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Abstract: Emotional facial expressions are thought to attract attention differentially based
on their emotional content. While anger is thought to attract the most attention during
visual search, happy superiority effects are reported as well. As multiple studies point out
confounds associated with such emotional superiority, further investigation into the un-
derlying mechanisms is required. Here, we tested visual search behaviors when searching
for angry faces, happy faces, or either happy or angry faces simultaneously using diverse
distractors displaying many other expressions. We teased apart visual search behaviors
into attentional and perceptual components using eye-tracking data and subsequently
predicted these behaviors using low-level visual features of the distractors. The results
show an overall happy superiority effect that can be traced back to the time required to
identify distractors and targets. Search behavior is guided by task-based, emotion-specific
search templates that are reliably predictable based on the spatial frequency content. Thus,
when searching, we employ specific templates that drive attentional as well as perceptual
elements of visual search. Only the perceptual elements contribute to happy superiority. In
conclusion, we show that template-guided search underlies perceptual, but not attentional,
happy superiority in visual search.

Keywords: emotion; eye tracking; visual search; image features; decoding

1. Introduction

Facial expressions provide useful communication signals concerning an individual’s
emotional state. As such, displaying emotions is thought to be important for the develop-
ment of complex social structures (Burrows et al., 2006; Parr et al., 2000). In line with their
behavioral relevance, faces with emotional expressions are located faster when searched
for and attract and hold more visual attention compared to neutral expressions (Palermo
& Rhodes, 2007; Vuilleumier & Schwartz, 2001). However, not all emotional expressions
affect observers equally. Specifically, Hansen and Hansen observed search asymmetries
between finding happy and angry faces (Hansen & Hansen, 1988). They found that angry
expressions are found faster among happy distractors than vice versa. Additionally, among
neutral distractors, angry expressions were also detected faster compared to happy expres-
sions among neutral distractors. This finding, referred to as an angry superiority effect,
has been widely replicated (Ceccarini & Caudek, 2013; Lobue, 2009; Lundqvist & Ohman,
2005). However, a fair amount of research has also found the opposite effect: emotional
superiority for happy facial expressions (Becker et al., 2011; Calvo & Nummenmaa, 2008;
Hodsoll et al., 2011; Juth et al., 2005). This inconsistency requires an explanation that, due to
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the number of replications of both angry and happy superiority effects, does not necessarily
demand mutual exclusivity.

Aiming to explain why emotional superiority effects differ between studies, Savage
and colleagues (Savage et al., 2013) ran a series of experiments using face images from
both the NimStim (Tottenham et al., 2009) and Ekman and Friesen (Ekman & Friesen,
1971) databases. They found both happy and angry emotional superiority effects over
multiple experiments and showed that the stimulus set, as well as the specific actors, used
determined the direction of the superiority effect. Furthermore, both happy and angry
superiority effects remained when faces were presented upside-down (Savage & Lipp,
2015). This suggests that emotional superiority effects are not necessarily related to the
emotional expressions per se but must be associated with stimulus properties present in
the face images. This explanation is in line with previous research showing that it is the
effective contrast of the images, and not the emotional content, that is relevant for attracting
attention (Gray et al., 2013; Hedger et al., 2015; Hedger et al., 2019; Webb & Hibbard, 2019;
Menzel et al., 2018). Focusing on such basic visual properties, Stuit et al. (2021a) found
a happy superiority effect for initial eye movements that was predictable via the spatial
frequency and orientation content of the images. Importantly, the happy superiority effect
was better explained by the basic visual properties of the stimuli than the emotional content
of the expression (e.g., the semantic categorization as, for example, a happy expression).
The same conclusion was drawn based on an investigation into the emotional superiority
effects related to access to awareness, estimated as the time required to perceive an image
while it is continuously being masked (Stuit et al., 2023). Again, the emotional superiority
effects were predictable yet could not be explained by the emotional content of the images.
Still, predictions of first saccades and access to awareness between two facial expressions
ignore the intricacies of the visual search tasks upon which the emotional superiority effects
are based.

Taken together, emotional superiority effects have been linked to biased attention but
with inconsistent effect directions. Moreover, emotional superiority has been linked to
specific image confounds and image properties that are unrelated to emotions (note that
certain image properties are directly related to the perception of /responses to (specific)
emotional faces (Menzel et al., 2018; Webb, 2021; Webb & Hibbard, 2020)). As such, the
mechanisms behind emotional superiority appear poorly understood. Visual search in a
larger, not specific to emotional faces, context is thought to be guided by search goals, thus
resulting in deliberate and meaningful selection of items (Wolfe, 1994). Therefore, visual
search behaviors should be, to an extent, predictable based on the visual features of the
to-be-searched items. While the prediction of visual search behavior is traditionally based
on saliency and priority mapping of the search display, our focus extends to the isolated
content of the items in the search display. Note that emotional superiority suggests that
specific properties related to the emotional content should consistently attract attention. In
other words, true emotional superiority should be independent from the current search
goal. In the current study, we therefore not only test for an emotional superiority effect by
comparing search times for angry faces with search times for happy faces, but also add a
condition where a target can be either angry or happy. This allows us to assess the effect
of the search goal on happy or angry superiority directly. Next, we use eye-tracking data
to tease apart search times into components associated with foveal and peripheral visual
processing of targets and distractors. Here, we aim to distinguish perceptual processing
(foveal vision) from attentional capture (peripheral vision). Finally, we aim to predict
and compare these aspects of search behaviors using the low-level visual features (spatial
frequencies) present in the distractors. For this, we use modeling approaches focused on
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finding consistent predictors, or, in other words, finding the search templates, that guide
the search behaviors.

