | 6487 | 5959 | 5450 | 4832 | 4643 | 4389 | 3978 |
Hubei | 13,210 | 11,342 | 9746 | 8378 | 7437 | 6866 | 6121 | 5452 | 5287 | 4884 | 4311 |
Hunan | 11,733 | 10,200 | 9004 | 7589 | 6734 | 6120 | 5590 | 4933 | 4667 | 4420 | 3963 |
Guangdong | 27,861 | 23,997 | 20,647 | 17,950 | 15,478 | 13,952 | 12,817 | 11,463 | 10,850 | 10,154 | 9157 |
Guangxi | 9421 | 8069 | 7182 | 6120 | 5559 | 5058 | 4652 | 4444 | 4346 | 3928 | 3706 |
Chongqing | 13,915 | 12,335 | 10,934 | 9311 | 8079 | 7096 | 6383 | 5890 | 5649 | 5306 | 4613 |
Sichuan | 10,371 | 8828 | 7751 | 6565 | 5890 | 5376 | 4956 | 4540 | 4294 | 4032 | 3550 |
Guizhou | 6103 | 5218 | 4244 | 3708 | 3257 | 3000 | 2759 | 2545 | 2364 | 2250 | 2048 |
Yunnan | 9158 | 7890 | 7136 | 6048 | 5472 | 5063 | 4814 | 4558 | 4446 | 4121 | 3779 |
Shaanxi | 12,439 | 10,357 | 8545 | 7057 | 6161 | 5511 | 4968 | 4415 | 4070 | 3834 | 3446 |
Gansu | 8653 | 7332 | 6512 | 5525 | 4875 | 4467 | 4163 | 3778 | 3541 | 3199 | 2946 |
Qinghai | 10,728 | 9233 | 8275 | 7248 | 6478 | 5774 | 5138 | 4728 | 4425 | 4122 | 3799 |
Ningxia | 11,389 | 9796 | 8904 | 7686 | 6647 | 6039 | 5376 | 4900 | 4607 | 4277 | 3926 |
Province | 2017 | 2016 | 2015 | 2014 | 2013 |
---|---|---|---|---|---|
Beijing | 2.9 | 2.8 | 2.6 | 2.6 | 2.5 |
Shanghai | 1.55 | 1.47 | 1.39 | 1.3 | 1.13 |
Guangdong | 4.07 | 3.62 | 3.28 | 2.93 | 2.67 |
Tianjin | 2 | 1.8 | 1.7 | 1.5 | 1.36 |
Jiangsu | 7.43 | 6.78 | 6.19 | 5.7 | 5.2 |
Zhejiang | 6.4 | 5.73 | 5.25 | 4.79 | 4.34 |
Liaoning | 5.03 | 4.49 | 3.97 | 4.59 | 4.04 |
Shandong | 7.7 | 7 | 6.5 | 5.9 | 5.4 |
Fujian | 3.75 | 3.09 | 2.61 | 2.29 | 1.95 |
Sichuan | 6.7 | 6.3 | 5.9 | 5.4 | 4.9 |
Hebei | 5.7 | 4.7 | 3.7 | 3.1 | 2.7 |
Hubei | 6.39 | 5.73 | 5.07 | 4.69 | 4.06 |
Henan | 6.6 | 5.8 | 5.1 | 4.5 | 4 |
Hunan | 6.7 | 5.6 | 4.7 | 4.1 | 3.6 |
Heilongjiang | 1.63 | 1.44 | 1.3 | 1.05 | 2.9 |
Chongqing | 5.2 | 4.5 | 3.9 | 3.4 | 2.9 |
Jilin | 0.5 | 0.43 | 0.38 | 0.32 | 0.27 |
Jiangxi | 5.7 | 4.6 | 3.8 | 3.1 | 2.4 |
Shanxi | 5.6 | 4.4 | 3.6 | 3 | 2.5 |
Shaanxi | 5.19 | 4.46 | 3.83 | 3.29 | 2.82 |
Anhui | 6.26 | 5.22 | 4.44 | 3.8 | 3.36 |
Yunnan | 5.67 | 4.25 | 3.23 | 2.81 | 2.4 |
Guangxi | 5.18 | 4 | 3.3 | 2.8 | 2.4 |
Gansu | 2.38 | 1.9 | 1.56 | 1.26 | 1 |
Guizhou | 6.7 | 5.3 | 3.75 | 3.2 | 2.6 |
Ningxia | 0.3 | 0.2 | 0.18 | 0.16 | 0.18 |
Qinghai | 0.34 | 0.28 | 0.23 | 0.2 | 0.18 |
Province | 2017 | 2016 | 2015 | 2014 | 2013 |
---|---|---|---|---|---|
Jiangsu | 3 | 4 | 4 | 4 | 3 |
Guangdong | 4 | 3 | 3 | 2 | 4 |
Zhejiang | 5 | 5 | 5 | 5 | 5 |
Shanghai | 1 | 1 | 2 | 3 | 2 |
Shandong | 6 | 6 | 7 | 6 | 6 |
Beijing | 2 | 2 | 1 | 1 | 1 |
Henan | 10 | 13 | 12 | 12 | 11 |
Sichuan | 14 | 15 | 14 | 15 | 12 |
Fujian | 7 | 8 | 9 | 9 | 9 |
Anhui | 16 | 16 | 17 | 13 | 16 |
Hunan | 9 | 10 | 13 | 14 | 14 |
Hebei | 12 | 9 | 11 | 11 | 13 |
Shaanxi | 17 | 17 | 15 | 16 | 15 |
Hubei | 11 | 12 | 10 | 10 | 10 |
Liaoning | 13 | 11 | 8 | 8 | 8 |
Chongqing | 15 | 14 | 16 | 19 | 17 |
Tianjin | 8 | 7 | 6 | 7 | 7 |
Heilongjiang | 21 | 18 | 18 | 18 | 18 |
Shanxi | 18 | 19 | 19 | 23 | 19 |
Yunnan | 22 | 24 | 26 | 26 | 25 |
Jiangxi | 20 | 22 | 21 | 20 | 21 |
Guangxi | 25 | 25 | 24 | 24 | 24 |
Jilin | 23 | 20 | 20 | 22 | 20 |
Guizhou | 26 | 26 | 29 | 29 | 30 |
Gansu | 28 | 28 | 28 | 28 | 28 |
Ningxia | 29 | 29 | 27 | 27 | 27 |
Qinghai | 30 | 30 | 30 | 30 | 29 |
References
- Anderson, M.R. Community psychology, political efficacy, and trust. Polit. Psychol. 2010, 31, 59–84. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Di Napoli, I.; Esposito, C.; Procentese, F. Community trust and community psychology interventions. In The Routledge International Handbook of Community Psychology; Routledge: London, UK, 2022. [Google Scholar]
