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Abstract: The year-to-year variability of precipitation has significant consequences for water man-
agement and forest health. “Whiplash” describes an extreme mode of this variability in which
hydroclimate switches abruptly between wet and dry conditions. In this study, a pool of total-ring-
width indices from five conifer species (Abies magnifica, Juniperus grandis, Pinus ponderosa, Pinus jeffreyi,
and Tsuga mertensiana) in the Sierra Nevada is used to develop reconstructions of water-year precipita-
tion using stepwise linear regression on lagged chronologies, and the reconstructions are analyzed for
their ability to track whiplash events. A nonparametric approach is introduced to statistically classify
positive and negative events, and the success of matching observed events with the reconstructions
is evaluated using a hypergeometric test. Results suggest that reconstructions can effectively track
whiplash events, but that tracking ability differs among species and sites. Although negative (dry-to-
wet) events (1921–1989) are generally tracked more consistently than positive events, Tsuga stands
out for strong tracking of positive events. Tracking ability shows no clear relationship to variance
explained by reconstructions, suggesting that efforts to extend whiplash records with tree-ring data
should consider optimizing reconstruction models for the whiplash signal.

Keywords: tree rings; Sierra Nevada; climate variability; reconstruction; dendroclimatology

1. Introduction

The year-to-year variability of precipitation and temperature has significant conse-
quences for water management decision-making. “Whiplash” is a term that describes this
variability at its most severe, referring to consecutive years in which the hydroclimate
switches between extremes. These extreme transitions can have wide-ranging implications
for water and watershed management. Positive whiplash events, or those characterized by
a particularly dry year followed by a wet year, can result in landslides and flooding, while
negative whiplash events, where the two-year sequence is reversed, can lead to catastrophic
wildfires [1–3].

Dramatic climate variability is an integral characteristic of the Truckee-Carson River
Basin and other Sierra Nevada watersheds, where annual and seasonal fluctuations are
driven by large-scale oceanic and atmospheric patterns (e.g., ENSO), resulting in hot, dry
summers and cold, wet winters [3–6]. These watersheds overwhelmingly rely on cool-
season precipitation for their water supply, much of which falls as snow in the winter
months. The snowpack acts as a natural storage reservoir for water, which is released
throughout the spring and summer to support flows of rivers and recharge surface reser-
voirs and groundwater reserves. Cities, including the combined Reno-Sparks urban and
suburban areas, rely on water allocations from the Truckee and Carson Rivers for a complete
range of interests encompassing recreation, industry, and municipal use [7].
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Climate change forces may further amplify water resource pressures in the Sierra
Nevada. Regional projections under future greenhouse-gas emission scenarios indicate
decreasing water availability despite modestly increasing mean annual precipitation [8–10].
Rising temperatures contribute to a reduction in water storage capacity and increase the
flood risk due to rapid spring snowmelt and rain-on-snow events [11–14]. Streamflow
projections for the central Sierra Nevada also include longer periods of low flows and
the sensitivity of streamflow to changes in the timing of runoff [15]. Recent studies have
shown already increasing water-cycle extremes driven by ENSO [16], and the interannual
precipitation regime has become increasingly characterized by high-intensity wet and dry
periods since the mid-20th century [3,11,17,18].

Tree rings in semi-arid environments provide proxy records of hydroclimate as their
annual growth is tied directly to climate limitations such as water availability [6]. Models
derived from tree rings can extend climate records centuries prior to the start of instrumental
measurements. Resulting reconstructions have an annual resolution and can explain
significant climate variance, providing long-term context for water resource expectations
and management decision-making [19]. In the Sierra Nevada, tree rings have been used to
model hydroclimate variables, including Snow Water Equivalent [20,21], streamflow [6,22],
temperature [23], and precipitation [23–25].

Tree rings have long been used to place recent droughts and wet periods in perspec-
tive, but it is possible that whiplash events are obscured in reconstructions by the prior
conditioning of the trees. Whiplash events can be masked by persistence in a tree’s total
ring width as a result of biological carryover processes that support or suppress growth
in subsequent years [26,27]. For example, the legacy effects of drought can significantly
impact total ring width for 1–4 years following a drought event [17,28,29]. The recovery
can be complicated by factors such as site location [30], drought timing [31], and forestry
practices [32]. Further, drought recovery and resilience can differ between species [33,34].
As such, there is value in directly studying the ability of reconstructions to track whiplash
events, which represent the highest-frequency component of the generalized climate signal,
and in understanding possible differences in whiplash-tracking ability among tree species
and among sites within species.

Our objective is to determine if tree ring reconstructions of regional precipitation in
the Truckee-Carson River Basin by various conifer species identify whiplash events, which
we define as two-year periods with contrasting exceptional annual precipitation departures
from the median. A negative event transitions from a water year of high accumulated
precipitation to low, and in a positive event the pattern is reversed. We derive tree-ring
reconstructions of regional precipitation and develop a novel methodology to determine
and rank whiplash events in time series records, and then compare time series to a control
(here, tree-ring reconstructions to a precipitation record) to test the null hypothesis that the
number of matches occurred by chance. Through this process, we address two fundamental
research questions: (A) Do tree-ring reconstructions of annual precipitation in the Truckee-
Carson River Basin identify whiplash events in the observed precipitation record? and (B)
Does the ability to identify events depend on tree species?