2. Materials and Methods
2.1. Participants

Healthy volunteers (N = 31 (12 males); mean age = 23.6, SD = 5.3) with (corrected
to) normal visual acuity participated in this experiment in exchange for course credit
or payment. All participants provided written informed consent before the experiment
started. Two participants were excluded because they did not finish more than half of
the experiment. Two other participants who finished most of the experiment (306 and
256 trials of a total of 384) were kept in the analyses. The resulting dataset thus consisted of
29 participants and 10,930 trials. This study was approved by the local ethical committee
of the Faculty of Social and Behavioral Sciences at Utrecht University. Furthermore, this
research was conducted according to the principles expressed in the Declaration of Helsinki.

2.2. Apparatus

The experiment was programmed in E-Prime 2.0 (Psychology Software Tools, Pitts-
burgh, PA, USA) and presented on the 23-inch integrated monitor of a Tobii TX300 eye-
tracker (Tobii Technology, Danderyd, Sweden) with a resolution of 1920 x 1080 pixels
and a refresh rate of 60 Hz. The eye-tracking sampling rate was 300 Hz with ~0.5 degrees
accuracy. The participants were comfortably seated at a ~60 cm distance from the monitor
and responded to the experiment via a combination of gaze fixation and button presses
(spacebar of the computer keyboard). Stable synchronization between the experiment PC
and eye-tracker was secured using the E-Prime Extensions for Tobii package (EET v2.0.2.41).
Eye-tracking and machine learning analyses were conducted using Matlab 2023a. Statistical
models for search behaviors were estimated in R (v4.2.2, R Core Team, Vienna, Austria)
using the glmer procedure from the Ime4 package (Bates et al., 2015).

2.3. Stimuli

For the face stimuli, we used the NimStim face database (Tottenham et al., 2009).
Only images with an open mouth were used. To allow for a relatively high degree of
variance in the visual properties of the faces, and to aid the subsequent machine learning
procedures described below, we created a set of unique combinations of the upper and
lower halves of two faces of the same gender and emotion (anger, calm, disgust, fear,
neutral, sad, and surprise). To be able to do so, the faces needed to be of the same size and
have the same position within the images. Since this is not the case for the NimStim face
database (or, to our knowledge, any face database), the face area in each image was first
detected using the Viola—Jones face detection algorithm (Viola & Jones, 2001). This area
was subsequently extracted and scaled such that each face had the same size in all images,
with each face in the same position within the images. Next, the faces were matched on
average luminance, blended by multiplying each face with a vertically oriented cosine
gradient with opposite polarity for each face, and then summed. After blending, each
image was tested automatically, by testing whether the Viola—Jones algorithm could still
find a face within the image, and manually to find any anomalies (for example, incorrectly
scaled faces that, as a result, show a large background area) in the images. Several actors
were excluded in this process based on the failure to produce correctly blended faces. For
females, this was actor 12, and for males, actors 32, 40, and 43. This resulted in 254 unique
face stimuli for each gender-emotion combination (3556 face stimuli in total). Face images
were ~2.5 degrees wide by ~4.5 degrees high.
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2.4. Visual Search Experiment

We used an interactive gaze-contingency paradigm to record visual search behavior
and performance. Each stimulus display contained one target face and seven distractor
faces. The target face displayed either an angry or a happy emotion, and the distractor
faces displayed the following emotions: calm, neutral, disgust, fear, sad, and surprise (one
emotion was randomly picked to be displayed twice for each trial).