- Jason, L.A.; Stevens, E.; Light, J.M. The relationship of sense of community and trust to hope. J. Community Psychol. 2016, 44, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Procentese, F.; Di Napoli, I.; Esposito, C.; Gatti, F. Individual and community-related paths to civic engagement: A multiple mediation model deepening the role of Sense of responsible togetherness, community trust, and hope. Community Psychol. Glob. Perspect. 2023, 9, 64–83. [Google Scholar]
- McEvily, B.; Perrone, V.; Zaheer, A. Trust as an organizing principle. Organ. Sci. 2003, 14, 91–103. [Google Scholar] [CrossRef]
- Kong, D.T. A gene-dependent climatoeconomic model of generalized trust. J. World Bus. 2016, 51, 226–236. [Google Scholar] [CrossRef]
- Delhey, J.; Newton, K.; Welzel, C. How general is trust in ‘‘most people’’? Solving the radius of trust problem. Am. Sociol. Rev. 2011, 76, 786–807. [Google Scholar] [CrossRef]
- Granovetter, M. The impact of social structure on economic outcomes. J. Econ. Perspect. 2005, 19, 33–50. [Google Scholar] [CrossRef]
- Glanville, J.L.; Paxton, P. How do we learn to trust? A confirmatory tetrad analysis of the sources of generalized trust. Soc. Psychol. Q. 2007, 70, 230–242. [Google Scholar] [CrossRef]
- Freitag, M.; Traunmüller, R. Spheres of trust: An empirical analysis of the foundations of particularised and generalised trust. Eur. J. Polit. Res. 2009, 48, 782–803. [Google Scholar] [CrossRef]
- Robbins, B.G. Institutional quality and generalized trust: A nonrecursive causal model. Soc. Indic. Res. 2012, 107, 235–258. [Google Scholar] [CrossRef]
- Putnam, R.D. Bowling Alone: The Collapse and Revival of American Community; Simon & Schuster: New York, NY, USA, 2000. [Google Scholar]
- Covey, S.M.R.; Merrill, R.R. The Speed of Trust: The One Thing that Changes Everything; Simon & Schuster: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Bjørnskov, C. How does social trust affect economic growth? South. Econ. J. 2012, 78, 1346–1368. [Google Scholar] [CrossRef]
- Kong, D.T.; Dirks, K.T.; Ferrin, D.L. Interpersonal trust within negotiations: Meta-analytic evidence, critical contingencies, and directions for future research. Acad. Manag. J. 2014, 57, 1235–1255. [Google Scholar] [CrossRef]
- Bianchi, E.C.; Brockner, J. In the eyes of the beholder? The role of dispositional trust in judgments of procedural and interactional fairness. Organ. Behav. Hum. Decis. Process 2012, 118, 46–59. [Google Scholar] [CrossRef]
- Muethel, M.; Bond, M.H. National context and individual employees’ trust of the out-group: The role of societal trust. J. Int. Bus. Stud. 2013, 44, 312–333. [Google Scholar] [CrossRef]
- Ferrin, D.L.; Gillespie, N. Trust differences across national-societal cultures: Much to do, or much ado about nothing? In Trust Across Cultures: Theory and Practice; Saunders, M., Skinner, D., Dietz, G., Gillespie, N., Lewicki, R.J., Eds.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Colquitt, J.A.; LePine, J.A.; Zapata, C.P.; Wild, R.E. Trust in typical and high-reliability contexts: Building and reacting to trust among firefighters. Acad. Manag. J. 2011, 54, 999–1015. [Google Scholar] [CrossRef]
- Dinesen, P.T. Does generalized (dis)trust travel? Examining the impact of cultural heritage and destination-country environment on trust of immigrants. Polit. Psychol. 2012, 33, 495–511. [Google Scholar] [CrossRef]
- Kong, D.T. Examining a climate economic contextualization of generalized social trust mediated by uncertainty avoidance. J. Cross-Cult. Psychol. 2013, 44, 574–588. [Google Scholar] [CrossRef]
- Stolle, D. Trusting strangers–the concept of generalized trust in perspective. Austrian J. Polit. Sci. 2002, 31, 397–412. [Google Scholar]