2. Materials and Methods
2.1. Climate Data

PRISM (Parameter-elevation Regressions on Independent Slopes Model) total monthly
precipitation data were used to calculate water-year precipitation in the Truckee-Carson
River Basin headwater region. The public-domain 4-km PRISM precipitation record [35]
across the western United States correlates highly with other widely used instrumental
climate datasets [36], and PRISM precipitation is particularly well suited for exploring
spatial variability in mountainous regions due to the explicit incorporation of elevation
in model development [35]. PRISM draws from a wide network of climate stations and
provides records back to 1895. Climatic data used as input for the PRISM model do
not undergo any time-discontinuity screening, either for urban heat island effects, for
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changes in station location or instrumentation, or for the potential impact of adding new
datasets [37]. To allow for the sporadic nature of data availability in the instrumental record
during the early part of the 20th century, for this analysis we chose to limit precipitation
records to a start year of 1920.

The PRISM time series selected as the primary variable for reconstruction is water-year
(Oct–Sep) total precipitation averaged over coordinate points corresponding to 12 snow-
monitoring locations throughout the Truckee-Carson River Basin (Figure 1). This represents
a regional precipitation series. From this point forward, this 12-station mean precipitation
series will be referred to as P12. The 12 coordinate points sample the varied topography
of the basins and cover the north-south extent of the basin’s headwaters. While the P12
coordinate locations are at different elevations in the Tahoe sub-basin, annual precipitation
at the sites is highly correlated, and differences are primarily in magnitude (Figure S1).
Furthermore, P12 is highly correlated with other datasets of interest (Figure S2) that relate
to Truckee-Carson River Basin hydroclimate, including natural flow series of the American,
Carson, and Truckee Rivers and the Northern Sierra 8-Station Precipitation Index, all
of which are important to water resources assessment and are available directly from
the California Data Exchange Center (CDEC; accessed on 12 February 2021). P12 is also
significantly correlated with the April 1 Snow Water Equivalent (SWE) series developed
from snow-course data at the same locations by Biondi and Meko (2019). Moreover,
whiplash events in P12 broadly match events in the other hydrologic series mentioned
above (Figure S3). Methods for deriving those events will be addressed in Section 2.3.
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Figure 1. Regional map showing chronology sites color-coded by species and PRISM grid point
locations used for regional water-year precipitation interpolation.

2.2. Tree-Ring Data

Five conifer species, Abies magnifica (ABMA), Juniperus grandis (JUGR), Pinus ponderosa
(PIPO), Pinus jeffreyi (PIJE), and Tsuga mertensiana (TSME), were selected for this analysis
(Figure 1, Table 1). All species can be found at elevations where snowfall accumulates. Data
files of measured total-ring-width indices (TWI) downloaded from the International Tree-
Ring Data Bank (ITRDB, https://www.ncei.noaa.gov/products/paleoclimatology/tree-ring,
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accessed on 15 November 2021) were supplemented by the authors’ contributions (Table 1).
These chronologies meet specific requirements for spatial representation, time coverage, and
sample depth. The geographical domain of the tree-ring network was limited to the northern-
to-mid latitudes of the Sierra Nevada. A correlation map derived from the North American
Drought Atlas (NADA; [38]) was used to establish a search region for tree-ring chronologies
consistent with the climate footprint of the Truckee-Carson River Basin. The summer average
(June–July–August) of the instrumentally derived Palmer Drought Severity Index (PDSI)
in the headwaters of the Truckee-Carson River Basin (39.05◦ N, 120.15◦ W) was correlated
spatially with PDSI at 0.5◦ latitude/longitude grid points, 1920–2000, to identify the climate
footprint (Figure S4), which has north–south boundaries at 40.75◦ N and 37.25◦ N. Selected
tree-ring sites were restricted to elevations above 1500 m, which marks the approximate
lowest elevation of snow-course measurements collected annually by the CDEC to monitor
snowpack conditions for water management. A total of 65 ITRDB chronologies were found
in the geographic domain, and of those, we selected 28 chronologies with an ending year of
1990 or later. Each of the five target tree species in this network is represented by at least three
site chronologies.

Table 1. Complete pool of predictor chronologies used in various tree-ring reconstructions of P12.