The participants’ task was to find the target face, look at it, and press the spacebar
as fast as possible. Each trial commenced with a fixation cross in the center of the screen
for 1500 ms. After a gaze-contingent check that the participant was correctly fixating their
gaze, the stimulus display was presented. If no gaze fixation could be detected, a screen
appeared showing the eyes of the participant in relation to the quality of eye tracking and
the participant was instructed to adjust their position and restart the fixation cross with a
button press. After the trial, gaze-contingent feedback was provided immediately after the
participant’s button press by presenting a square around the face that was looked at when
the response button was pressed. This square was green when that face was indeed the
target face or red when it was a distractor face. If no response was given within 5 s after
stimulus display onset, the response was scored as incorrect. Three different search tasks
were presented to the participants: ‘Find the angry face’, ‘Find the happy face’, and ‘Find
the angry or happy face’. These three task conditions were presented in blocks of 32 trials.
The block order was pseudorandom and mirrored, that is, X-Y-Z-X-Y-Z-Z-Y-X-Z-Y-X, where
X, Y, and Z were assigned to the three task conditions in a counterbalanced fashion across
the participants. Consequently, each participant completed 384 trials with an even spread
of the three task conditions across the experiment. Each block started with a self-paced
on-screen explanation of the upcoming task condition, and the participants could take a
one-minute break in between blocks or proceed immediately if they wanted to. Three blocks
including four random trials for each condition preceded the experiment for practice. The
practice block order was randomized. To ensure an equal distribution of faces in relation to
the initial fixation cross, the stimulus display (a mid-screen rectangle of 28 x 22 degrees)
was divided into main quadrants, which again were divided into sub-quadrants, resulting
in 16 possible image positions. First, the target was assigned a sub-quadrant such that each
position was used equally often within a block. Next, the distractors were equally divided
over the other main quadrants and randomly assigned a sub-quadrant within each main
quadrant. All faces were positioned in the center of their assigned sub-quadrant with a
random jitter (x &= 1 degree, y & 0.23 degrees). Faces were drawn from a pool (see Stimuli)
that included 254 images for each emotion (angry, happy, calm, neutral, disgust, fear, sad,
and surprised) and gender (male, female). Faces for each emotion were randomly picked
(without replacement) with the restriction that the target gender was equally divided within
each block and gender was equally divided within each trial.

2.5. Procedure

The participants were invited to the lab, briefed about the experiment, and asked to
sign an informed consent form. Next, the eye-tracker was calibrated using the 9-point
calibration procedure from EET, immediately followed by instructions, practice trials, and
the visual search experiment.

2.6. Gaze Fixation Detection

We used a dispersion algorithm to identify gaze fixations in the gaze data. A gaze
data point was considered part of a potential gaze fixation when it was located within a
circle (vertical /horizontal radius of 2.5 degrees) of the average location of the preceding
gaze data points of that potential gaze fixation. A potential gaze fixation was considered
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a true gaze fixation when its duration exceeded 100 ms and discarded if that was not the
case. Eye blinks and invalid gaze data, as defined by the Tobii eye-tracker validity coding
system, were excluded from the gaze fixation algorithm.

2.7. Visual Search Analysis

Trials with incorrect responses as determined by gaze location were discarded (1213 tri-
als). Reaction time (RT) was defined as the time between the onset of stimulus display
presentation and the button press. RTs were subsequently divided into search times (STs)
and target identification times (TITs) using the eye-tracking data. STs were defined as
the time between the onset of stimulus display presentation and the start of the first gaze
fixation on the target face. TITs were defined as the time between the start of the first
gaze fixation on the target face and the button press. RTs below 100 ms or more than
2 standard deviations from the individuals’ mean were discarded (356 trials). Subsequently,
the same procedure was applied to STs (338 trials) and TITs (760 trials). Lastly, STs were
divided into distractor selection (DS, number of saccades needed to reach the target) and
distractor rejection time (DRT, mean dwell time on the distractor faces before the target
face is reached). For each trial, we also assessed whether or not the first fixation was on
the target (FFT). RTs, STs, TITs, DSs, DRTs, and FFTs were entered into 2 x 2 generalized
linear mixed models using a gamma distribution and an inverse link function (Poisson
distribution and log link function for DSs, and binomial distribution and logit link function
for FFTs), with the target emotion (happy, angry) and search task (find specific emotion,
find either emotion) as within-factors. Data were clustered by participant with a random
intercept across the participants.

2.8. Image Feature Extraction

Aiming to relate search behaviors to the image properties of the visual search distrac-
tors, all distractor face images were first translated into features describing their image
properties. Specifically, their spatial frequency information was extracted using the Protosc
toolbox (Stuit, 2021; Stuit et al., 2021b) with its default settings. For the spatial frequency
content, the Fourier magnitudes were down-sampled by taking the sum of all values cor-
responding to a particular spatial frequency and orientation range. We used 24 spatial
frequency bands and 16 orientation bands, resulting in 384 values describing the contrast
energy in each image. This not only reduced the total number of features from 20,000
to 384 unique features per image but also disrupted the influence of phase information,
meaning that features lost their spatial specificity. Note that, for the current set of images
used in the experiment, the cross-validation performance in classifying the images based
on their emotion label (angry vs. happy vs. neutral vs. calm vs. disgusted vs. fearful
vs. sad vs. surprised faces), from males to females and vice versa, averaged 48% correct
(maximum chance performance over two (male to female and female to male) 1000-iteration
permutation tests: 15.31%, p < 0.001). Note that the data were split into males and females
since male and female faces were never mixed when creating the current stimulus set, thus
avoiding any data leaks and overfitting due to having identical sub-parts of the faces in
both the train and test data.