- Moscardo, G.; Konovalov, E.; Murphy, L.; McGehee, N. Mobilities, community wellbeing and sustainable tourism. J. Sustain. Tour. 2013, 21, 532–556. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, C.; Huang, Y. Social trust, social capital, and subjective well-being of rural residents: Micro-empirical evidence based on the Chinese General Social Survey (CGSS). Humanit. Soc. Sci. Commun. 2023, 10, 49. [Google Scholar] [CrossRef]
- Deng, X.; Yu, M. Scale of cities and social trust: Evidence from China. Int. Rev. Econ. Financ. 2021, 76, 215–228. [Google Scholar] [CrossRef]
- Cloke, P.; Jones, O. Dwelling, place, and landscape: An orchard in Somerset. Environ. Plan. A 2001, 33, 649–666. [Google Scholar] [CrossRef]
- Pons, P.O. Being-on-holiday tourist dwelling, bodies and place. Tour. Stud. 2003, 3, 47–66. [Google Scholar] [CrossRef]
- Todres, L.; Galvin, K. “Dwelling-mobility”: An existential theory of well-being. Int. J. Qual. Stud. Health Well-Being 2010, 5, 5444. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.J.; Reisinger, Y. Understanding existential authenticity. Ann. Tour. Res. 2006, 33, 299–318. [Google Scholar] [CrossRef]
- Hall, C.M. Response to Yeoman et al.: The fakery of “The authentic tourist”. Tour. Manag. 2007, 28, 1139–1140. [Google Scholar] [CrossRef]
- Brown, L. Tourism: A catalyst for existential authenticity. Ann. Tour. Res. 2013, 40, 176–190. [Google Scholar] [CrossRef]
- Van de Vliert, E. Human cultures as niche constructions within the solar system. J. Cross-Cult. Psychol. 2015, 47, 21–27. [Google Scholar] [CrossRef]
- Van Lange, P.A.M.; Rinderu, M.I.; Bushman, B.J. Aggression and violence around the world: A model of Climate, Aggression, and Self-control in Humans (CLASH). Behav. Brain Sci. 2016, 40, 1–63. [Google Scholar] [CrossRef]
- Van Lange, P.A.M.; Rinderu, M.I.; Bushman, B.J. The logic of climate and culture: Evolutionary and psychological aspects of CLASH. Behav. Brain Sci. 2017, 40, 1–58. [Google Scholar] [CrossRef]
- Wei, W.; Lu, J.G.; Galinsky, A.D.; Wu, H.; Gosling, S.D.; Rentfrow, P.J.; Yuan, W.; Zhang, Q.; Guo, Y.; Zhang, M.; et al. Regional ambient temperature is associated with human personality. Nat. Human Behav. 2017, 1, 890–895. [Google Scholar] [CrossRef]
- Van Lange, P.A.M.; Joireman, J.; Milinski, M. Climate change: What psychology can offer in terms of insights and solutions. Curr. Dir. Psychol. Sci. 2018, 27, 269–274. [Google Scholar] [CrossRef]
- León, F.R.; Burga-León, A. How geography influences complex cognitive ability. Intelligence 2015, 50, 221–227. [Google Scholar] [CrossRef]
- Van de Vliert, E.; Welzel, C.; Shcherbak, A.; Fischer, R.; Alexander, A.C. Got Milk? How freedoms evolved from dairying climates. J. Cross-Cult. Psychol. 2018, 49, 1048–1065. [Google Scholar] [CrossRef]
- Van de Vliert, E.; Van Lange, P.A.M. Latitudinal psychology: An ecological perspective on creativity, aggression, happiness, and beyond. Perspect. Psychol. Sci. 2019, 14, 860–884. [Google Scholar] [CrossRef] [PubMed]
- Uysal, M.; Sirgy, M.J.; Woo, E.; Kim, H. Quality of life (QOL) and well-being research in tourism. Tour. Manag. 2016, 53, 244–261. [Google Scholar] [CrossRef]
- Fu, X.; Ridderstaat, J.; Jia, H. Are all tourism markets equal? Linkages between market-based tourism demand, quality of life, and economic development in Hong Kong. Tour. Manag. 2020, 77, 104015. [Google Scholar] [CrossRef]
- Yang, I.C.M.; French, J.A.; Lee, C.; Watabe, M. The symbolism of international tourism in national identity. Ann. Tour. Res. 2020, 83, 102966. [Google Scholar] [CrossRef]
- Jansen-Verbeke, M. The territoriality paradigm in cultural tourism. Tourism 2009, 19, 25–31. [Google Scholar] [CrossRef]
- Smith, E.K.; Mayer, A.A. Social trap for the climate? Collective action, trust and climate change risk perception in 35 countries. Glob. Environ. Change-Human Policy Dimens. 2018, 49, 140–153. [Google Scholar] [CrossRef]