Site Code Species Code Lat. Lon. Elev. (m) Source Start Year End Year

CA574 ABMA 37.77 −119.77 2180 ITRDB 1880 1991
CA589 ABMA 37.78 −119.73 2075 ITRDB 1880 1991
CA691 ABMA 39.42 −120.31 2478 ITRDB 1540 2015
CA696 ABMA 39.28 −120.53 2008 ITRDB 1799 2014
CA630 JUGR 38.42 −120 2591 ITRDB −420 1999
CA631 JUGR 39.52 −120.55 1921 ITRDB 930 1999
CA632 JUGR 39.33 −120.12 2268 ITRDB 1010 1999
CA698 JUGR 39.15 −120.21 1809 ITRDB 1600 2014
DGS JUGR 38.35 −119.38 2370 Biondi −300 2000
IVJ JUGR 39.28 −119.96 2563 Taylor 1142 2000
KAIM JUGR 37.28 −119.08 2730 Meko 1140 2011
CA677 PIJE 39.34 −120.17 1688 ITRDB 1415 2010
CA678 PIJE 37.57 −119.09 2499 ITRDB 1304 2010
DLB PIJE 38.99 −120.11 2004 Taylor 1306 2000
IVP PIJE 39.27 −119.96 2332 Taylor 1305 2000
LEM PIJE 39.34 −120.015 2008 Biondi 1542 2020
LSF PIJE 38.48 −119.59 2416 Biondi 1474 2020
LTV PIJE 39.15 −119.52 2006 Biondi 1418 2020
SSP PIJE 39.08 −119.94 2132 Taylor 1190 1999
CA578 PIPO 37.8 −119.87 1722 ITRDB 1880 1990
CA583 PIPO 37.75 −119.77 1803 ITRDB 1880 1990
CA694 PIPO 39.2988 −120.1915 1975 ITRDB 1829 2014
CA695 PIPO 39.258 −120.6857 1537 ITRDB 1838 2014
CPRMTR PIPO 39.27 −119.57 2507 Biondi 1474 2020
NOD PIPO 37.46 −119.33 1539 Biondi 1539 2002
CA567 TSME 37.83 −119.42 2960 ITRDB 1880 1990
CA692 TSME 39.42 −120.31 2478 ITRDB 1615 2015
GPH TSME 39.04 −119.88 2728 Taylor 1349 2000

Ring widths were standardized to site chronologies by the ratio method, using a
50-year cubic smoothing spline to remove growth/age trends, and a bi-weight mean to
average core indices by site and species [39]. Before standardization, ring-width series
were truncated to begin no earlier than 1800, and any series without data in 1950 was
excluded. This last screening step ensures that all core indices overlap the calibration
period of reconstruction models by at least 30 years. All resulting chronologies begin no
later than 1880 CE.
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2.3. Climate Reconstruction

Chronologies were transformed into estimates of precipitation by distributed-lag
forward stepwise regression models [40,41]. Single-site models (28 models) were developed
by individually regressing P12 on each chronology lagged t − 2 to t + 2 years from the
year of P12. Species-specific models were developed by including a screened subset of all
chronologies, with lags, of each species in the pool of potential predictors. An additional
full-network model was developed that included a screened subset of all 28 chronologies
and their lags in the pool. Screening consisted of including in the pool of potential predictors
only the N/5 tree-ring variables most highly correlated with P12, where N is the length
of the calibration period for regression. The stepwise regression was guided by a cross-
validation stopping rule [42], such that the entry of predictors was terminated if the next
step failed to result in an increase in reconstruction skill as measured by a cross-validation
reduction of error (RE) statistic [43]. Following Meko [44], we use leave-9-out cross-
validation rather than leave-1-out cross-validation to ensure that, in the presence of lags,
cross-validation predictions do not use any of the same tree-ring data used to calibrate the
reconstruction model.

2.4. Analysis of Whiplash Events

Whiplash events, ranked by severity, were defined separately for P12 and its various
reconstructions (Figure S5) as instances of most-severe opposite-sign departures from
the median precipitation in two consecutive water years. A non-parametric approach,
described below, was used to determine the most extreme positive (low to high value years)
and negative (high to low) whiplash events in each time series. For all analyses, we used a
common analysis period, 1921–1989 (Figure 2).
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Figure 2. Time series of P12 precipitation data, 1921–1989, which is the calibration period for all
reconstructions. Whiplash events are identified in the second year of the two-year whiplash event
by positive (blue) and negative (red) triangles and ranked (annotated number) by the size of the
precipitation anomaly in the two years, as described in the text. For example, 1982 and 1987 are the
second years of the top-ranking positive and negative events, respectively.

An algorithm we call “collapsing quantiles” was developed for identifying whiplash
events in a time series, x. After exploratory analysis, we settled on a goal of six positive
and six negative events in the common period. The time series of length N is first sorted
from smallest (rank 1) to largest (rank N). The most severe possible thresholds are set
midway between ranks 1 and 2 (dry) and between ranks N − 1 and N (wet). Any two-
year sequence in x with both members outside those thresholds, one member wet and
one member dry, is defined as a whiplash event, either positive (dry-to-wet) or negative
(wet-to-dry). The thresholds are then relaxed by collapsing them toward the median by
one ranked value. This process is repeated until six positive and six negative events are
found in the analysis period. As events are identified, they are assigned a severity ranking
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in order of identification, such that rank 1 corresponds to the first event, satisfying the most
extreme thresholds, and rank 6 corresponds to the 6th event. We repeated this process
independently for each time series. Accordingly, the thresholds for inclusion to reach the
target of six events vary among series, and the thresholds for positive and negative events
vary for any given time series. The number of events in a series may exceed six because the
last step of collapsing quantiles might identify more than one new event.