2.9. Search Behavior Metrics for Modeling

To test whether search behavior is predictable based on basic image features, the
data from all participants and all trials were combined to quantify different search-related
behaviors for each individual image used in the experiment. Only distractor images that
were fixated on at least once were used in the analyses. Three metrics to quantify search
behaviors were used:
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First-eye-movement behavior: Number of first eye movements received divided by
the number of times the image was presented. Note that for this metric, it could also be
argued that all distractor images should be used, but the conclusions are not different when
using this approach.

Distractor selection behavior: number of fixations received (excluding the first eye
movement) divided by the number of times the image was presented.

Distractor decision behavior: average dwell time.

To allow for better generalization between tasks, all metrics were standardized using z-
scoring separately per task. This transformed the metrics into relative values indicating, for
example, whether a distractor was selected relatively often or relatively rarely independent
of the average number of distractors selected during a given trial. Note that comparisons
based on absolute values can be found in the visual search analyses.

2.10. Modeling Procedures—Within Conditions

Two modeling approaches were used in concert: a stepwise regression approach and a
decoding approach. Note that, for the decoding approach, continuous data were divided into
quartiles and labeled accordingly. Regression and decoding were combined since stepwise
regression is more sensitive to linear relationships, while a decoding approach, given the
division into quartiles, is more sensitive to classifying distractors as scoring relatively low or
high on a given metric. The procedure used 10 cross-validation iterations. In each iteration,
1/3 of the data were used as holdout data and the rest were used for training. First, a
stepwise regression model was trained using 384 Fourier features. On average, the procedure
selected 17 features from which to predict outcomes based on the features in the holdout
data. These predicted scores were then correlated (Spearman) with the true scores from the
holdout data. To estimate chance performance, the same correlation method was used but
the true scores were first shuffled, rendering them meaningless. The procedure was repeated
1000 times to generate a distribution of rho values based on chance. For the second approach,
features selected via a stepwise regression were used to train a linear discriminant analysis, a
classification method used to find a linear combination of features, to predict the quartile to
which a distractor image belongs on a given search behavior metric. As with the previous
approach, the trained model was applied to the holdout data to extract the cross-validated
performance, and a 10,000-sample chance distribution was estimated based on the shuffled
holdout data. Based on this chance distribution, test performances were converted to z-scores,
which were then converted to p-values.

2.11. Modeling Procedures—DBetween Conditions

For cross-fitting and cross-decoding, the averaged intercepts and averaged betas,
as estimated over 10 iterations using the stepwise regression procedure describe above,
were used to cross-validate scores between task conditions. Specifically, the betas and
intercepts estimated from one condition, for example, find angry, were averaged and used
in a multiple regression approach to predict scores based on the image features in another
condition, for example, find happy. These predicted scores were then correlated with
the observed data for that condition (e.g., find happy). Significant performance indicates
that behaviors have a similar relationship to the image features in both conditions. Next,
the features selected in more than 1 iteration of the stepwise regression procedure were
used to train a linear discriminant analysis to predict the quartile to which a distractor
image belongs on a given search behavior metric given the data from one condition (e.g.,
find angry) and applied to predict the quartile based on image features from another
condition (e.g., find happy). The predicted quartiles were tested against the true assigned
quartiles from the latter condition (e.g., find happy). For both the correlations and decoding
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performances, the 10,000-sample chance distribution was estimated based on the shuffled
data (in the current example, this would be the shuffled find happy data). As for the
fitting procedure described above, using this chance distribution, test performances were
converted to z-scores, which were then converted to p-values.

3. Results
3.1. Reaction Times

As can be seen in Table 1, the RTs show significant main effects for emotion and task
(p <0.001). As displayed in Figure 1A, these are due to faster reactions when the task is to
find a specific emotion compared to the find-both condition and faster reactions when the
target emotion is happy. The interaction of emotion and task is also significant (p = 0.002),
indicating that the emotion effect is stronger when the task is to find a specific emotion.
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Figure 1. Visual search behavioral results. (A) Reaction times. (B,C) Search times and target
identification times, respectively. (D-F) Percentage of trials where the first fixation was on the target,
distractor selection during search, and average dwell times on the distractors, respectively. Red
shows the results when the task is to find either emotion, and blue when the task is to find a specific
emotion. All values are back-transformed estimated marginal means and standard errors from the
associated generalized linear models. These data show clear happy over angry superiority in visual
search (A) which is due to the time needed to identify (foveal processing of) the target (C) and the
time needed to discard (foveal processing of) a distractor when searching for a single target (F).
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Table 1. Results from the statistical models predicting Reaction Times, Search Times, and Target
Identification Times.