- Van de Vliert, E. Climato-economic habitats support patterns of human needs, stresses, and freedoms. Behav. Brain Sci. 2012, 36, 465–480. [Google Scholar] [CrossRef]
- Van de Vliert, E. Climatic imprints on personality. Nat. Hum. Behav. 2017, 1, 864–865. [Google Scholar] [CrossRef]
- Burke, M.; Hsiang, S.M.; Miguel, E. Climate and conflict. Annu. Rev. Econ. 2015, 7, 577–617. [Google Scholar] [CrossRef]
- Van de Vliert, E.; Daan, S. Hell on earth? Equatorial peaks of heat, poverty, and aggression. Behav. Brain Sci. 2017, 40, 36–37. [Google Scholar] [CrossRef]
- Van de Vliert, E.; Conway, L.G. Northerners and southerners differ in conflict culture. Negot. Confl. Manag. Res. 2018, 12, 256–277. [Google Scholar] [CrossRef]
- Talhelm, T.; Zhang, X.; Oishi, S.; Shimin, C.; Duan, D.; Lan, X.; Kitayama, S. Large-Scale psychological differences within china explained by rice versus wheat agriculture. Science 2014, 344, 603–608. [Google Scholar] [CrossRef]
- Talhelm, T.; Zhang, X.; Oishi, S. Moving chairs in Starbucks: Observational studies find rice-wheat cultural differences in daily life in China. Sci. Adv. 2018, 4, eaap8469. [Google Scholar] [CrossRef] [PubMed]
- Talhelm, T. Emerging evidence of cultural differences linked to rice versus wheat agriculture. Curr. Opin. Psychol. 2020, 32, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Talhelm, T.; Ren, X. Teens in rice county are more interdependent and think more holistically than nearby wheat county. Soc. Psychol. Personal. Sci. 2018, 10, 966–976. [Google Scholar] [CrossRef]
- Thomson, R.; Yuki, M.; Talhelm, T.; Schug, J.; Kito, M.; Ayanian, A.H.; Becker, J.C.; Becker, M.; Chiu, C.-Y.; Choi, H.-S.; et al. Relational mobility predicts social behaviors in 39 countries and is tied to historical farming and threat. Proc. Natl. Acad. Sci. USA 2018, 115, 7521–7526. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Morris, M.W.; Talhelm, T.; Yang, Q. Ingroup vigilance in collectivistic cultures. Proc. Natl. Acad. Sci. USA 2019, 116, 14538–14546. [Google Scholar] [CrossRef] [PubMed]
- Talhelm, T.; English, A.S. Historically rice-farming societies have tighter social norms in China and worldwide. Proc. Natl. Acad. Sci. USA 2020, 117, 19816–19824. [Google Scholar] [CrossRef]
- Zhu, C.; Talhelm, T.; Li, Y.; Chen, G.; Wang, J. Relationship between rice farming and polygenic scores potentially linked to agriculture in China. R. Soc. Open Sci. 2021, 8, 210382. [Google Scholar] [CrossRef] [PubMed]
- Fincher, C.L.; Thornhill, R.; Murray, D.R.; Schaller, M. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism. Proc. R. Soc. B-Biol. Sci. 2018, 275, 1279–1285. [Google Scholar] [CrossRef] [PubMed]
- Fincher, C.L.; Thornhill, R. Parasite-stress promotes in-group assortative sociality: The cases of strong family ties and heightened religiosity. Behav. Brain Sci. 2012, 35, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.C.; Wang, Y.L.; Liu, Y.S.; Long, H.L.; Peng, J. Spatiotemporal patterns of urban-rural development and transformation in east of the “Hu Huanyong Line”, China. ISPRS Int. J. Geo.-Inf. 2016, 5, 24. [Google Scholar] [CrossRef]
- Henrich, J.; Boyd, R.; Bowles, S.; Camerer, C.; Fehr, E.; Gintis, H.; McElreath, R. In search of homo-economicus: Behavioral experiments in 15 small-scale societies. Am. Econ. Rev. 2001, 91, 73–78. [Google Scholar] [CrossRef]
- Herrmann, B.; Thöni, C.; Gächter, S. Antisocial punishment across societies. Science 2018, 319, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Henrich, J.; Ensminger, J.; McElreath, R.; Barr, A.; Barrett, C.; Bolyanatz, A.; Ziker, J. Markets, religion, community size, and the evolution of fairness and punishment. Science 2010, 327, 1480–1484. [Google Scholar] [CrossRef]