The statistical significance of the match of whiplash events in each reconstructed series
with the events in P12 was assessed by a hypergeometric test that has been applied in past
studies to examine relationships in climatic and hydrologic variables [5,40,45]. Assume a
sample (e.g., P12) of length Ns (e.g., 69 years, 1921–1989) with M events (e.g., M = 6 positive
whiplash events). The hypergeometric distribution gives the probability that k random draws,
without replacement, from the sample will result in m-or-more hits, or matches of events,
by chance alone. In our application, we treat the events in the reconstructed series as the k
“attempts.” For the reconstructions, k = 6 or k = 7. Given the constant settings of Ns = 69 years
and M = 6 P12 events, any number of matches m ≥ 2 is statistically significant at α = 0.05.

Even in a highly accurate reconstruction (e.g., regression R2 > 0.60), there is no guar-
antee that whiplash will be tracked perfectly because R2 reflects the full spectrum of the
reconstructed variance and whiplash events are just the highest-frequency portion of the
variance. As part of our analysis, we use scatterplots and linear regression to assess the
relationship between the variance explained by the reconstruction and the accuracy of
tracking whiplash events. Finally, we examine the plots of monthly precipitation in years of
whiplash events in P12 for possible association and the accuracy of whiplash event-tracking
with an anomalous monthly distribution of precipitation.

3. Results

Results on the tracking of whiplash events are presented in Section 3.1 for species-
specific and full-network reconstructions and in Section 3.2 for single-site reconstructions.
The emphasis is on evaluating the tracking ability and its relationship to overall reconstruc-
tion accuracy. For the species-specific and full-network reconstructions only, we explore
the possible dependence of tracking ability on the anomalous monthly distribution of
precipitation in whiplash event–years.

3.1. Species-Specific and Full-Network Reconstructions

The regression models for the full-network and species-specific reconstructions all
have significant (p < 1 × 10−5) F levels and include a lag on at least one chronology (Table 2).
All models validate strongly, as reflected in the high cross-validation RE. The percentage of
variance of P12 explained for the 1921–1989 calibration period is 62% for the full-network
model and ranges from 32% to 54% for models restricted to the use of chronologies from a
single species.

The 6 positive and 6 negative whiplash events in P12 during the global common period
of 1921–1989 all coincide with events in at least one of the six reconstructions generated by
the full-network or species-specific reconstruction models (Figure 3, Table 2). No single
P12 event is tracked by every reconstruction, either in the negative or positive event series.
Some events in P12 are more consistently tracked than others by the reconstructions. For
example, the positive P12 event in 1977–1978 is tracked by five reconstructions, while the
negative events in 1944 and 1981 are tracked by only one reconstruction. Tracking ability is
imperfectly related to the rank of the P12 event. The highest-ranked positive and negative
P12 events are not the most closely tracked. Instead, the second-ranked positive and third-
ranked negative events in P12 have the highest number of matches with events in the five
species-specific reconstructions. Event agreement among the reconstructions themselves is
inconsistent. For example, three TSME events in the late 1920s are not classified as events
by any of the other species-specific reconstructions. Moreover, no two species consistently
classify the same years as events.
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Table 2. Summary statistics 1 of species-specific reconstructions and from full-network (ALL) recon-
struction of P12.

Recon Chronologies R2 R2adj F REcv RSME

ALL DGS CA574 CA567P1 0.613 0.595 34.327 0.583 227.276

ABMA CA696P1 CA691P1 CA574P1 CA574 CA589P1
CA696 0.430 0.375 7.800 0.384 276.220

JUGR DGS KAIM IVJN2 CA630 0.540 0.515 21.421 0.498 253.836
PIJE CA677 CA678 LSFP1 LEM LSF 0.486 0.450 13.622 0.426 271.409
PIPO CA578 CA694P1 0.321 0.301 15.634 0.247 305.411
TSME CA692P1 CA567P1 GPH GPHP2 CA692N2 0.463 0.420 10.855 0.409 270.588

1 “Chronologies” refers to the tree-ring chronology site code (see Table 1) and lag (e.g., P1 is t + 1) of the
chronology from the year of the predictand in the reconstruction model. No “P” or “N” after the site code means
the chronology in the model is unlagged from the predictand. The calibration statistics listed are the regression
R-squared, adjusted R-squared, and overall-F. All listed F are significant, with p-values less than 0.00001. The
validation statistics (from cross-validation) listed are the reduction-of-error statistics and the root-mean-square
error of validation.
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Results for the hypergeometric test indicate that, with a few exceptions, the number 
of matches of P12 events by events in the reconstructions is greater than expected by 
chance (Figure 4, Table 3). p-values for the full-network and most species-specific recon-
structions fall between 0.001 and 0.0001. The JUGR reconstruction for negative events 
stands out for the strongest tracking. Two reconstructions have insignificant tracking of 
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Figure 3. Whiplash events in observed regional precipitation (P12) and in species-specific and full-
network (All) reconstructions, 1921–1989. Bars are plotted at the second year of the event. Positive
events are above the x axis, and negative events below. Numbers above and below bars are ranks
of positive and negative events in observed P12 as defined in text. The asterisk indicates that the
annotated ranks apply to P12, and so ranks appear only when P12 is one of the stacked bars.