Reaction Times Search Times Target Identification Times

Predictors Estimates CI p Estimates CI p Estimates CI p
(Intercept) 1.746 1.692-1.802  <0.001 2.601 2.478-2.730  <0.001 4.797 4.231-5.439  <0.001
TargetEmotion 0.962 0.957-0.967  <0.001 0.985 0.972-0.998  0.029 0.839 0.828-0.850  <0.001
SearchTask 1.026 1.021-1.031  <0.001 1.034 1.020-1.048  <0.001 1.099 1.085-1.113  <0.001
TargetEmotion x SearchTask 0.992 0.987-0.997  0.002 0.986 0.973-1.000  0.045 0.978 0.965-0.990  <0.001
Random Effects
o2 0.17 0.38 0.21
Too O-OOSubject O-Olsubject O-O3Subject
ICC 0.01 0.02 0.13
N (subjects) 29 29 29
Observations 9361 9023 8601
Marginal R?/Conditional R>  0.013/0.023 0.004/0.021 0.148/0.256

3.2. Search and Target Identification Times

When we divide the RTs into search times (STs) and target identification times (T1Ts),
we see (Table 1) that the STs show significant main effects for emotion (p = 0.029) and task
(p < 0.001), as well as a significant interaction (p = 0.045). As shown in Figure 1B, these
effects are due to faster reactions when the task is to find a specific emotion, but only when
the target emotion is happy. The TITs show a similar pattern to the RTs, with significant
main effects for emotion and task (ps < 0.001) due to faster reactions when the task is to
find a specific emotion and faster reactions when the target emotion is happy, as well as a
significant interaction (p < 0.001), indicating that the emotion effect is stronger when the
task is to find a specific emotion (see Figure 1C).

3.3. Dwell Times, First Fixations, and Number of Saccades During Search

When we divide the STs into the number of saccades on distractors prior to reaching
the target (DSs) and distraction rejection times (DSTs), we see (Table 2) that the DSTs show
a similar pattern to the STs. The DSTs show significant main effects for emotion and task,
as well as a significant interaction (ps < 0.001). As displayed in Figure 1F, these are due to
faster distractor rejections when the task is to find a specific emotion, but only when the
target emotion is happy. The FFTs and DSs are not significantly explained by the factors
emotion and task (all ps > 0.05, see Figure 1D,E).

Table 2. Results from the statistical models predicting Dwell Times, Number of Saccades During
Search and First Fixations on Target.

Average Dwell Times Number of Saccades

First Fixation on Target

Predictors Estimates CI 4 Inc1c11{e;;::SRate CI 4 Odds Ratios CI p
(Intercept) 54.253 44.531-66.098 <0.001 3.871 3.750-3.997 <0.001 0.202 0.188-0.217 <0.001
TargetEmotion 0.877 0.859-0.895 <0.001 1.006 0.995-1.017 0.323 0.994 0.938-1.054 0.852
SearchTask 1.165 1.141-1.189 <0.001 0.989 0.978-1.000 0.052 1.039 0.980-1.102 0.195
TargetEmotion x SearchTask 0.877 0.859-0.895 <0.001 0.998 0.987-1.009 0.673 1.022 0.964-1.083 0.47
Random Effects
o? 0.06 0.23 3.29
Too 0.04syject 0.01sybject 0.01subject
IcC 0.4 0.03 0
N (subjects) 29 29 29
Observations 7765 9361 9361
Marginal R?/Conditional R? 0.425/0.655 0.001/0.029 0.000/0.004

3.4. Reaction Time Summary

In sum, in the overall reaction times, we see a clear happy over angry superiority
as happy faces are found faster than angry faces. This is particularly the case when the
task is specifically to find the happy target face. Furthermore, this effect can be largely
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attributed to the time that is needed to identify the target. Nonetheless, in the search period
before that, we still see that happy faces are found faster, but this is only the case when the
task is to specifically find a happy target face. Crucially, we can attribute this effect to the
time that is needed to decide that a distractor is not the target, rather than being due to a
more efficient first fixation or scanning pattern. Thus, with respect to happy over angry
superiority in visual search, we can conclude that this is due to the faster identification of
happy target faces and the faster rejection of non-happy distractors.