- Al-Ubaydli, O.; Houser, D.; Nye, J.; Paganelli, M.P.; Pan, X.S. The causal effect of market priming on trust: An experimental investigation using randomized control. PLoS ONE 2013, 8, e55968. [Google Scholar] [CrossRef]
- Xin, Z.Q.; Liu, G.F. Homo economics belief inhibits trust. PLoS ONE 2013, 8, e76671. [Google Scholar] [CrossRef]
- Xin, Z.; Xin, S. Marketization process predicts trust decline in China. J. Econ. Psychol. 2017, 62, 120–129. [Google Scholar] [CrossRef]
- Cohn, A.; Fehr, E.; Maréchal, M.A. Business culture and dishonesty in the banking industry. Nature 2014, 516, 86–89. [Google Scholar] [CrossRef]
- Perdue, R.R.; Long, P.T.; Allen, L. Resident support for tourism development. Ann. Tour. Res. 1990, 17, 586–599. [Google Scholar] [CrossRef]
- Ap, J. Residents’ perceptions on tourism impacts. Ann. Tour. Res. 1992, 19, 665–690. [Google Scholar] [CrossRef]
- Sharpley, R. Host perceptions of tourism: A review of the research. Tour. Manag. 2014, 42, 37–49. [Google Scholar] [CrossRef]
- Kastenholz, E.; Carneiro, M.J.C.; Eusébio, C.; Figueiredo, E. Host-guest relationships in rural tourism: Evidence from two Portuguese villages. Anatolia 2013, 24, 367–380. [Google Scholar] [CrossRef]
- Giovanardi, M.; Lucarelli, A.; Decosta, P.L. Co-performing tourism places: The “Pink Night” festival. Ann. Tour. Res. 2014, 44, 102–115. [Google Scholar] [CrossRef]
- Filep, S.; Macnaughton, J.; Glover, T. Tourism and gratitude: Valuing acts of kindness. Ann. Tour. Res. 2017, 66, 26–36. [Google Scholar] [CrossRef]
- Reisinger, Y.; Turner, L.W. Cross-Cultural Behavior in Tourism; Elsevier Butterworth Heinemann: Oxford, UK, 2003. [Google Scholar]
- Heimtun, B. Depathologizing the tourist syndrome: Tourism as social capital production. Tour. Stud. 2007, 7, 271–293. [Google Scholar] [CrossRef]
- White, N.R.; White, P.B. Travel as interaction: Encountering place and others. J. Hosp. Tour. Manag. 2008, 15, 42–48. [Google Scholar] [CrossRef]
- Nunkoo, R.; Ramkissoon, H. Developing a community support model for tourism. Ann. Tour. Res. 2011, 38, 964–988. [Google Scholar] [CrossRef]
- Boley, B.B.; McGehee, N.G. Measuring empowerment: Developing and validating the resident empowerment through tourism scale (RETS). Tour. Manag. 2014, 45, 85–94. [Google Scholar] [CrossRef]
- Strzelecka, M.; Boley, B.B.; Strzelecka, C. Empowerment and resident support for tourism in rural Central and Eastern Europe (CEE): The case of Pomerania, Poland. J. Sustain. Tour. 2016, 25, 554–572. [Google Scholar] [CrossRef]
- Jurowski, C.; Gursoy, R. Distance effects on residents’ attitudes toward tourism. Ann. Touris Res. 2004, 31, 296–312. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, M.; Chun, C. Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Build. Environ. 2015, 88, 65–72. [Google Scholar] [CrossRef]
- Kai, C.C. The affecting tourism development attitudes based on the social exchange theory and the social network theory. Asia Pac. J. Tour. Res. 2021, 26, 167–182. [Google Scholar] [CrossRef]
- Powers, S.L.; Webster, N.; Agans, J.P.; Graefe, A.R.; Mowen, A.J. The power of parks: How interracial contact in urban parks can support prejudice reduction, interracial trust, and civic engagement for social justice. Cities 2022, 131, 104032. [Google Scholar] [CrossRef]
- Larsen, L.; Harlan, S.L.; Bolin, B.; Hackett, E.J.; Hope, D.; Kirby, A.; Nelson, A.; Rex, T.R.; Wolf, S. Bonding and bridging: Understanding the relationship between social capital and civic action. J. Plan. Educ. Res. 2004, 24, 64–77. [Google Scholar] [CrossRef]
- Strzelecka, M.; Wicks, B.E. Engaging residents in planning for sustainable rural-nature tourism in post-communist Poland. Community Dev. 2010, 41, 370–384. [Google Scholar] [CrossRef]