Results for the hypergeometric test indicate that, with a few exceptions, the number of
matches of P12 events by events in the reconstructions is greater than expected by chance
(Figure 4, Table 3). p-values for the full-network and most species-specific reconstructions
fall between 0.001 and 0.0001. The JUGR reconstruction for negative events stands out for
the strongest tracking. Two reconstructions have insignificant tracking of P12 whiplash
events: PIJE for negative events and ABMA for positive events. The scatter of points for
positive and negative events (Figure 4) does not support a relationship between tracking
ability and R2 of the reconstruction model, in that the slope of a straight line (not shown) fit
to the points is not significantly different from zero for either positive or negative events.
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The annual high precipitation in years 1956, 1965, and 1986 was driven by single monthly 
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fed the overall high annual value. On average, positive events tended to include particu-
larly suppressed dry season precipitation in the first year relative to their second year and 
high precipitation in December and January of the second year (Figure S6). In negative 
event averages, the dry season pattern was reversed, and February and December first-

Figure 4. Significance of tracking of whiplash events in P12 by reconstructions as a function of
variance explained by reconstruction model. Significance estimated by hypergeometric analysis for
positive (left) and negative (right) events. The y-axis is the p-value (log scale) for rejection of the null
hypothesis that a number of matches or greater could occur by chance. Colors code species-specific
and full-network (All) models.

Table 3. Significance of tracking of positive (POS) and negative (NEG) whiplash events in P12 by
species-specific and full-network reconstructions as estimated by the hypergeometric test. Sample
size (Ns = 69) and maximum possible event matches (M = 6) are the same for all reconstructions.
The last two columns list the probability, by chance alone, of m-or-more successes (events identified)
given k draws from the sample.

Name m (POS) m (NEG) k (POS) k (NEG) p-Val (POS) p-Val (NEG)

ALL 3 3 7 6 <0.001 <0.001
ABMA 1 2 6 7 0.0814 0.0116
JUGR 3 4 7 6 <0.001 <0.001
PIJE 3 1 7 6 <0.001 0.0814
PIPO 3 3 7 6 <0.001 <0.001
TSME 3 3 6 6 <0.001 <0.001

The distribution of monthly precipitation totals in the 24 months comprising P12 event
years varies greatly from one event to another (Figure 5). Monthly precipitation is logically
expected to drop from the first to the second year of a negative event and vice versa, but
these plots emphasize the difference in the monthly footprint of precipitation in individual
events. In the dry water years of all events, monthly precipitation still exceeds the long-
term mean in at least one month, such as in November of 1964 and 1966. The annual high
precipitation in years 1956, 1965, and 1986 was driven by single monthly values, while in
1958, 1978, and 1982, more moderate monthly cumulative precipitation fed the overall high
annual value. On average, positive events tended to include particularly suppressed dry
season precipitation in the first year relative to their second year and high precipitation
in December and January of the second year (Figure S6). In negative event averages, the
dry season pattern was reversed, and February and December first-year precipitation was
particularly suppressed. The pattern of monthly precipitation in the wet season does not
appear to be related to better or worse tracking of the P12 events by the reconstructions
(Figure 5). However, negative event tracking was more successful for events in which the
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dry-season precipitation dropped particularly below the long-term average in the second
year, as was the case in 1987 and 1966.
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Figure 5. Monthly P12 precipitation in years of whiplash events in P12. (A) Positive events. (B) Neg-
ative events. Events are ordered by severity ranking (number at upper right). Background shading
shows long-term mean monthly precipitation, which does not vary among frames. The colored dots
indicate species-specific reconstructions with events in same years.

3.2. Single-Site Reconstructions

The single-site regression models reveal a highly variable signal for P12 among species
and among chronologies of the same species (Table S2). Seven of the 28 models are
insignificant by the criterion of regression pF > 0.05, where pF is the p-value of the overall
F of regression. The significant models explain from 7% to 42% of the variance over the
1921–1989 calibration period, and all validate successfully (RE > 0). A total of 14 of the
21 significant models include lagged predictors. The within-species variability of the signal
for P12 is highlighted by juniper (JUGR), which has chronologies explaining the most (42%;
chronology DGS) and least (2%; chronology CA698) variance of P12 over 1921–1989. The
DGS model achieves its high explained variance without lags—in other words, with a
contemporaneous relationship between the tree-ring index and P12.