3.5. Decoding Distractor-Related Behaviors

All results related to predicting search behaviors, including p-values, are shown in
Appendix A. All effects noted here refer to both rho values and decoding performance,
which are converted to z-scores based on permutation test performances to estimate
p-values. Predictions are considered significant if both the rho values and decoding per-
formance have a p-value < 0.001. The results show that the first eye movement during
search is not predictable via the feature content of the distractor images in any of the
conditions (Figure 2). Using both regression and classification approaches, the likelihood of
the selection of a distractor is predictable in both the find-happy and find-angry conditions
(Figure 2). However, these models are task-specific as selection during find-angry does
not predict selection during find-happy and vice versa (Figure 3). Selection during the
find-both condition is not predictable (Figures 2 and 3). Decision behaviors are predictable
for all task conditions, with higher performance for the find-angry condition compared to
the other conditions (Figure 2). Cross-decoding decision behaviors between the find-angry
and find-happy conditions is not possible (Figure 3). However, cross-decoding is possible
from the find-angry to the find-both condition and from the find-happy to the find-both
condition, as well as in the opposite direction (find-both to find-angry and find-both to
find-happy). Finally, we tested whether the models for selection cross-decode the decision
behaviors and vice versa for both the find-happy and find-angry conditions. The results
show significant fitting and decoding performances (all ps < 0.001).

A: Decoding I - B: Regression I

=-J -+ happy +=-F e+ happy
—F— both 035} —F— both

Fraction Correct / chance-level
Spearmann rho

FlgM Scle::(ion Dcc:sion FF:M Sele;tiun [)ec;sitvxl
Behavioral data type Behavioral data type

Figure 2. (A) shows average fraction correct decoding divided by average chance performance (chance
performance equals 1; y-axis) for the likelihood of a distractor receiving a first eye-movement (FEM),
being selected during search (Selection) and the fixation duration before continuing search (Decision;
x-axis). All decoding and regression fits are based on the Fourier content of the distractors. The data
are separated by task (dotted line: search for angry faces; dashed line: search for happy faces; solid
line: search for both happy and angry faces). Error-bars show standard error of the mean of 10-iteration
cross validation. (B) shows the average spearman r values for 10-iteration cross-validated stepwise
regression models. Both figures show that FEM and selection during the search-for-both condition is not
predictable, as based on both classification (A) and fitting (B). Selection during the find angry and happy
conditions is predictable above chance, as well as the decision time required in all conditions.
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Figure 3. Cross-decoding performances between tasks and search behaviors as average fraction
correct decoding divided by average chance performance (chance performance equals 1; y-axis).
Each bar indicates how well a model based on the data from one condition predicts behavior in
another condition. On the x-axis are the task and search behavior combinations: ‘S’ refers to selection
behaviors, ‘D’ refers to decision behaviors, ‘A’ refers to the find-angry condition, ‘H’ refers to the
find-happy condition, and ‘B’ refers to the find-both condition. The ‘2’ indicates the direction of
cross-decoding. For example, S:A2H means the model was trained on the selection behaviors of
the find-angry condition and applied to the prediction of the selection behaviors in the find-happy
condition. White stars indicate significance for both decoding and regression fits (see Appendix A).
Note that the models trained on find-happy do not predict find-angry data and vice versa. The
results show partial overlap between the models for find-both and the single-target conditions.
Cross-decoding for the find-both selection behaviors was not tested as these models did not result in
significant predictions within those conditions (Figure 2). Finally, both find-happy and find-angry
show significant cross-decoding between selection and decision behaviors in both directions.

4. Discussion

To understand emotional superiority effects during visual search, we compared search
behaviors under various conditions. We established a happy superiority effect in the
context of diverse distractors with many different emotions that, like the happy and angry
target faces, all featured an open mouth. The results for the reaction time differences show
that the overall happy superiority effect is due to the time required to identify distractors
and targets when searching for a single target. When searching for both happy and angry
simultaneously, we still see an overall emotional superiority effect for happy faces; however,
the distractor identification effect disappears and only a target identification effect remains.
The results further show that, for single-target search, the selection of distractors and
the durations of fixation on distractors are predictable based on their low-level visual
characteristics (spatial frequencies). Interestingly, neither selection nor fixation durations
in one emotion condition can predict behaviors for the other emotion condition. This
suggests that the participants, based on the given task, employ a search template that
uniquely contributes to attentional capture and perceptual decision-making processes.
Interestingly, these search templates generalize from distractor selection to decision and
vice versa, which shows that similar templates are used for attentional capture and decision-
making processes. For the dual-target search condition, only distractor fixation durations
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are predictable by their visual features, suggesting that attention-based search templates do
not play a role. Behaviors during single-target search cannot predict behaviors during dual-
target search, but single-target fixation durations do predict dual-target search fixations
and vice versa, suggesting that subjects employ search templates for both angry and happy
faces during the dual-search task. Taken together, our results are in line with guided search
(Wolfe, 1994) and thus with task-specific, but not general, biases in attention. In other
words, task-based search templates guide visual search for emotional faces, and happy
superiority effects arise not from attentional capture for any specific emotional expression,
but rather from perceptual decisions about the targets and distractors.