- Martínez-Garcia, E.; Raya, J.M.; Majó, J. Differences in residents’ attitudes towards tourism among mass tourism destinations. Int. J. Tour. Res. 2017, 19, 535–545. [Google Scholar] [CrossRef]
- Levi, M. A state of trust. In Trust and Governance; Braithvaite, V., Levi, M., Eds.; Russell Sage Foundation: New York, NY, USA, 1998. [Google Scholar]
- Nunkoo, R.; Ramkissoon, H.; Gursoy, D. Public trust in tourism institutions. Ann. Tour. Res. 2012, 39, 1538–1564. [Google Scholar] [CrossRef]
- Strzelecka, M.; Wicks, B. Community participation and empowerment in rural postcommunist societies: Lessons from the leader approach in Pomerania, Poland. Tour. Plan. Dev. 2015, 12, 381–397. [Google Scholar] [CrossRef]
- Zhou, L. Hitchhiking tourism and social trust: Exploring Chinese experiences through travel blogs. Ann. Tour. Res. 2020, 81, 102853. [Google Scholar] [CrossRef]
- Strzelecka, M.; Okulicz-Kozaryn, A. Is tourism conducive to residents’ social trust? Evidence form large-scale social surveys. Tour. Rev. 2018, 73, 1–27. [Google Scholar] [CrossRef]
- Kiverstein, J. The meaning of Embodiment. Top. Cogn. Sci. 2012, 4, 740–758. [Google Scholar] [CrossRef]
- Meier, B.P.; Schnall, S.; Schwarz, N.; Bargh, J.A. Embodiment in social psychology. Top. Cogn. Sci. 2012, 4, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Aschwanden, C. Where is thought? Discover 2013, 34, 28–29. [Google Scholar]
- Norwood, M.F.; Lakhani, A.; Maujean, A.; Zeeman, H.; Creux, O.; Kendall, E. Brain activity, underlying mood and the environment: A systematic review. J. Environ. Psychol. 2019, 65, 101321. [Google Scholar] [CrossRef]
- Lehrner, J.; Eckersberger, C.; Walla, P.; Ptsch, G.; Deecke, L. Ambient odor of orange in a dental office reduces anxiety and improves mood in female patients. Physiol. Behav. 2000, 71, 83–86. [Google Scholar] [CrossRef]
- Rind, B.; Strohmetz, D. Effect of beliefs about future weather conditions on restaurant tipping. J. Appl. Soc. Psychol. 2001, 31, 2160–2164. [Google Scholar] [CrossRef]
- Keller, M.C.; Fredrickson, B.L.; Ybarra, O.; Côté, S.; Johnson, K.; Mikels, J.; Conway, A.; Wager, T. A warm heart and a clear head: The contingent effects of weather on mood and cognition. Psychol. Sci. 2005, 16, 724–731. [Google Scholar] [CrossRef]
- Brown, S.C.; Mason, C.A.; Perrino, T.; Lombard, J.L.; Martinez, F.; Plater-Zyberk, E.; Spokane, A.R.; Szapocznik, J. Built environment and physical functioning in hispanic elders: The role of “eyes on the street”. Environ. Health Perspect. 2008, 116, 1300–1307. [Google Scholar] [CrossRef]
- Trasande, L.; Cronk, C.; Durkin, M.; Weiss, M.; Schoeller, D.A.; Gall, E.A.; Hewitt, J.B.; Carrel, A.L.; Landrigan, P.J.; Gillman, M.W. Environment and obesity in the National Children’s study. Environ. Health Perspect. 2009, 117, 159–166. [Google Scholar] [CrossRef]
- Triguero-Mas, M.; Dadvand, P.; Cirach, M.; Martínez, D.; Medina, A.; Mompart, A.; Nieuwenhuijsen, M.J. Natural outdoor environments and mental and physical health: Relationships and mechanisms. Environ. Int. 2015, 77, 35–41. [Google Scholar] [CrossRef]
- Dadvand, P.; Bartoll, X.; Basagaña, X.; Dalmau-Bueno, A.; Martinez, D.; Ambros, A.; Nieuwenhuijsen, M.J. Green spaces and general health: Roles of mental health status, social support, and physical activity. Environ. Int. 2016, 91, 161–167. [Google Scholar] [CrossRef]
- Bailey, A.W.; Allen, G.; Herndon, J.; Demastus, C. Cognitive benefits of walking in natural versus built environments. World Leis. J. 2018, 60, 293–305. [Google Scholar] [CrossRef]
- Vries, S.D.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural environments-healthy environments? An exploratory analysis of the relationship between greenspace and health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef]