Matching of whiplash events in P12 varies among single-site reconstructions for
the five tree species, but multiple chronologies of a single species sometimes succeed in
identifying particular P12 events missed by other species (Figure 6, Table S2). Years of
particular interest have been labeled A–F in Figure 6. The highest-ranking positive P12
whiplash event (A) is tracked by fewer than 50% of sites across all species. The second-
highest ranking positive P12 whiplash event (B) is tracked by at least 50% of sites by
species, except for JUGR and PIJE. The highest-ranking negative P12 whiplash event (C) is
tracked by more than 50% of sites for PIJE and PIPO and by less than 50% of sites for other
species. The second-highest ranking negative P12 whiplash event (D) is tracked by less
than 50% of sites by all species. Three consecutive whiplash years of middling ranking
(E) are tracked by most TSME sites and by fewer than 50% of sites of other species. The
sequence 1924–1925 stands out as a false positive, identified as a positive event by several
species but not classified as an event by P12 (F). The year 1924 had the second-lowest
annual precipitation in the P12 record over the calibration period, but P12 precipitation was
near the median in 1925. However, 1924–1925 was identified as positive whiplash by at
least 50% of JUGR, PIJE, and PIPO sites. The tree rings in 1925 appear to have been picking
up a signal for wetness in 1925, not well represented by P12 but present in other hydrologic
time series we investigated (Figure S3).
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Figure 6. Whiplash events in observed P12 and in site-specific reconstructions grouped by tree
species, 1921–1989. Plotting convention as in Figure 3. Numbers above and below bars are ranks of
positive and negative P12 events as defined in text. Color codes identify the chronologies of the five
species (see Table 1). Labeled years (A–F) are examined in more detail in Section 3.2.

Single-site reconstructions for all species except TSME track negative P12 whiplash
events better than positive events (Figure 7, Table S3). Few single-site reconstructions
surpass the event-tracking ability reported previously (see Figure 4) for species-specific
reconstructions. Notable exceptions are the significant tracking of positive events by all
three TSME sites and of negative events by ABMA. All species show some variation
among sites in their tracking of P12 whiplash events. Positive P12 whiplash events are
poorly tracked by single-site reconstructions for all species except TSME; for other species,
matching of P12 events is no more accurate than expected by chance. On the other hand,
negative P12 whiplash events are well tracked by the reconstructions. More than 50% of
the PIJE reconstructions have significant tracking at the 95% confidence level, and for other
species, more than 50% of reconstructions have significant tracking at the 99% level.
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Figure 7. The significance of tracking of P12 whiplash events by single-site reconstructions. The
y-axis is the p-value (log scale) representing the probability of obtaining the observed number of
matches or greater by chance, according to the hypergeometric test. The species are color-coded. Each
box plot summarizes the distribution of p-values for tracking chronologies of that species, and the
dots, offset horizontally for clarity, give the p-values for individual chronologies. The median and
middle quartile positive JUGR p-values are the same, so the box does not render.

The accuracy of tracking P12 whiplash events by all single-site reconstructions when
assessed together is not related to R2 of the reconstruction models, but there is some positive
relationship for positive events (Figure 8) for species TSME, PIPO, and PIJE. Relationships
for the other two species for positive events and, for all species for negative events, are not
significant.
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4. Discussion

Results suggest that tree-ring reconstructions of annual precipitation from individual
and multiple tree species can identify whiplash events in the observed precipitation record
of the Truckee-Carson River Basin and that the ability to identify events differs among
tree species. Single-site reconstructions for all species track negative events significantly
at over 50% of sites, while only those for TSME track positive events with a high rate of
success. Tree-ring studies with drought-sensitive chronologies have generally shown a
more consistent (tree-to-tree and site-to-site) growth response to dry years than to wet
years [26]. However, this asymmetry alone cannot explain the better recording of negative
whiplash events than positive whiplash events, because a good wet-year response as well
as drought sensitivity are required for accurate tracking of negative events. The distinction
lies in drought recovery. A strong positive-event response suggests drought sensitivity
in the first year of the positive whiplash event, coupled with a relatively low drought
legacy effect. This combination is unusual, as low drought resilience tends to co-occur
with poor recovery [33]. We also note that the lag-structure of the reconstruction model
can be critical to identifying positive whiplash events because a very wet year driven by
cool-season precipitation in the Sierra Nevada can have a detrimental impact on the length
of the growing season in the current year [46]. If a deep snowpack lessens drought stress
later in the growing season, the enhanced storage of photosynthate could favor growth
the following year, such that a lagged regression model is needed to capture the positive
moisture response (Figure S7).