Our results show an emotional superiority effect that is directed towards happy
facial expressions. While consistent with numerous studies (Calvo & Nummenmaa, 2008;
Hodsoll et al., 2011; Juth et al., 2005), this effect is inconsistent with the large body of
literature showing angry superiority effects (Ceccarini & Caudek, 2013; Hansen & Hansen,
1988; Lobue, 2009; Lundqvist & Ohman, 2005). Our results suggest that the effect arises
from a difference in the time required to identify happy faces and angry faces, not a
difference in attention. Note that this fits well with previously reported advantages in
the identification of happy faces (Calder et al., 2000; Calvo, 2008; Palermo & Coltheart,
2004; Terburg et al., 2012; Tottenham et al., 2009), as well as results suggesting that the
effect of emotional content on saccades is limited (Stuit et al., 2021a; Webb et al., 2022).
So how does this fit with the body of research showing angry superiority effects? First,
previously suggested image confounds (Purcell et al., 1996; Purcell & Stewart, 2010) and
actor-specific superiority effects (Savage et al., 2013) may have played less of a role due to
the manipulation of the face images, where all were scaled to the same size, identities were
mixed, and non-facial information such as hair was cropped out of the images. Moreover,
our results add an additional explanation for angry superiority effects when using search
asymmetries between happy and angry target distractor combinations (Hansen & Hansen,
1988). Specifically, when distractors show happy expressions, and happy expressions are
identified faster than angry faces, the net effect is that trials using happy distractors are
completed faster than trials using angry distractors, even if the number of items investigated
is the same. Note that we also see this in our eye-tracking data (Figure 1F). Therefore,
a role for attentional biases is not required for emotional superiority effects in search
asymmetry designs, but eye-tracking methodology could be used to effectively tease them
apart. Consistent with this is that the models for predicting distractor selection based
on feature extraction are task-specific and thus not compatible with a constant, universal,
attentional bias throughout search.

Therefore, we argue that attentional biases towards either happy or angry faces do
not contribute to emotional superiority. Distractor selection is, however, predictable based
on spatial frequencies. Interestingly, these effects are task-specific and predict distractor
identification. This fits well with the idea that different search templates are used when
looking for a specific emotion, but also suggests that attentional capture does contribute
to search for emotional faces. The behavioral data, however, clearly show that, even if
attention might be a task-specific factor in search, this does not contribute to emotional
superiority in the present task. Specifically, while we observe a behavioral effect during
search (Figure 1B), this ‘search’ effect is not attributable to immediately locating the happy
facial expression (Figure 1D) or even the time taken to find the target (Figure 1E). Instead,
it can be explained by the duration of fixation on distractors. The data suggest that when
the target is a happy expression, it is easier to identify a distractor as ‘not the target’. With
this in mind, it is important to note that the design of our task features a wide and diverse
collection of distractors, which we chose by design to be able to use their features in our
feature extraction modeling approach. This relatively large number of features present in
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each stimulus display also introduces additional task complexity. It might therefore be the
case that, in our design, perceptual processing has gained the upper hand compared to
attentional capture. Indeed, when relying on perceptual processing, for instance, during
emotion recognition, happy faces are easier to process compared to angry faces (Calder
et al., 2000; Calvo, 2008; Palermo & Coltheart, 2004; Terburg et al., 2012; Tottenham et al.,
2009). In light of our observation that attentional processes do play a role during search, it
is therefore possible that these processes can contribute to emotional superiority in designs
that are less complex. Indeed, Ohman and colleagues put forward the argument that angry
superiority particularly comes into play in simple search designs with similar distractors
and/or the use of schematic faces (Ohman et al., 2012). Future studies could therefore
focus on the methodology to make these simpler designs suitable for feature extraction
algorithms as used in the present study in order to see whether attention-based search
templates can also contribute to emotional superiority.

Finally, the find-both condition of our experiment is an especially interesting case
regarding search templates. When looking at the distractor dwell times (i.e., distractor
rejection), this condition shows that happy superiority is search-task-specific as it does not
generalize to the find-both condition. Our feature extraction results furthermore suggest
that the participants employed their angry face template when trying to find either happy
or angry faces. Given that happy targets were identified faster, it might thus be the case
that the participants divided their resources to focus on the more difficult task and thus
effectively searched for angry faces in the find-both condition. Furthermore, while our
template analyses focus on Fourier contrasts, these contrasts are affected by the structural
components of the images. Given the task-specific nature of the templates, the search
behaviors are likely based on the expected structural properties of happy and angry faces.