- Gaoua, N.; Grantham, J.; Racinais, S.; El Massioui, F. Sensory displeasure reduces complex cognitive performance in the heat. J. Environ. Psychol. 2012, 32, 158–163. [Google Scholar] [CrossRef]
- Beukeboom, C.J.; Langeveld, D.; Tanja-Dijkstra, K. Stress-reducing effects of real and artificial nature in a hospital waiting room. J. Altern. Complement. Med. 2012, 18, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Williams, K.J.H.; Sargent, L.D.; Williams, N.S.G.; Johnson, K.A. 40-second green roof views sustain attention: The role of micro-breaks in attention restoration. J. Environ. Psychol. 2015, 42, 182–189. [Google Scholar] [CrossRef]
- Brown, K.M. The haptic pleasures of ground-feel: The role of textured terrain in motivating regular exercise. Health Place 2017, 46, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.C.; Li, D.; Jane, H.A. Wild or tended nature? The effects of landscape location and vegetation density on physiological and psychological responses. Landsc. Urban Plan. 2017, 167, 72–83. [Google Scholar] [CrossRef]
- Shin, Y.B.; Woo, S.H.; Kim, D.H.; Kim, J.; Kim, J.J.; Park, J.Y. The effect on emotions and brain activity by the direct/indirect lighting in the residential environment. Neurosci. Lett. 2015, 584, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Jeong, G. Brain activation patterns associated with the human comfortability of residential environments: 3.0-T functional MRI. NeuroReport 2014, 25, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Jeong, G.-W.; Baek, H.-S.; Kim, G.-W.; Sundaram, T.; Kang, H.-K.; Lee, S.-W.; Kim, H.-J.; Song, J.-K. Human brain activation in response to visual stimulation with rural and urban scenery pictures: A functional magnetic resonance imaging study. Sci. Total Environ. 2010, 408, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- Halonen, J.I.; Vahtera, J.; Stansfeld, S.; Yli-Tuomi, T.; Salo, P.; Pentti, J.; Kivimäki, M.; Lanki, T. Associations between nighttime traffic noise and sleep: The finnish public sector study. Environ. Health Perspect. 2012, 120, 1391–1396. [Google Scholar] [CrossRef]
- Orban, E.; McDonald, K.; Sutcliffe, R.; Hoffmann, B.; Fuks, K.B.; Dragano, N.; Moebus, S. Residential road traffic noise and high depressive symptoms after five years of follow-up: Results from the heinz nixdorf recall study. Environ. Health Perspect. 2016, 124, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.G.; Lee, J.J.; Gino, F.; Galinsky, A.D. Polluted morality: Air pollution predicts criminal activity and unethical behavior. Psychol. Sci. 2018, 29, 340–355. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Human Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef]
- Greenberg, J.; Martens, A.; Jonas, E.; Eisenstadt, D.; Pyszczynski, T.; Solomon, S. Psychological defense in anticipation of anxiety. Psychol. Sci. 2003, 14, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Kouchaki, M.; Desai, S.D. Anxious, threatened, and also unethical: How anxiety makes individuals feel threatened and commit unethical acts. J. Appl. Psychol. 2015, 100, 360–375. [Google Scholar] [CrossRef] [PubMed]
- Tamara, G.; Larisa, A.M.; Marko, D.P.; Victor, A.B.; Anna, V.K.; Narine, L.W. Travelers’ (in)Resilience to environmental risks emphasized in the media and their redirecting to medical destinations: Enhancing sustainability. Sustainability 2023, 15, 15297. [Google Scholar] [CrossRef]
Item | M | SD | ST | TR | TS | TE | RG | PS | ED |
---|---|---|---|---|---|---|---|---|---|
ST | 6.395 | 1.661 | - | ||||||
TR | 3.694 | 1.698 | 0.020 * | - | |||||
TS | 11.929 | 8.112 | −0.004 | −0.113 ** | - | ||||
TE | 6.899 | 4.194 | −0.009 | −0.418 ** | 0.267 ** | - | |||
RG | 1.376 | 0.484 | 0.010 | −0.048 ** | −0.187 ** | −0.673 ** | - | ||
PS | 11.081 | 7.617 | −0.029 ** | −0.158 ** | −0.418 ** | −0.322 ** | 0.198 ** | - | |