The relatively poor tracking of positive P12 whiplash events by single-site reconstruc-
tions of species other than TSME may reflect a strong drought-legacy effect in recovery from
exceptionally dry years in those species. Studies of drought-legacy effects in Sierra Nevada
conifers have found extended (2+ year) recovery time in Pinus and Abies species [28,29].
The short-term (1 year) drought-recovery time has been reported for Juniperus species [28],
but some studies of the Cupressaceae family (to which Juniperus belongs) report no time
needed for recovery [27]. No studies specifically address drought-legacy effects in TSME.
In comparative evaluation, TSME has shown lower resilience to drought than ABMA and
Pinus species [47]. Positive correlations with current-year precipitation have been shown in
ABMA, PIJE, and other Pinus species [48,49]. Positive correlation with previous water year
precipitation is seen in ABMA, TSME, PIJE [48–50], and JUGR [51]. TSME shows a negative
correlation with current-year winter precipitation [48,52]. Drought sensitivity combined
with a positive lagged-year and a negative current-year response to precipitation may favor
the potential of TSME to track positive whiplash events. It is further possible that site
characteristics, which were unexplored in this research, further contribute to the positive
whiplash event sensitivity of TSME. Perhaps the drought-legacy effect in TSME is less
than in other species because TSME are growing in settings more disposed to mitigating
drought-legacy effects, such as sites with a high water table [27,30] or low evaporative
demand due to soil, vegetation, and spatial characteristics [53].

It is also notable that some single-site reconstructions by the same species consistently
tracked whiplash events consistently missed by reconstructions by other species. Again, this
result could reflect species differences in phenology and in climate response, favoring the
response to whiplash events associated with undetermined patterns in site characteristics
or in the monthly precipitation anomalies in the wet and dry years of the event.

The weak tracking of positive P12 whiplash events by single-site models is not seen in
models with a wider predictor pool. The full-network reconstruction significantly (α = 0.01)
tracks both positive and negative whiplash events. Species-specific reconstructions often
mitigate the failure of the majority of sites to track positive events through the inclusion
of even a single chronology that captures high-frequency variance and successfully tracks
whiplash. At the same time, some reconstructions that draw from the full-network still
fail to track events as successfully as the majority of single-site reconstructions of the same
species. This is the case for PIJE reconstructions: 50% of the single-site PIJE reconstructions
track negative events at better than α = 0.01 significance in the hypergeometric test, but the
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species-specific (multi-site) PIJE reconstruction fails to track such events at even the α = 0.05
significance level. Such a seemingly illogical drop in whiplash tracking accuracy could
result from the species-specific reconstruction model selecting a chronology or chronologies
with a strong climate signal at other than the highest frequencies—those driving whiplash
events. Decadal-scale fluctuations are highly important to the precipitation and stream-
flow histories of the Sierra Nevada [22], and a stepwise reconstruction model may select
chronologies with a relatively strong response to those lower-frequency variations at the
expense of tracking whiplash events.

Traditional metrics of reconstruction accuracy (e.g., R2) are not directly related to
whiplash tracking outcomes. In some cases, tree-ring reconstructions track known whiplash
events at a significant rate, even with relatively low explained variance by the reconstruction
model. In others, a reconstruction with high explained variance failed to track whiplash
events more frequently than expected by chance. The findings suggest that it may be unwise
to assume that whiplash events will be well tracked just because a reconstructed model
has a high explained variance. We explain the disconnect between variance and whiplash
tracking by differential responses of chronologies to the spectrum of climate variability.
The goal of minimum error variance in regression might be satisfied by chronologies with
relatively strong responses at frequencies other than those driving whiplash events. In
future studies, the methods developed for this study could be applied to quantify the ability
of a reconstruction to track whiplash events or to screen alternative reconstruction models
in order to select one most suitable for whiplash tracking.

The simple magnitude of events seems to have little bearing on whiplash tracking.
This is unsurprising given prior research, which suggests the outcomes of legacy effects
are likewise not radically changed by the relative severity of drought [27,30]. However,
there may be some relationship to the monthly distribution of precipitation during the
dry season of whiplash years. An extremely wet or dry water year contributing to a
whiplash event can result from radically different combinations of monthly precipitation.
Soil moisture in the Sierra Nevada increases during winter snowmelt, spring rain and
snowmelt, and fall rain [54]. Because most of the precipitation in the study area falls as
snow, a particular month of wet conditions in a wet year may be of little importance to
tree growth. Regardless of the monthly distribution, the snowpack acts as a reservoir that
releases the water with warming the following spring. The onset of the growth season
aligns with an influx of soil moisture as spring temperatures rise. The overall duration
of growth is dependent on water availability from soil moisture and internal water stress
modulated by vapor pressure deficits over the hot, dry season [55]. The apparent tracking
by reconstructions of negative P12 events with particularly low dry season precipitation
(Figure 5) may suggest that whiplash tracking by some reconstructions is driven by the
availability of late season (autumn) precipitation, which could give some relief during
seasonal drought. Low spring temperatures can delay the start of the growth season,
while high temperatures and rain-on-snow events advance snowmelt timing and speed
accumulated snow water release, which can contribute to a shorter growing season [56,57],
further complicating the relationship between stored wet-season snowpack and dry-season
water availability. In this study, the impacts of temperature on whiplash tracking were
not explicitly examined. However, exploratory analysis shows that the natural flows of
some rivers in Sierra Nevada often reflect the same whiplash years as P12 (Figure S3),
and streamflow, equivalent to net precipitation, or precipitation minus evapotranspiration,
implicitly includes a temperature effect [58].