5. Conclusions

In conclusion, here, we show that guided search underlies happy superiority in visual
search. When looking for a target emotion, participants employ specific spatial frequency-
based search templates that drive attentional as well as perceptual elements of visual search,
but only the perceptual elements contribute to happy superiority.
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Appendix A

All cross-validated rho values and fractions correct.
The criterion for significance was set to 0.001 for both fitting and decoding.
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Within-Condition Fitting and Decoding: First Eye Movement

Find-Angry
Fit rho: 0.0027352 (z = 0.068518, p = 0.94537)
Decoding fraction correct: 0.46613 (z = 0.1435, p = 0.88589)
Find-Happy
Fit rho: 0.051417 (z = 1.5772, p = 0.11475)
Decoding fraction correct: 0.44251 (z = 0.42314, p = 0.6722)
Find-Both

Fit rho: 0.0091851 (z = 0.2866, p = 0.77442)

Decoding fraction correct: 0.46953 (z = —0.0086603, p = 0.99309)

Within-Condition Fitting and Decoding: Selection

Find-Angry
Fitrho: 0.22608 (z = 7.0688, p = 1.5632 x 1012)
Decoding fraction correct: 0.31173 (z =4.2729, p = 1.9291 x 107°)
Find-Happy
Fitrho: 0.23021 (z = 7.2482, p = 4.2233 x 101%)
Decoding fraction correct: 0.33047 (z = 4.4754, p = 7.6251 x 107°)
Find-Both

Fit rho: 0.077671 (z = 2.4347, p = 0.014904)

Decoding fraction correct: 0.27382 (z = 1.329, p = 0.18386)

Within-Condition Fitting and Decoding: Decision

Find-Angry
Fitrho: 0.27531 (z = 8.6684, p = 0)
Decoding fraction correct: 0.33337 (z = 6.0369, p = 1.5715 x 10~)
Find-Happy
Fitrho: 0.1319 (z=4.1174, p = 3.8325 x 10~°)
Decoding fraction correct: 0.29879 (z = 3.4874, p = 0.00048769)
Find-Both

Fit tho: 0.1707 (z = 5.3486, p = 8.8661 x 10~%)

Decoding fraction correct: 0.29949 (z = 3.4923, p = 0.00047892)

Between-Condition Fitting and Decoding: Selection

Selection Find-Angry — Selection Find-Happy

Fit rho: 0.046484 (z = 2.5295, p = 0.011423)
[note: negative z] Decoding fraction correct: 0.22346 (z = —4.4838, p =7.3315 x 10~°)

Selection Find-Happy — Selection Find-Angry

Fitrho: —0.013719 (z = —0.7361, p = 0.46167)
[note: negative z] Decoding fraction correct: 0.22181 (z = —3.3866, p = 0.00070756)

Selection Find-Angry — Selection Find-Both

Fitrho: —0.036297 (z = —1.9738, p = 0.048399)
Decoding fraction correct: 0.273 (z = 2.7443, p = 0.0060644)

Selection Find-Happy — Selection Find-Both

Fit rho: 0.092746 (z =5.0317, p = 4.8611 x 10’7)
Decoding fraction correct: 0.25253 (z = —0.42681, p = 0.66952)

Between-Condition Fitting and Decoding: Decision

Decision Find-Angry — Decision Find-Happy

Fit rho: 0.039962 (z = 2.1824, p = 0.029077)
Decoding fraction correct: 0.27536 (z = 2.7857, p = 0.0053407)

Decision Find-Happy — Decision Find-Angry

Fit rho: 0.028553 (z = 1.5301, p = 0.12599)
Decoding fraction correct: 0.25219 (z = 1.0795, p = 0.28036)

Decision Find-Angry — Decision Find-Both

Fit rho: 0.23671 (z = 13.005, p = 0)
Decoding fraction correct: 0.32524 (z =9.2252, p = 0)

Decision Find-Happy — Decision Find-Both

Fit rho: 0.065954 (z = 3.5779, p = 0.00034637)
Decoding fraction correct: 0.27313 (z = 3.4957, p = 0.00047277)

Decision Find-Both — Decision Find-Angry

Fit rho: 0.13893 (z = 7.5258, p = 5.2403 x 10-14)
Decoding fraction correct: 0.29731 (z = 6.2454, p = 4.2262 x 10~ 10)

Decision Find-Both — Decision Find-Happy

Fit rho: 0.073536 (z = 3.9782, p = 6.9447 x 10~°)
Decoding fraction correct: 0.29594 (z = 5.5951, p = 2.2048 x 10~8)
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Between-Task Fitting and Decoding: Selection and Decision

Selection Find-Angry — Decision Find-Angry

Fit tho: 0.15297 (z = 8.2545, p = 2.2204 x 10~ %)
Decoding fraction correct: 0.32457 (z = 6.7606, p = 1.3742 x 10~1)

Selection Find-Happy — Decision Find-Happy

Fit tho: 0.14187 (z = 7.7525, p = 9.1038 x 10~1°)
Decoding fraction correct: 0.30587 (z = 4.8624, p = 1.16 x 10~°)

Decision Find-Angry — Selection Find-Angry

Fit rho: 0.21413 (z =11.5329, p = 0)
Decoding fraction correct: 0.27536 (z =7.7772, p = 7.3275 X 10-15)

Decision Find-Happy — Selection Find-Happy

Fitrho: 0.17371 (z=9.4849, p = 0)
Decoding fraction correct: 0.26469 (z = 4.4093, p = 1.0368 x 107°)
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