ED | 30,088.973 | 16,983.457 | −0.009 | −0.302 ** | −0.825 ** | −0.131 ** | 0.180 ** | 0.494 ** | - |
Model | B | SE | β | R2 | ΔR2 | F | t |
---|---|---|---|---|---|---|---|
Model 1a-1 | |||||||
TR | 0.0189 | 0.0096 | 0.0194 | 0.0001 | 0.0001 | 2.458 | 1.9649 * |
TE | 0.0004 | 0.0039 | 0.0011 | −0.1125 | |||
Model 1a-2 | |||||||
TR | −0.0097 | 0.0225 | −0.0099 | 0.001 | 0.0001 | 2.301 | −0.4319 |
TE | −0.0098 | 0.0077 | −0.0247 | −1.2721 | |||
TR × TE | 0.0038 | 0.0027 | 0.0316 | 1.4096 | |||
Model 1b-1 | |||||||
TS | 0.0004 | 0.0019 | −0.0017 | 0.0001 | 0.0001 | 0.544 | −0.1846 |
TE | −0.0035 | 0.0037 | −0.0087 | −0.9400 | |||
Model 1b-2 | |||||||
TS | 0.0001 | 0.0037 | 0.0001 | 0.0059 | |||
TE | −0.0026 | 0.0085 | −0.0065 | 0.0001 | 0.0001 | 0.367 | −0.3006 |
TS × TE | −0.0001 | 0.0005 | −0.0034 | −0.1162 | |||
Model 2a-1 | |||||||
TR | 0.0206 | 0.0089 | 0.0208 | 0.001 | 0.0001 | 3.337 * | 2.3157 * |
RG | 0.0386 | 0.0308 | 0.0113 | 1.2543 | |||
Model 2a-2 | |||||||
TR | 0.1082 | 0.0270 | 0.1093 | 4.0032 *** | |||
RG | 0.2925 | 0.0801 | 0.0854 | 0.001 | 0.001 | 6.152 ** | 3.6505 *** |
TR × RG | −0.0693 | 0.0202 | −0.1168 | −3.4318 *** | |||
Model 2b-1 | |||||||
TS | 0.0005 | 0.0019 | −0.0024 | 0.0001 | 0.0001 | 0.689 | −0.2586 |
RG | 0.0337 | 0.0313 | 0.0098 | 1.0763 | |||
Model 2b-2 | |||||||
TS | −0.0005 | 0.0057 | −0.0024 | −0.0886 | |||
RG | 0.0336 | 0.0538 | 0.0098 | 0.0001 | 0.0001 | 0.459 | 0.6243 |
TS × RG | 0.0001 | 0.0040 | 0.0001 | 0.0026 | |||
Model 3a-1 | |||||||
TR | 0.0153 | 0.0089 | 0.0156 | 0.001 | 0.001 | 6.738 ** | 1.7261 |
PS | −0.0058 | 0.0020 | −0.0265 | −2.9274 * | |||
Model 3a-2 | |||||||
TR | 0.0325 | 0.0154 | 0.0333 | 2.1072 * | |||
PS | 0.0016 | 0.0058 | 0.0075 | 0.001 | 0.001 | 5.112 ** | 0.2825 |
TR × PS | −0.0025 | 0.0018 | −0.0378 | −1.3638 | |||
Model 3b-1 | |||||||
TS | −0.0040 | 0.0020 | −0.0196 | 0.001 | 0.001 | 7.225 ** | −1.9881 ** |
PS | 0-.0081 | 0.0021 | −0.0372 | −3.7743 *** | |||
Model 3b-2 | |||||||
TS | −0.0214 | 0.0037 | −0.1047 | −5.8522 *** | |||
PS | −0.0193 | 0.0029 | −0.0886 | 0.004 | 0.004 | 15.644 *** | −6.6366 *** |
TS × PS | 0.0016 | 0.0003 | 0.0939 | 5.6962 *** | |||
Model 4a-1 | |||||||
TR | 0.0185 | 0.0092 | 0.0190 | 0.0001 | 0.0001 | 2.496 | 2.0210 * |
ED | −0.0001 | 0.0001 | −0.0028 | −0.2987 | |||
Model 4a-2 | |||||||
TR | 0.0851 | 0.0214 | 0.0871 | 3.9689 *** | |||
ED | 0.0001 | 0.0001 | 0.0593 | 0.001 | 0.001 | 5.597 ** | 2.9101 ** |
TR × ED | −0.0001 | 0.0001 | −0.0830 | −3.4342 *** | |||
Model 4b-1 | |||||||
TS | −0.0071 | 0.0032 | −0.0348 | 0.0001 | 0.0001 | 2.869 | −2.1949 * |
ED | −0.0001 | 0.0001 | −0.0373 | −2.3496 * | |||
Model 4b-2 | |||||||
TS | −0.0075 | 0.0051 | −0.0366 | −1.4560 | |||
ED | −0.0001 | 0.0001 | −0.0371 | 0.0001 | 0.0001 | 1.911 | −2.3242 * |
TS × ED | 0.0001 | 0.0001 | 0.0021 | 0.0929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Zhao, Z.; Ma, Y.; He, P.; Li, Y. The Influence of Geographical Environment on Public Social Trust: What Role Do Tourism Activities Play? Behav. Sci. 2024, 14, 218. https://doi.org/10.3390/bs14030218
Gao Y, Zhao Z, Ma Y, He P, Li Y. The Influence of Geographical Environment on Public Social Trust: What Role Do Tourism Activities Play? Behavioral Sciences. 2024; 14(3):218. https://doi.org/10.3390/bs14030218
Chicago/Turabian StyleGao, Yang, Zhenbin Zhao, Yaofeng Ma, Ping He, and Yuan Li. 2024. "The Influence of Geographical Environment on Public Social Trust: What Role Do Tourism Activities Play?" Behavioral Sciences 14, no. 3: 218. https://doi.org/10.3390/bs14030218
APA StyleGao, Y., Zhao, Z., Ma, Y., He, P., & Li, Y. (2024). The Influence of Geographical Environment on Public Social Trust: What Role Do Tourism Activities Play? Behavioral Sciences, 14(3), 218. https://doi.org/10.3390/bs14030218