Future studies of whiplash events in tree-ring data should include sensitivity analysis
to understand the extent to which the methodology of reconstruction (e.g., lagged stepwise
regression vs. other alternatives) and statistical definition of events impacts results. Factors
in reconstruction procedures such as the inclusion or exclusion of lagged years in the
predictor pool, choice of analysis period, standardization method, and use of standard vs.
residual chronologies could affect whiplash outcomes in reconstructed series. Alternatives
to the nonparametric approach of defining whiplash events could be considered. We set
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our whiplash thresholds with the goal of having the same number of whiplash events in
each series for the analysis period; this is only one of many possible approaches to whiplash
classification. Further, there are opportunities for analysis of trends in the ability to track
whiplash events that may be related to climate change.

Exploration of climate at various scales, such as multi-year droughts or pluvial periods
preceding whiplash event years as well as interannual or seasonal variability, might help
explain why some whiplash events are well tracked across sites and species while others
are missed. West coast populations of PIPO, for instance, have demonstrated that the
duration and severity of drought-legacy effects increase when multiple drought years occur
in a five-year period preceding a non-drought year [59]. Future studies could also explore
climate in years defined as whiplash by reconstructions or chronologies rather than by a
hydrologic variable (e.g., P12). This focus, including analysis of the seasonal climate signal
in chronologies [60], could likewise shed light on such questions.

5. Conclusions

This study presents a novel methodology to determine, rank, and compare whiplash
events, defined as a two-year period when annual precipitation switches between extremes
of wet to dry (negative) or dry to wet (positive). Models were designed and/or evaluated
through the lens of species distinctions as a primary variable, allowing for separate eval-
uation of the capacity of Abies magnifica, Juniperus grandis, Pinus ponderosa, Pinus jeffreyi,
and Tsuga mertensiana to track P12 whiplash, gaged from the top 6 most severe events in
a 69-year period. The success or failure of P12 whiplash event-tracking by P12 tree-ring
reconstructions was assessed by a hypergeometric test.

Outcomes suggest that ring-width indices of conifer species in the Sierra Nevada
are often able to record consecutive years of opposing extreme precipitation and that
the history of such events can be extracted through reconstruction by lagged regression
models. Residual effects of a preceding year’s drought or pluvial on tree growth do not
necessarily erase records of whiplash from the tree-ring record, though there is still much
uncertainty as to why some events are tracked by tree rings and others are missed. Among
all reconstructions in this study, negative events are generally tracked more consistently
than positive events, although tracking sensitivity differs among species and especially
strong tracking of positive events is exhibited by TSME. Tracking ability appears to have no
clear relationship to the overall explained variance of the model (R2), the relative magnitude
of whiplash events, or the interannual precipitation during those whiplash years.

This study was successful in presenting a novel methodology for determining whiplash
events and comparing them among time series. This study lays the foundation for future
exploration of tree-ring responses to consecutive years of disparate climate extremes. The
species lens used in the study resulted in evidence of the importance of chronology selection
in predictor pools and suggests that whiplash tracking is yet another metric (e.g., sensitivity
to climate factors such as precipitation or temperature) that varies among chronology
sites. There is no single chronology or species that captures year-to-year variability at its
most extreme in all cases, and this reminds us that the diversity of data plays a role in
understanding the larger picture of paleoclimate. As climate variability increases in its
severity due to anthropogenic climate change, understanding the frequency and severity of
whiplash events through the tree ring record will serve to provide context for contemporary
and future events.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/environments10010012/s1, Figure S1: Time series of PRISM
water-year precipitation at 12 SWE monitoring stations, 1896–2020. Figure S2: Correlation matrix
of annual hydroclimatic series, 1923–2017. Site codes are defined in Table S1. Figure S3: Synchrony
of positive whiplash events in alternative annual hydroclimatic series, 1923–2017. Figure S4: The
climate footprint of the Truckee-Carson River Basin is illustrated with the spatial correlation of the
instrumental summer (June-July-August) Palmer Drought Severity Index (PDSI) on a 0.5-degree
latitude-longitude grid. Figure S5: Time series of P12, species-specific reconstructions of P12, and full-
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network reconstructions of P12. Figure S6: Mean of monthly P12 precipitation in years of whiplash
events in P12. Figure S7: The correlations, 1920–1989, of P12 with full-network and species-specific
reconstructions compared with the correlations of P12 with species-mean chronologies for each of
the 5 tree species. Table S1: Key for 8 Hydroclimatic series in/near the Truckee-Carson River Basin.
Table S2: Summary statistics of single-site reconstructions of P12. Table S3: Significance of whiplash
event tracking in P12 by single-site reconstructions.
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